Borradores de ECONOMIA

Bayesian Model Averaging. An Application to Forecast Inflation in Colombia

Por:
Eliana González

Núm. 604
2010

BAYESIAN MODEL AVERAGING. AN APPLICATION TO FORECAST INFLATION IN COLOMBIA *

ELIANA GONZÁLEZ ${ }^{\dagger}$

(egonzamo@banrep.gov.co)

BANCO DE LA REPÚBLICA

Abstract

An application of Bayesian Model Averaging, BMA, is implemented to construct combined forecasts for the colombian inflation for the short and medium run. A model selection algorithm is applied over a set of linear models with a large dataset of potential predictors using marginal as well as predictive likelihood. The forecasts obtained when using predictive likelihood outperformed the ones obtained when using marginal likelihood. BMA forecasts reduce forecasting error compared to the individual forecasts, equal weighted average, dynamic factors model and random walk forecasts for most horizons. Additionally, the BMA outperformed for some horizons the frequentist Information theoretic model average, ITMA, when the weights of both methodologies are build based on the predictive ability of the models.

Key words and phrases. Bayesian model averaging, forecast combination, Inflation, Information theoretical model averaging.
JEL clasification. C11, C15, C52, C53.

[^0]
1. INTRODUCTION

For monetary policy it is important to count with reliable forecasts for inflation in order to make appropriate decisions. This has lead to a permanent effort of econometrists in trying to find ways of reducing forecasting errors, developing and implementing different methodologies of forecasting and forecast combination. On the other hand, available information that might help to explain the dynamics of inflation and help to generate better forecasts has been widening and all this information has to be summarized in some way and be incorporated in a forecasting model. Given that the true model driving inflation is unknown, the issue then is how within a large set of potential predictors can we find a good model or some candidate variables that explain the dynamics of inflation and help to predict it in the future?. In this regard, dealing with a large dataset, a commonly use methodology that summarizes the information contained in all the available variables and thus reduces the dimensionality of the problem is factor models (Stock and Watson [2002], Boivin and Ng [2005], Forni et al. [2000], Forni et al. [2005], among others). With this methodology the number of possible predictors is reduced to a few ones and a model with those common factors as explanatory variables is estimated to produce forecasts. There exist another approaches to reduce dimensionality which basically consist on selecting variables according to some criteria and shrinkage methods (See Hastie et al. [2009] for a description of some of these methods).

Another important issue that arises in forecasting is that a model that fit well the historical data, not necessarily generate the most accurate forecasts for the future. One particular model can be good at predicting some horizons, or can do well predicting in some situations, for instance being able to predict some future movement as a reaction to some shock and there might be another model(s) able to predict well in some other situations. Thus, in practice we cannot trust in just the forecast generated by one single "good" model, instead we can obtain several forecasts from different specifications and methodologies which need to be summarized in a single output. It has been found that a combined forecast reduces forecast error compared to a particular forecasting model (Bates and Granger [1969], Newbold and Granger [1974]). This is in part because the combined forecast may cancel out the possible biases of the individual forecasts, and it also may reduce to some extent the misspecification of each particular model. This issue has lead to the development and widespread use of forecast combination thecniques. The standard one is the simple or equal weigthing average, but most of the methodologies of forecast combination consist on constructing weights to average individual forecasts according to some criteria based on the fit of the model (See Clemen [1989] for a review of the literature on forecast combination), or more recently proposed, based on the predictive ability of each model (Eklund and Karlsson [2005], Kapetanios et al. [2006]).
Bayesian model averaging, BMA, is a procedure that allows to select models consistently from a model space, without having to analyse every particular model in order to determine which ones better fit the data or help to predict more accurately a variable of interest. This can be done by drawing a sample of models from the distribution of the model space and rank them according to the posterior probability, which depends on the
likelihood of the model and a prior belief on each particular model. Thus, the weight assigned to each forecast to be combined is given by the posterior probability of each model. The pioners in using this approach to forecast combination are Raftery et al. [1997] and many applications have been developed to forecast inflation, such as the works of Wright [2003], Jacobson and Karlsson [2002], Koop and Potter [2003], Eklund and Karlsson [2005], Kapetanios et al. [2006] and Kapetanios et al. [2008] among others, showing good performance of BMA compared to other combined forecasts.
In this paper an application of BMA to forecast Colombian inflation is performed, considering a large dataset of variables related to real economic activity, monetary, credit and exchange rate variables and prices. Both, marginal and predictive likelihood are used in order to construct the posterior probabilities to select first the best predictors and then the models to be combined. The predictive likelihood has the advantage over the marginal likelihood that it considers the performance of the model out of sample and thus deals with the issue that not necessarily a good in-sample model is a good predictor of the future. Additionaly, an empirical comparison of the performance of the BMA forecasts to other combined forecasts such as the simple average, an average based on an information criteria, known as Information theoretical model averaging,ITMA forecast, and the random walk forecast is done. The results support the findings of other authors, that combined forecasts performs better than the individual forecasts. The combined forecasts whose weights are build based on the predictive ability of each individual model significantly reduces the forecasting error compared to those combined forecasts whose weights are build based on the in-sample fit of each model. All the combined forecasts performed better than the random walk. Comparing BMA and ITMA, both based on the predictive ability of the models, the results favor BMA for some horizons, however for other horizons ITMA performs better.

The remainder of the paper is structured as follows. Section 2 describes the Bayesian model averaging methodology and particularly when is used for forecast combination. In section 3 the implementation of this methodology to forecast inflation in Colombia is described. Section 4 shows the results of the BMA empirical exercise for Colombian inflation as well as the evaluation of the obtained forecasts comparing to forecasts generated by different approaches. Section 5 concludes.

