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Introduction.

1. Define the concepts of systemic risk and systemic importance,
discusses the challenges of measuring them and mentions the different
approaches that have been proposed.

2. We develop a series of testing procedures, based on a particular
Market information based approach to identify and rank the systemically
important institutions. We stress the importance of statistical testing (to
complement economic significance) in interpreting the measure of
systemic importance.

3. Discuss preliminary results on use of balance-sheet counterparty
information from the Colombian financial system, to map the
interdependencies between the institutions.
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Systemic Risk and Systemic Importance.

⋄ Financial Crisis (2007,2008).

⋄ Basel 2 (Individual Resilience) → Basel 3 (systemic approach) wrt
Financial Institutions.

⋄ ∆ Macro-prudential supervision and Regulation.

⋄ Identify Systemically Important Financial Institutions (SIFI’s) Tax or
Capital surcharge.

We argue that Systemic risk and SIFI’s are distinct and have different drivers,

hence any measurement must take this issue into account.
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Systemic Risk and Systemic Importance.

Definition: Systemic Risk (Acharya et al. (2009, p.283) and IMF/BIS/FSB
(2009, p.2))
”the risk of a crisis in the financial sector and its spillovers to the economy at
large” or ”a risk of disruption to financial services that is (i) caused by an
impairment of all or parts of the financial system and (ii) has the potential to
have serious negative consequences for the real economy”.
Definition: Systemic Importance of a Financial Institution (IMF/BIS/FSB
(2009, p.8)) SI of financial institutions depends on ”their potential to have a
large negative impact on the financial system and the real economy.”

The impact results from: Spillover and contagion effects.
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Systemic Risk and Systemic Importance: Drivers
Level of Systemic Risk:

1. Individual Default Probabilities.

2. Dependence across defaults.

a) Common exposures: portfolios vulnerable similar risk
factors.
b) Spillover Channels: Direct (interbank mkt, counterparty
relations) and Indirect (asset fire sales, imperfect and
asymmetric information, negative feedback loops).

Systemic Importance of a Financial Institution:

1. Default Probabilities Institution in question: Not really, sound banks
may be SI.

2. Default Probabilities of other Institution in system: Strengthen the
effect, but no driver.

3. Dependence across defaults.

a) Common exposures: Strengthen the effect, complicates
measure in particular identification.
b) Spillover Channels: Main driver, interconnectedness
through direct and indirect channels.

4. Others: Size, substitutability.
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Systemic Importance: Identification

Spillover effects vs common exposures: Need to separate both and keep only
the former for systemic importance. Ideally, identification of systemic
importance, needs to look at failures cause by an idiosyncratic shock and its
propagation throughout the system. Systematic shocks may overestimate
systemic importance.

Cascade or Domino Effects: First round and second+ round effects, account

total impact of first failure. Should all round effect be taken into account in

order to levy a tax or a capital surcharge on a systemically important

institution?
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Systemic Importance: Identification
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Measuring Systemic Importance: Approaches

1. Indicator based approach: Syntectic indicators based on: total assets,
interbank liabilities, share non-traditional banking activities, etc..

2. Network approach: map interconnections between institutions.

3. Market information based approach:

a) Co-Risk Approach: infer impact of failure or distress of
financial institution thought market data.
b) Portfolio Approach: First, quantify total risk in the system
and second, determine contribution of each institution to
system-wide risk.
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Assess existing market-based measures of Systemic
Importance

⋄ Measuring impact rather than fragility.

⋄ Identification, need to disentangle common exposure from spillover
channels, in order to properly measure systemic importance.

⋄ Market based measures may never capture cascade or domino effects →
Network based approach.
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Measuring the systemic importance (SI) of financial
institutions (FIs): ∆CoVaR .

⋄ Co-risk measures have attracted considerable attention in both
academic and policy research.

⋄ Adrian and Brunnermeier (2009,2010): compare VaR of the financial
system conditional on FI in distress (CoVaR) to VaR of the financial
system in normal times < 2009 > or the CoVaR of the financial system in
normal times < 2010 > (both versions extensively applied).

⋄ However, statistical testing procedures to assess the significance of the
findings and interpretations based on this co-risk measure ”have not yet
been developed”.

⋄ Emerging literature, Chuang, Kuan and Lin (2009), Billio, Getmansky,
Lo and Pelizzon (2010), White, Kim, and Manganelli(2010).
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Quantile-based Risk Measures.

⋄ VaRX (τ) := inf {x ∈ R : FX (x) ≥ τ} ., τ ∈ (0, 1).

⋄ ESX (τ) (Expected Shortfall).

Add CoVaR
X index|i(τX )(τ) to this family of measures. Where X index returns on

index of financial institutions (representing the system)and X i stock return of
the financial institution i (possibly the root of distress).