2. Bayesian Model Averaging

Bayesian Model Averaging was first thought as a model selection process, implemented by Hoeting et al. [1999], based on model uncertainty, since in practice the data generating process is unknown. It esentially works as follows: Given a set of M models $\mathbf{M}_{1}, \ldots, \mathbf{M}_{M}$, for which the researcher has a prior belief about the probability of \mathbf{M}_{i} being the true model, $P\left(\mathbf{M}_{i}\right)$ for $i=1, \ldots, M$, using Bayes theorem and the observed data, \mathbf{Y}, the posterior probability that each model is the true one is given by:

$$
\begin{equation*}
P\left(\mathbf{M}_{i} / \mathbf{Y}\right)=\frac{m\left(\mathbf{Y} / \mathbf{M}_{i}\right) P\left(\mathbf{M}_{i}\right)}{\sum_{i=1}^{M} m\left(\mathbf{Y} / \mathbf{M}_{i}\right) P\left(\mathbf{M}_{i}\right)} \tag{2.1}
\end{equation*}
$$

where $m\left(\mathbf{Y} / \mathbf{M}_{i}\right)$ is the marginal likelihood of model i defined as

$$
\begin{equation*}
m\left(\mathbf{Y} / \mathbf{M}_{i}\right)=\int L\left(\mathbf{Y} / \Theta_{i}, \mathbf{M}_{i}\right) P\left(\Theta_{i} / \mathbf{M}_{i}\right) d \Theta_{i} \tag{2.2}
\end{equation*}
$$

where L is the likelihood and $\mathrm{P}\left(\Theta_{i} / \mathbf{M}_{i}\right)$ istheposteriordensityoftheparametervectorofmodeli.
For any quantity of interest, Δ, which may be a parameter, or a function of some parameters, its posterior distribution can be obtained as the weighted average of the posterior distributions under each model in the set of available models. The weights correspond to the posterior model probabilities.

$$
\begin{equation*}
P(\Delta / \mathbf{Y})=\sum_{i=1}^{M} P\left(\Delta / \mathbf{Y}, \mathbf{M}_{i}\right) P\left(\mathbf{M}_{i} / \mathbf{Y}\right) \tag{2.3}
\end{equation*}
$$

Following the same spirit, for a function $g(\Delta)$, its posterior distribution is given by:

$$
\begin{equation*}
E(g(\Delta) / \mathbf{Y})=\sum_{i=1}^{M} E\left(g(\Delta) / \mathbf{Y}, \mathbf{M}_{i}\right) P\left(\mathbf{M}_{i} / \mathbf{Y}\right) \tag{2.4}
\end{equation*}
$$

In particular, for the conditional forecast, $\tilde{Y}_{t+h}=E\left(Y_{t+h} / Y_{t}\right)$, the optimal forecast combination is obtained as the weighted average of the forecast generated by each model.

$$
\begin{equation*}
E\left(Y_{t+h} / Y_{t}\right)=\sum_{i=1}^{M} E\left(Y_{t+h} / Y_{t}, \mathbf{M}_{i}\right) P\left(\mathbf{M}_{i} / \mathbf{Y}\right) \tag{2.5}
\end{equation*}
$$

When considering the case of variable selection, the posterior probability that variable j is included in the true model is given by

$$
\begin{equation*}
p\left(X_{j} / \mathbf{Y}\right)=\sum_{i=1}^{M} I\left(X_{j} \in \mathbf{M}_{i}\right) P\left(\mathbf{M}_{i} / \mathbf{Y}\right) \tag{2.6}
\end{equation*}
$$

where $I\left(X_{j} \in \mathbf{M}_{i}\right)$ is an indicator variable, taking value of one when variable X_{j} is in model \mathbf{M}_{i} and zero otherwise.

In order to implement this in practice, the researcher only has to define the prior probability of each model, $P\left(\mathbf{M}_{i}\right)$, and the prior distribution of the parameter vector in each model, $P\left(\Theta_{i} / \mathbf{M}_{i}\right)$. On the other hand, the models not necessarily have to be linear
One important issue when implementing this methodology for variable or model selection, as well as, for forecast combination is the number of available models considered.

When the set of models is very large, sometimes the calculation of the posterior probability for each particular model is something impractical. Madigan and Raftery [1994] suggested using some algorithm to reduce the model space in such a way that only those models with non negligible posterior probability are considered.
In practice, accounting for model uncertainty, the idea is to find a set of M "good" models from a large set of possible predictors. Thus, if we have, say K predictors, the model space contains 2^{K} possible models. We can restrict the model space considering only those models containing up to k predictors, $k<K$, so that the model space reduces to $\left(\sum_{j=0}^{k}\binom{K}{j}\right)$ possible models, considering also the model with an intercept only. As the number of possible models is still huge, the calculation of the posterior probability for each particular model is burdensome. Jacobson and Karlsson [2002] suggested employing MCMC algorithms to visit a signficative sample of the full model space and calculate for those visited models the posterior probability. Since the MCMC takes draws from regions where posterior probabilities are high, then we will be able to choose models with a non-negligible posterior probability.

In particular, the reversible jump algorithm, RJMCMC proposed by Green [1995], seems to be a convenient method to deal with this issue. The algorithm works as follows:
From an initial state of the chain, $\left(\theta_{\boldsymbol{M}}, \boldsymbol{M}\right)$, where \boldsymbol{M} indicates teh model and $\theta_{\boldsymbol{M}}$ the parameters of dimension $\operatorname{dim}\left(\theta_{\boldsymbol{M}}\right)$

- Propose a jump from model \boldsymbol{M} to model \boldsymbol{M}^{*} with probability $j\left(\boldsymbol{M} / \boldsymbol{M}^{*}\right)$
- Generate a vector u from a proposal density $\mathbf{q}\left(u / \boldsymbol{M}, \boldsymbol{M}^{*}\right)$
- Set $\left(\theta_{\boldsymbol{M}^{*}}, u^{*}\right)=g_{\boldsymbol{M}_{,} \boldsymbol{M}^{*}}\left(\theta_{\boldsymbol{M}}, u\right)$, where g is a specified invertible function and u, u^{*} satisfy $\operatorname{dim}(u)+\operatorname{dim}\left(\theta_{\boldsymbol{M}}\right)=\operatorname{dim}\left(u^{*}\right)+\operatorname{dim}\left(\theta_{\mathbf{M}^{*}}\right)$
- Accept the move with probability
$\alpha=\min \left\{1, \frac{L\left(\mathbf{Y} / \Theta_{\mathbf{M}^{*}}, \mathbf{M}^{*}\right) P\left(\Theta_{\mathbf{M}^{*}} / \mathbf{M}^{*}\right) P\left(\mathbf{M}^{*}\right) j\left(\boldsymbol{M} / \boldsymbol{M}^{*}\right) q\left(u^{*} / \Theta_{\mathbf{M}^{*}}, \mathbf{M}^{*}, \mathbf{M}\right)}{L\left(\mathbf{Y} / \Theta_{\mathbf{M}}, \mathbf{M}\right) P\left(\Theta_{\mathbf{M}} / \mathbf{M}\right) P(\mathbf{M}) j\left(\boldsymbol{M}^{*} / \boldsymbol{M}\right) q\left(u / \Theta_{\mathbf{M}}, \mathbf{M}, \mathbf{M}^{*}\right)} \times\left|\frac{\partial g_{M, \mathbf{M}^{*}}\left(\theta_{\boldsymbol{M}}, u\right)}{\partial\left(\theta_{\boldsymbol{M}}, u\right)}\right|\right\}$
and set $\boldsymbol{M}=\boldsymbol{M}^{*}$ if the move is accepted.
Following the works of Jacobson and Karlsson [2002] and Eklund and Karlsson [2005], the algorithm simplifies enormously by only considering the following local moves: add or drop a variable and swap one variable at a time.
(1) For the add or drop jump, one selects a variable from the whole dataset at random and check if it is already in the current model. Drop it if it is in the model or add it if it is not in the model. The probability of this move is $j\left(M / M^{*}\right)=j\left(M^{*} / M\right)=$ $\frac{1}{K}$, with K the number of available variables.
(2) For the swap jump, one selects a variable in the model at random and swap it for a randomly selected variable outside the model. The probability of this move is

$$
j\left(M / M^{*}\right)=j\left(M^{*} / M\right)=\frac{1}{k(K-k)} \text {, with } k \text { the number of variables in the model. }
$$

If in addition all parameters of the proposed model are generated from a proposal distribution, then

- $\left(\theta_{\boldsymbol{M}^{*}}, u^{*}\right)=\left(u, \theta_{\boldsymbol{M}}\right)$ with $\operatorname{dim}\left(\theta_{\boldsymbol{M}}\right)=\operatorname{dim}\left(u^{*}\right)$ and $\operatorname{dim}\left(\theta_{\mathbf{M}^{*}}\right)=\operatorname{dim}(u)$
- the Jacobian

$$
\begin{equation*}
\frac{\partial g_{\boldsymbol{M}, \boldsymbol{M}^{*}}\left(\theta_{\boldsymbol{M}}, u\right)}{\partial\left(\theta_{M}, u\right)}=1 \tag{2.8}
\end{equation*}
$$

Additionally, if considering the posterior distribution of $\theta_{M}, P\left(\theta_{M} / \mathbf{Y}, M\right)$ as the proposal distribution for the parameters space, then
The acceptance probability of the move from M to M^{*} simplifies further to

$$
\begin{equation*}
\alpha=\min \left\{1, \frac{L\left(\mathbf{Y} / \Theta_{i}, \mathbf{M}^{*}\right) P\left(\Theta_{i} / \mathbf{M}^{*}\right) P\left(\mathbf{M}^{*}\right)}{L\left(\mathbf{Y} / \Theta_{i}, \mathbf{M}\right) P\left(\Theta_{i} / \mathbf{M}\right) P(\mathbf{M})}\right\} \tag{2.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha=\min \left\{1, \frac{m\left(\mathbf{Y} / \mathbf{M}^{*}\right) P\left(\mathbf{M}^{*}\right)}{m(\mathbf{Y} / \mathbf{M}) P(\mathbf{M})}\right\} \tag{2.10}
\end{equation*}
$$

2.1. The priors.

2.1.1. The prior model distribution. In the literature, different kind of prior for the probability that each model is the true one have been set. The most commonly used is assuming that all available models have the same odd of being the true model, that is $P\left(\mathbf{M}_{i}\right)=\frac{1}{M}$ for $i=1, \ldots, M$, which is known as a non-informative prior. Another, useful informative prior on the models is given by (Eklund and Karlsson [2005]):

$$
\begin{equation*}
P\left(\mathbf{M}_{i}\right) \propto \delta^{k_{i}}(1-\delta)^{k-k_{i}} \tag{2.11}
\end{equation*}
$$

where k is the maximum number of variables allowed in a model, k_{i} is the number of variables included in model i and δ is set such that the expected model size is equal to some prior. In particular, when $\delta=0.5$ the prior model probability is the same for each model.
2.1.2. The prior distribution for the parameters. Considering linear regression models of the form $Y=Z \gamma+\epsilon$, where $\gamma=\left(\alpha, \beta^{\prime}\right)^{\prime}, Z=(1, X)$ contains the explanatory variables and $\epsilon \sim N\left(0, \sigma_{\epsilon}^{2} I\right)$

An alternative for prior distribution of the variance of the error term is the Jeffrey's noninformative prior

$$
\begin{equation*}
p\left(\sigma_{\epsilon}^{2}\right) \propto \frac{1}{\sigma_{\epsilon}^{2}} \tag{2.12}
\end{equation*}
$$