P(X index ≤ CoVaR
X index|i(τX )(τ) | X i = VaRX i (τX )) = τ,

∆CoVaR index|i (τ) = CoVaRX index|i (τ)− VaRX index (τ).

Then ∆CoVaR index|i (τ) is the marginal risk contribution (incremental VaR) of

institution i ; determines the SI.
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CoVaR estimation.

Linear Location/Scale Model

X index
t = Ktδ + (γKt)εt ,

Quantile (response) Function Representation

QX index |K (τ) = Ktδ + (γKt)Qε(τ)

= Ktβ(τ)

where β(τ) = δ + γQε(τ).
Most applications of Adrian and Brunnermeier’s methodology (Linear
location-shift model, γKt = 1).

X index
t = Ktδ + εt ,

where Kt = [Zt ,X
i
t ].

Might be extremely restrictive model(s), more on that at the end!
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Measuring the SI of FIs: application of ∆CoVaR

⋄ Data: daily stock returns (1986-2010) for individual FIs and index of
FIs.

⋄ CoVaR: conditional quantile function (CQF) (also: quantile response
function).

Table: Size and ∆CoVaR of three European banks

Bank Assets (millions) Quantile Regression Results ∆CoVaR

A 1, 571, 768 X index|A(0.99) = 0.026 + 0.526XA(0.99) 1.38

B 102, 185 X index|B(0.99) = 0.042 + 0.231XB(0.99) 1.18

C 10, 047 X index|C (0.99) = 0.037 + 0.028XC (0.99) 0.03
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Our contribution: Testing for the SI of FIs.

⋄ Conclusion: A is more SI than B and C, and B is more SI than C?

⋄ Testing for the strength of the results.

Significance

H0 : ∆CoVaR index|i (τ) = 0,

test whether CQF differs from un-CQF for FI i
Dominance

H0 : CoVaRX index|i (τ) > CoVaRX index|j (τ),

test whether CQF conditional on FI i differs from CQF
conditional on FI j
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Quantile treatment effects and ∆CoVaR .

Two-sample treatment effects

⋄ Treatment group (CQF), with distribution G .

⋄ Control group (un-CQF), with distribution F .

(Non-parametric) estimator of quantile treatment effects

ϱ̂(τ) = Ĝ−1
T (τ)− F̂−1

S (τ),

∆CoVaR as a quantile treatment effect:

̂∆CoVaR
index|i

(τ) = Q̂X index |X i (τ)− Q̂X index (τ)

= F̂−1
X index |X i (τ)− F̂−1

X index (τ),
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Graphical depiction of ∆CoVaR
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Inference for Quantile Regression.

H0 in both significance and dominance test involves CQF. Since CQF is linear,
both tests fit in: general linear hypothesis framework:

H0 : Rβ(τ) = r(τ), τ ∈ T

where β(τ) is p dimensional and q is the rank of matrix R, (q ≤ p).
Wald (process, indexed by τ) statistic under the null, is:

WT (τ) = T
(Rβ̂(τ)− r(τ))′(RΩ̂(τ)R ′)−1(Rβ̂(τ)− r(τ))

(τ(1− τ))

where Ω̂(τ) is a consistent estimator of Ω(τ).
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Inference for Quantile Regression.

The Kolmogorov-Smirnov (KS) type statistic:

KT = sup
τ∈T

|| ŴT (τ) || .

K ′
T = sup

τ∈[τ0,τ1]

ŴT (τ)− ŴT (τ0)√
τ1 − τ0

.

Test statistic is distribution free. Critical values: DeLong (1981) and Andrews

(1993, 2003) by simulation methods, and more recently by exact methods by

Estrella (2003) and Anatolyev and Kosenok (2011).
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Simple Test of Significance for ∆CoVaR .

QX index |X i (τ) = β0(τ) + X iβ1(τ),

Theorem
Testing the hypothesis H0 := β1(τ) = 0 is equivalent to testing the hypothesis
H0 := ∆CoVaRX index|i (τ) = 0, for a given τ .

For such simple (two-sided) test H0 := β1(τ) = 0 we use Wald statistic WT (τ).

Define R as a selection matrix R = [0 : 1] and the restriction r(τ) = 0.
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Test of significance and dominance using quantile
response function.

Theorem
From Theorem 4.1 and let us define some continuous mapping
g(β(τ)) = Xβ(τ), where this mapping defines the quantile response function,
evaluated at some point in the design space.

√
n(Q̂Y|X(τ)− QY|X(τ)) →d N(0, τ(1− τ)XΩ(τ)X′)
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Test of significance and dominance using quantile
response function.