The prior distribution for the vector parameter $\gamma / \sigma_{\epsilon}^{2}$ is the g-prior distribution, (Zellner [1986])

$$
\begin{equation*}
p\left(\gamma / \sigma_{\epsilon}^{2}, \mathbf{M}\right) \sim N_{k+1}\left(0, c \sigma_{\epsilon}^{2}\left(Z^{\prime} Z\right)^{-1}\right) \tag{2.13}
\end{equation*}
$$

with

$$
c= \begin{cases}K^{2} & \text { if } T \leq K^{2} \tag{2.14}\\ T & \text { if } T>K^{2}\end{cases}
$$

as suggested by Fernandez et al. [2001]

These set of priors lead to the posterior on the parameters

$$
\begin{equation*}
p(\gamma / \mathbf{Y}) \sim t_{k+1}\left(\gamma_{1}, S_{1}, M_{1}, v_{1}\right) \tag{2.15}
\end{equation*}
$$

where $\gamma_{1}=\frac{c}{c+1} \hat{\gamma}$ and $\hat{\gamma}$ is the OLS estimate,

$$
\begin{gather*}
S_{1}=\frac{c}{c+1}(Y-Z \hat{\gamma})^{\prime}(Y-Z \hat{\gamma})+\frac{1}{c+1} Y^{\prime} Y \tag{2.16}\\
M_{1}=\frac{c+1}{c} Z^{\prime} Z \tag{2.17}
\end{gather*}
$$

This leads to the marginal likelihood, which is also a multivariate t-distribution

$$
\begin{equation*}
m(\mathbf{Y} / \mathbf{M}) \propto(c+1)^{-(k+1) / 2} S_{1}^{(-T / 2)} \tag{2.18}
\end{equation*}
$$

2.2. The predictive likelihood. A way to avoid the in-sample overfitting problem, which may appear when using marginal likelihood, is to consider the predictive ability of the models instead of the in-sample fit to construct the weights of the models to be average. In order to achieve this, the full sample $\left(\mathbf{y}_{1}, \cdots, \mathbf{y}_{T}\right)$ is split into two parts: Y^{*} and \tilde{Y} with T_{1} and T_{2} observations, respectively, where the first part of the sample is used to obtain the posterior distribution on the parameters and the second part is used to evaluate the model performance. The size of the training and out-sample parts are chosen in such a way that with the minimal training subset, Y^{*}, a proper posterior distribution, $P\left(\Theta_{i} / Y^{*}, \mathbf{M}_{i}\right)$, is obtained and \tilde{Y} is the complement set of observations. As the outsample size increases, the predictive likelihood will be more stable and should perform better, Berger and Pericchi [1996].

$$
Y_{T \times 1}=\left[\begin{array}{l}
Y_{T_{1} \times 1}^{*} \tag{2.19}\\
\tilde{Y}_{T_{2} \times 1}^{*}
\end{array}\right]
$$

Thus, the posterior predictive likelihood $P\left(\tilde{Y} / Y^{*}, \mathbf{M}_{i}\right)$ conditional on Y^{*} and the model \mathbf{M}_{i} is given by

$$
\begin{equation*}
P\left(\tilde{Y} / Y^{*}, \mathbf{M}_{i}\right)=\int L\left(\tilde{Y} / \Theta_{i}, Y^{*}, \mathbf{M}_{i}\right) P\left(\Theta_{i} / Y^{*}, \mathbf{M}_{i}\right) d \Theta_{i} \tag{2.20}
\end{equation*}
$$

where L is the likelihood and $P\left(\Theta_{i} / Y^{*}, \mathbf{M}_{i}\right)$ is the posterior distribution on the parameters of model i. The predictive density gives the distribution of future observations $\left(\mathbf{y}_{T_{1}+1}, \cdots, \mathbf{y}_{T}\right)$ conditional on the observed sample Y^{*}. A large value of $P\left(\tilde{Y} / Y^{*}, \mathbf{M}_{i}\right)$ indicates a good predictive model.
Under the set of priors above, the predictive density of $\tilde{Y}=\left(\mathbf{y}_{T_{1}+1}, \cdots, \mathbf{y}_{T}\right)$ is

$$
\begin{equation*}
P\left(\tilde{Y} / \tilde{Z}, Z^{*}, Y^{*}, \gamma^{*}, \sigma_{\epsilon}^{2}\right) \sim N_{T_{2}}\left(\tilde{Z} \gamma^{*}, \sigma_{\epsilon}^{2} I_{T_{2}}\right) \tag{2.21}
\end{equation*}
$$

where \tilde{Z} is the out-sample matrix of explanatory variables and γ^{*} are the parameter vector estimated with the training sample. Then, the predictive posterior density of \tilde{Y} is a multivariate student distribution.

$$
\begin{equation*}
\tilde{Y} / \tilde{Z}, Z^{*}, Y^{*} \sim \mathbf{t}_{T_{2}}\left(\tilde{Z} \gamma_{1}, S^{*},\left(I_{T_{2}}+\tilde{Z}\left(M^{*}\right)^{-1} \tilde{Z}^{\prime}\right)^{-1}, T_{1}\right) \tag{2.22}
\end{equation*}
$$

with density function
$P\left(\tilde{Y} / \tilde{Z}, Z^{*}, Y^{*}\right) \propto \frac{S^{* T_{1} / 2}\left|M^{*}\right|^{1 / 2}}{\left|M^{*}+\tilde{Z}^{\prime} \tilde{Z}\right|^{1 / 2}} \times\left[S^{*}+\left(\tilde{Y}-\tilde{Z} \gamma_{1}\right)^{\prime}\left(I_{T_{2}}+\tilde{Z}\left(M^{*}\right)^{-1} \tilde{Z}\right)^{-1}\left(\tilde{Y}-\tilde{Z} \gamma_{1}\right)\right]^{-T / 2}$
where S^{*}, γ_{1} and M^{*} are defined the same as S_{1}, γ_{1} and M_{1} for the marginal likelihood but calculated over the training sample only.
Having the predictive likelihood, the posterior probability or the weight asigned to each model is obtained by replacing the marginal likelihood with the predictive likelihood,

$$
\begin{equation*}
P\left(\mathbf{M}_{i} / \tilde{Y}, Y^{*}\right)=\frac{P\left(\tilde{Y} / Y^{*}, \mathbf{M}_{i}\right) P\left(\mathbf{M}_{i}\right)}{\sum_{i=1}^{M} P\left(\tilde{Y} / Y^{*}, \mathbf{M}_{i}\right) P\left(\mathbf{M}_{i}\right)} \tag{2.24}
\end{equation*}
$$

3. Empirical Application

3.1. Data. The dataset used for the empirical application consists on 73 monthly macroeconomic Colombian time series from 1999:11 to 2009:12. This sample was chosen given
the availability of all series and to avoid a structural change observed in several macroeconomic variables during 1998 as shown in Melo and Nuñez [2004] among others. The data are grouped into three categories: Real Activity (26 series), Prices (23 series), Credit, Money and Exchange Rate (24 series) ${ }^{1}$.
The series are seasonally adjusted using Tramo-Seats methodology proposed by Caporello and Maravall [2004], then the variables are transformed as annual growth rates or twelvemonth \log differences, except the ones that are measured as balances or are already measured as growth rates. Inflation is measured as the twelve-month growth rate and it is also included in the set of predictors. Thus, the sample used to implement the methodology of BMA is from 1999:11 to 2007:12 leaving the last two years to generate recursively out-sample forecasts and evaluate the forecasting performance.
3.2. Implementation. As the purpose of the empirical exercise is to get forecasts for inflation for one to twelve months ahead, the following procedure is performed for each horizon, since the models considered are univariate linear models of the form $Y_{t+h}=$ $\alpha+\sum_{j=1}^{k} Z_{j, t-i} \gamma_{j}+\epsilon_{t+h}$, where the dependant variable is observed in $t+h$ rather than t in order to construct direct forecasts that do not require forecasting the predictors. The explanatory variables are observed at time t or with some lag $t-i$ and the model may include up to k predictors.
Two exercises of BMA are performed. In the first one, the marginal likelihood is used to calculate the posterior probabilities of variables and models using the sample from 1999:11 to 2007:12. In the second exercise, the predictive likelihood is used. In order to calculate the posterior probabilities of the variables and models for the later exercise, the sample is split as $Y^{*}=\left\{\mathbf{y}_{\text {Nov } / 1999}, \cdots, \mathbf{y}_{\text {Dec/2004 }}\right\}$ as the training sample and $\tilde{Y}=$ $\left\{\mathbf{y}_{\text {Jan } / 2005}, \cdots, \mathbf{y}_{\text {Dec } / 2007}\right\}$ as the hold-out sample.
The procedure consists of two stages. In the first stage a pre-selection of variables is done in order to reduce the dimensionality of the problem, so that only variables with significant predictive power are included in the data set. Given the dimension of the model space, 2^{73} possible models, it is initially restricted to those models with up to five explanatory variables entering with time t, i.e. no lags are considered. So, $Y_{t+h}=$ $\alpha+\sum_{j=0}^{5} Z_{j, t} \gamma_{j}+\epsilon_{t+h}$. Thus, the number of possible models is reduced to about $\sum_{j=0}^{5}\binom{73}{j} \approx$ 16 million. δ in (2.11) is set as 0.065 , so that the prior expected model size is 5 variables. The size and the variables included into the initial model are chosen at random to start the chain. The Markov chain is run 7 million steps and the algorithm calculates the posterior probability of each variable being included into a model. The first 2 million draws are leaving out as burn in sample, so that, they are not considered for the calculations

[^1]of posterior probabilities. The 20 variables with the highest posterior probability are selected to construct the data set for the second stage of the process. If total CPI inflation is not selected, it is forced to enter in the new dataset.

In the second stage, two lags of each of the pre-selected variables are added to the dataset. Thus, a total of 60 variables are considered as predictors. As the number of possible models is huge, 2^{60}, the model space is restricted to those models with up to 8 explanatory variables. This time $\delta=0.13$ is set for a prior expected model size of 8 variables. With that restriction, the model space consists of $\sum_{j=0}^{8}\binom{60}{j} \approx 3000$ million models approximately. Thus, the models are of the form $Y_{t+h}=\gamma_{0}+\sum_{j=0}^{8} Z_{j, t-i} \gamma_{j}+\epsilon_{t+h}$, where i could be $0,1, o r, 2$. Again, the size and variables of the initial model are randomly chosen to determine the initial state of the chain. This time a sample of 11 million models is drawn and the initial 1 million draws are excluded as burn-in sample. With the accepted models in the remaining draws, the algorithm calculates the posterior probability of each model and the 20 models with higher posterior probabilities are selected to generate the combined forecasts.