Two different (at least one column is different) design matrices X and Z (two
different continuous treatment effects applied to the same population Y . The
respective empirical quantile response functions are a follows:

Q̂Y|X(τ) = Xβ̂x
T (τ)

and
Q̂Y|Z(τ) = Zβ̂z

T (τ)
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Test of significance and dominance using quantile
response function.

Without loss of generality, we consider equal amount of observations T
through out the design space. Therefore, we have the following parametric
empirical process:

WT (τ) =
√
T (Q̂Y|X(τ)− Q̂Y|Z(τ))

=
√
T (X̃β̂x

T (τ)− Z̃β̂z
T (τ))

Where X̃ and Z̃ implies the quantile response function is evaluated at any point

of the design space (centroid (X̄, Z̄) or an extreme quantile of interest).
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Recall hypothesis test and statistic

Significance: Two-sided.

H0 : ∆CoVaR index|i (τ) = 0,

Dominance: One-sided.

H0 : CoVaRX index|i (τ) > CoVaRX index|j (τ),
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Recall hypothesis test and statistic

Statistic

WT (τ) = T
(Rβ̂(τ)− r(τ))′(RΩ̂(τ)R ′)−1(Rβ̂(τ)− r(τ))

(τ(1− τ))

Hypothesis Significance Dominance

R [X̃i ,−1] [X̃,−Z̃]

β̂(τ) [β̂i (τ),QX index (τ)] [β̂i (τ), β̂j(τ)]
r 0 0
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Testing for the SI of FIs: significance

Table: Testing for Significance (p-values)

FI ∆CoVaR H0 : β(0.99) = 0 H0 : ∆CoVaR(0.99) = 0

A 1.38 0.000 0.000
B 1.18 0.039 0.000
C 0.03 0.782 0.424
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Testing for the SI of FI A: significance
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Testing for the SI of FI C: significance
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Testing for the SI of FIs: dominance

Table: Testing for Dominance (p-values)

FI ∆CoVaR [τ0, τ1] = [0.90, 0.99] [τ0, τ1] = [0.10, 0.99]

AB 1.38 0.000 0.913
AC 1.18 0.000 0.874
BC 0.03 0.000 0.482
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Testing for the SI of FI A and B: dominance
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Testing for the SI of FI A and C: dominance
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Concluding remarks: Measuring and Testing for
systemically important financial institutions.

⋄ ∆CoVaR is interesting tool for measuring SI, but statistical testing is
required before interpreting results.

⋄ We develop such tests in linear quantile regression framework. This
linear framework (location-shift model and location/scale model) is
restrictive.

⋄ work in progress.

⋄ Power of the test.
⋄ At some point when τ → 1, the convergence of the statistic
breaks down, Chernozhukov (2000).
⋄ Test for stochastic dominance at the extremum for a general
class of (models) conditional and unconditional quantile
functions.
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Network/ Graph Theory approach.

Definition
A network (graph) G consist of a non-empty set of elements V(G) called
vertices, and a list of unordered pairs of these elements called edges E(G). The
set of vertices (nodes) of the network is called a vertex set and the list of edges
is called edge list.
If i and j are vertices of G, then an edge of the form (i,j) is said to joint or
connect i and j.
In Financial networks:

Vertices = (financial) institutions.

Edges = counterparty relationships on the asset or liability side of the
balance sheet.

We take counterparty balance sheet annual data (2010) to determine the

interconnections of the type of institutions within Colombia’s financial sector.

The data also allows us to link the financial sector to the public and real

sectors of the economy.
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Simple and descriptive measures of network
topology.

Density: quotient between the number of edges observed in a network over the
potential number of edges that could exist. For complete networks, density is
equal to 1. Overview of strength of interconnections between all vertices in the
network. With respect to systemic risk denser networks can be both a blessing
and a curse.
Degree: measures the number of edges observed for each vertex. Indegree of
a vertex is the number of edges that it receives, Outdegree is the number of
edges that it sends, and the Netdegree is the sum of the last two.

Core: A k-core is a maximal subnetwork in which each vertex has at least

degree k within the subnetwork. This measure allows us to identify similarities

in terms of degree between vertices.
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Colombia’s financial, public and real sector:
Financial Network.

⋄ 18 institutions (asset side).

⋄ Edges are weighted wrt total asset of individual institution.

⋄ Direction of the arrow indicates a position on the asset side of the
balance sheet for the originating (sending) institutions.

⋄ density of this network is 0.27.
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Colombia’s financial Network: Core

⋄ Only 6 of 18 institutions are on the sending-end of the counterparty
relationship.

⋄ Relevance of out-degree for only these 6 institutions, performing
financial intermediation.
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Colombia’s financial Subnetwork.

⋄ Sub-network of 6 institutions.

⋄ density of this network is 0.83.
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