With the selected models, recursive out of sample forecasts are obtained for each horizon, in the sample 2008:01-2009:12, for a total of 24 out-sample forecasts. The BMA forecasts are obtained as the weighted average of the forecast of the 20 selected models. The weights are given by the posterior probability of each model, re-weighted so that they sum to unity. The weigths change over the forecasting sample. They are calculated for each out-sample period with information up to the previous forecasting period. That is, when using predictive likelihood, the training sample is always $Y^{*}=$ $\left\{\mathbf{y}_{\text {Nov/1999 }}, \cdots, \mathbf{y}_{\text {Dec } / 2004}\right\}$ and the hold-out sample changes for each forecasting period $\tilde{Y}=\left\{\mathbf{y}_{\text {Jan } / 2005}, \cdots, \mathbf{y}_{\text {Dec } / 2007+j-1}\right\}, \quad j=1, \cdots, 24$. When using marginal likelihood, the weigths are based on the fit of each model estimated with information up to the previous forecasting period.
In order to compare the performance of the BMA forecasts, two other combined forecasts are obtained with the same set of models. The simple average forecast and the information theoretical model average, ITMA, where the weights are calculated using the AIC criteria with the forecasting errors observed up to the previous out-sample period, as suggested by Kapetanios et al. [2008]. These authors have already compared the performance of the BMA and ITMA combination to forecast inflation in the UK, however their comparison was not fair enough in the sense that the weights of BMA were obtained using the marginal rather than predictive likelihood, while the ITMA combination uses the predictive performance of the models to calculate the weights, bringing support for the later. In order to make the comparison between BMA and ITMA fairer, an additional
exercise of information theoretical model average, ITMA, is also performed, where the 20 models to be average are selected as the ones with smaller AIC criterium over the hold-out sample.
A final forecasting exercise based on a dynamic factors model using the same database and for the same sample period is carried out in order to compare the forecasts generated by this well known alternative of forecasting with many predictors with those generated by BMA. See González et al. [2009] for details of the dynamic factors model estimated for the Colombian inflation.

On the other hand, two additional exercises are performed to check selection model consistency. The first one consists on running the algorithm with the same information and samples but starting the chain in a different state. The aim of this exercise is to check whether the initial state of the chain influences the results of selected variables and models, even though some portion of the draws are leaving out as burn-in sample. This exercise has already been performed by Eklund and Karlsson [2005] with simulated data, founding that no matter the initial state of the chain always the true model is selected. The second exercise pretends to check consistency over time, as a maner of determining whether the forces driving inflation have changed, especially in the last two years of the sample where an important decline in inflation has been observed (See Figure 3.1). The later exercise consists on taking the full sample and run the algorithm of variables and model selection. i.e. using the sample from 1999:11 to 2009:12 for the marginal likelihood and the augmented hold-out sample $\tilde{Y}=\left\{\mathbf{y}_{\text {Jan/2005 }}, \cdots, \mathbf{y}_{\text {Dec } / 2009}\right\}$ to calculate the predictive likelihood and compare variables and selected models with the ones obtained with the sample until Dec/2007 to check if they have changed or remained the same. This run of the algorithm is done using the same initial state of the chain as the first selection exercise in order to control at least one source of variation of the results.

Figure 3.1: Inflation in Colombia

4. Empirical Results

In this section the main results obtained from the empirical application of BMA to forecast colombian inflation are presented.

Tables A. 18 and A. 19 show the variables with higher posterior probability of being a explanatory variable for each horizon based on predictive and marginal likelihood respectively. It can be seen that the best predictors for inflation changes with the horizon and they also differ according to which likelihood, marginal or predictive, is used to calculate the posterior probabilities.
When considering predictive likelihood, past information of total CPI inflation is one of the variables that help the most to predict inflation h periods ahead, as it was expected, mainly for short run horizons (1 to 2 months). There is a wide variety of variables that seem to be good predictors for inflation, including some components of CPI inflation as well as producer prices and its components. In particular, for the short run, variables like inflation of some components of the CPI such as health, tradables and non tradables, net international reserves and the industrial production index seem to be important to predict inflation. For the medium run, in addition to those variables, expectations about production, lending interest rate, nominal exchange rate and several components of CPI inflation are among the variables with higher predictive power. Finally, the inflation of other goods and services and administrated goods, the same as the producer prices of agriculture and final consumption goods are among the set of best predictors in the longrun ($10,11,12$ months). On the other hand, when considering the marginal likelihood, the set of variables is wider and mixed. It is worth mentioning that variables such as interest rate, exchange rate and expectations about economic activity and prices, which seem to be important to predict inflation for several horizons.
Tables A.20, A.21, A. 22 show the 20 models with the top higher posterior probability for horizons 1,6 and 12 months respectively, according to the predictive likelihood ${ }^{2}$. For each horizon, the selected models share most variables, they differ one another in only a few variables or in the lags with which the variables enter in the model. The variables included in the models are not always the ones with higher posterior inclusion probabilities in the first step of the algotithm. The average model size is seven variables. Similar results are obtained when using marginal likelihood and the ITMA criteria. Tables A.23, A. 24 , A. 25 show the 20 models with the top higher posterior probability for horizons 1,6 and 12 months respectively, according to the marginal likelihood and Tables A.26, A.27, A. 28 show the 20 models with the smaller AIC criteria as defined in Kapetanios et al. [2008]. Comparing the set of selected models by the three criteria it can seen that the selected models have some variables in common for each horizon, especially between BMA based on predictive likelihood and ITMA criteria, what is not surprising since both methodologies use as selection criteria a measure of the predictive ability of the models.

[^2]On the other hand, when a second run of the algorithm of selection of variables and models starting the chain from a different state was performed, the results slightly change. It was found that more than 70% of the variables and models selected in the fisrt run are still selected in the second run ${ }^{3}$. Moreover, most of the variables not selected by the second run of the algorithm have a small posterior inclusion probability in the first run, which may not affect drastically the results of models selecction.
Using the different combination methodologies described above, pseudo out-sample forecasts are generated for 24 periods starting in 2008:01. They are indeed psuedo out-sample and not real out-sample, since most of the information related to real activity is available with some lag (around four months) and some variables are subjected to reviews. The information in the dataset is the one available at Dec/2009. Tables $5.12,5.13,5.14$ show the evaluation of the individual forecasts as well as the combined forecasts obatined for each of the three methodologies, BMA based on predictive and marginal likelihood and ITMA, respectively. It shows the RMSE of each forecast relative to the RMSE of the random walk forecast. The main results can be summarized as follows. For most horizons, the BMA forecasts based on predictive likelihood outperforms every individual forecasts, while the BMA forecast based on marginal likelihood does not outperformed some of the individual forecast for the horizons considered. Similar results are obtained for the ITMA forecast. On the other hand, the BMA based on predictive likelihood reduces significantly the forecasting error compared to the BMA based on marginal likelihood for some horizons. The BMA outperforms the simple average and the ITMA forecast for all horizons when considered the models selected by the ITMA methodology, however when selecting the models by BMA using predictive likelihood, the ITMA combination performs better for some horizons. The ITMA forecast evaluation are quite similar to the simple average because the assigned weights are almost equal for all models, producing similar forecasts to the simple average. Additionally it was found that the BMA produces more accurate forecasts than the dynamic factors model for horizons further than three months.

Although the RMSE seems to increase with the horizon, in average the smaller RMSE is for the ITMA2 combination, followed by BMA-pl, BMA-ml, simple average and dynamic factor model. See Table 5.15 for detailed results. The numbers in italic and bold make reference to the combinations which significantly reduce the RMSE relative to the random walk forecast according to the modified Diebold and Mariano Test, MDM, for equal forecast accuracy, (Harvey et al. [1998]) ${ }^{4}$. It is worth noticing the important reduction in the forecasting error relative to the random walk. The further the horizon, the more significant the reduction in RMSE of the BMA and ITMA relative to the random walk. The RMSE of the random walk forecast is more than twice the RMSE of the BMA

[^3]and ITMA for the further horizons. This is confirmed by the results in Table 5.16, since for both, BMA-pl and ITMA2 forecasts, more than 90% of the bootstrapping samples of forecasting errors, present for most horizons a reduction of more than 5% in the RMSE relative to the random walk forecast. Another important result is that although the more sophisticated forecasts combination (BMA and ITMA) performed well, the simple average also produces good forecasts, which is due basically to the appropriate selection of models by BMA or ITMA algorithms. Thus, those algorithms are useful to select models with high predictive power, which may suggest considering some of the individual forecasting models as alternatives to obtain good forecasts for inflation by themselves and not only as an intermediate step to get an appropriate combination of forecasts.
On the other hand, for the final exercise of running the algorithm of selection of variables and models with the full sample 1999:11 to 2009:12, it was found that on average 40% of the variables with higher posterior probability are still selected with the whole sample when using predictive likelihood. However, some of the variables with higher inclusion probabilities are not longer selected and instead some new variables appear to have higher predictive power. It is worth mentioning that variables such as the producer prices of mining products, which includes oil prices and producer prices of agriculture, M2, real exchange rate and prices of imported goods seem to have an important predictive power with the sample until Dec/2009. On the other hand, the results do not change much when using marginal likelihood, since on average 70% of the variables are still selected with the full sample. It means that adding two more years of information, the in-sample fit is not affected severely. However, the predictive ability of some variables to forecast inflation have changed to some extend during the last two years. In Table A.18, the numbers in italic and bold indicate the variables which are selected by running the algorithm with the whole sample using predictive likelihood and Table A. 19 shows in bold and italic the variables which are not longer selected with the full sample when using marginal likelihood. ${ }^{5}$.

5. CONCLUDING REMARKS

In this work an alternative approach of forecasting based on a large dataset of potential predictors is implemented for the Colombian inflation. Bayesian model averaging is a useful and consistent way to select variables and models with high predictive power.
The variables chosen as best predictors for inflation have not change significantly over the last two years, especially for the short run, however for further horizons, it seems that the forces driving inflation have change over time. On the other hand, the variables chosen as good predictors differ whether they are selected using marginal or predictive likelihood, what suggests, one more time, that not all models with good in-sample fit are good at forecasting.

[^4]It was found that the BMA technique outperforms the random walk forecast as well as the simple average combination and is a good competitor of other frequentist forecast combination thecniques, such as the information theoretical model averaging, ITMA. A gain of using BMA in reducing the forecasting error is observed as the horizon increases, what is very helpful for our purpose of forecasting inflation in the medium term. The forecast combinations whose weigths are based on the predictive ability of the models to be average reduces the forecasting error relative to combinations whose weights are based on the fit of the model.
On the other hand, in this application it was found that BMA based on predictive likelihood is for some horizons better than ITMA when the combination is made over the models selected by BMA, however when the selection of models is made by the ITMA criteria, the combined forecast obtained by the BMA weights performs better for all considered horizons.

For future research, some issues arise regarding the BMA methodology. In first place, how often the selection of variables and models should be done in order to continue applying this methodology on a regular basis, given that the results are influenced by the sample, specially when using the predictive likelihood. A second concern is about the priors and the algorithm used to select the variables and models, having into account the findings of Ohara and Sillampaa [2009], that the performance of the method depends on the priors and how it is implemented. A third issue is regarding the number of models to be averaged.
A final question that arises from this work is regarding the transformation used for the response variable and the predictors. Would it make a crucial difference in the results whether the variables are measured as first or second differences to guarantee stationarity of all variables involved in the analysis?.

Table 5.1: Variables with high posterior probability - Predictive Likelihood

No	Variable	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=3$	$\mathrm{h}=4$	$\mathrm{h}=5$	$\mathrm{h}=6$	$\mathrm{h}=7$	$\mathrm{h}=8$	$\mathrm{h}=9$	$\mathrm{h}=10$	$\mathrm{h}=11$	$\mathrm{h}=12$
1	ISRSINT		0.1121										
2	ISNCOMIN	0.0837											
3	ISNIMAEM	0.0842						0.0496	0.3194	0.0959			
4	ISNIMAOB			0.4407									
5	PCVIS								0.0953	0.1033			
6	PCNOVIS												0.0797
7	CHBRUTA							0.0684	0.1008	0.1527	0.2546	0.2146	
8	ICCV				0.0452								
9	SECONOM												
10	ACTPROD			0.0418	0.0581								
11	EXISTEN				0.0853							0.0655	0.0413
12	VOLACTPE			0.0510					0.0713				
13	CAPINVOP					0.0461							
14	EXPPRO					0.1519	0.0423						
15	EXPSITEC												0.0495
16	CAPINDE			0.0442		0.0917	0.0664	0.0634					
17	IPI	0.1182	0.2035	0.4376	0.4478	0.6498	0.6939	0.5842	0.1090				
18	IPC	0.9989	0.7373										
19	GALIM		0.0781									0.0506	
20	GAVIV			0.0453	0.1272	0.3534	0.2584	0.1788	0.1157	0.1005		0.0434	
21	GAVES				0.0817	0.4845	0.3164	0.1229				0.0673	0.0445
22	GASAL		0.3171	0.9604	0.9812	0.9922	0.9722	0.7435	0.4652	0.3016	0.1525		0.0258
23	GAEDU						0.1102		0.0672	0.1559	0.1461	0.0528	0.0198
24	GACUL					0.0438	0.0418						
25	GATRAN		0.1765	0.0979	0.0541	0.0781						0.2036	0.3035
26	GAOTGA		0.1106	0.5464	0.5661	0.0942					0.3025	0.8171	0.9975
27	NCNOTRAN	0.1267	0.1160										
28	NCTRAN			0.2897	0.2349	0.0481				0.0822	0.1730	0.1445	
29	NCREGUL		0.0483	0.0417	0.0436	0.1045	0.0539				0.1321	0.4489	0.7376
30	IPP			0.0384	0.0469								
31	AEA			0.0686							0.2474	0.6934	0.9920
32	AEMIN									0.1135	0.1400		
33	AEIMAN				0.1506	0.0705	0.0451						
34	PBPRODCO											0.0911	
35	PBM							0.0556					
36	UECINTER												
37	UECFINAL			0.0715	0.0923	0.0882						0.0830	0.2497
38	UEFORK						0.0718	0.1435	0.1432	0.1121	0.1005		
39	UEMATCO		0.0646					0.0586		0.0931			
40	EXPAUMPR	0.0529	0.0778							0.0879	0.1570	0.1197	
41	BASEMON										0.0711		0.0308
42	RESNETAS	0.3338	0.5606	0.2368									

No	Variable	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=3$	$\mathrm{h}=4$	$\mathrm{h}=5$	$\mathrm{h}=6$	$\mathrm{h}=7$	$\mathrm{h}=8$	$\mathrm{h}=9$	$\mathrm{h}=10$	$\mathrm{h}=11$	$\mathrm{h}=12$
43	M1		0.0554	0.0384						0.0843			
44	M2												
45	M3												0.0346
46	CREDBR	0.0524			0.0407					0.0811	0.2295	0.2854	0.0611
47	EFECTIV			0.1494							0.1517	0.1106	0.0540
48	TOTALDEP												
49	DEPCTAHO							0.0490	0.1154	0.1172			0.0250
50	DEPCTCOR	0.0695							0.0656	0.1158			
51	CDT90DBA					0.0588	0.0801	0.0910	0.1515	0.2467	0.2123	0.1062	0.0439
52	TIBPROME	0.0617	0.0540		0.0822	0.2882	0.2251	0.0621			0.0782		
53	DTFNO90D	0.0914	0.0617										
54	TASACTIV					0.0974	0.0840	0.1168	0.1147	0.0981	0.0767		
55	CRBTES												0.0341
56	CRBBAN	0.0542											
57	CRBCORP												
58	CRDOBPRI			0.0930	0.3247								
59	TCNMPROM						0.2250	0.4990	0.5193	0.4627	0.2818		
60	TERMINTE	0.1490							0.0998			0.0957	0.3054
61	ITCRIPPN	0.0626	0.0475				0.1427	0.2274	0.1456				
62	ITCRIPCN		0.0571				0.0614	0.0506					
63	ITCRIPPT	0.0576						0.1187	0.0964				
64	ITCRIPCT						0.1018	0.1307	0.0754		0.0669		
65	MBCNODU				0.0509	0.0688	0.1112	0.0512					
66	MBCDUR	0.0877										0.0533	
67	MBICOMLU								0.0835	0.0941	0.1373		0.0269
68	MBISA		0.0493		0.0449	0.0406							
69	MBISI	0.1458	0.0991	0.0741					0.1645	0.1974	0.1126	0.0916	
70	MBKMATCO					0.0470	0.1611						
71	MBKSA	0.0665											
72	MBKSI	0.0611											
73	MBKEQTRA	0.0551	0.0705	0.0605	0.0787								

* Posterior inclusion probabilities for the 20 variables selected for each horizon

Numbers in italic and bold indicate the variable is selected with the sample up to Dec/2009.

Table 5.2: Variables with high posterior probability - Marginal Likelihood

No	Variable	$\mathbf{h}=\mathbf{1}$	$\mathbf{h}=\mathbf{2}$	$\mathbf{h}=\mathbf{3}$	$\mathbf{h}=\mathbf{4}$	$\mathbf{h}=\mathbf{5}$	$\mathbf{h}=\mathbf{6}$	$\mathbf{h}=\mathbf{7}$	$\mathbf{h}=\mathbf{8}$	$\mathbf{h}=\mathbf{9}$	$\mathbf{h}=\mathbf{1 0}$	$\mathbf{h}=\mathbf{1 1}$	$\mathbf{h}=\mathbf{1 2}$
1	ISRSINT									0.0311	0.0617		
2	ISNCOMIN	0.9839	0.0568						$\mathbf{0 . 0 0 3 2}$				
3	ISNIMAEM		0.0786		0.0297	0.0963		$\mathbf{0 . 0 2 6 8}$					
4	ISNIMAOB					0.0909				0.9065	1.0000	0.9106	0.9978
5	PCVIS												
6	PCNOVIS					0.0576				$\mathbf{0 . 0 2 5 2}$			
(continued ...)													

No	Variable	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=3$	$\mathrm{h}=4$	$\mathrm{h}=5$	$\mathrm{h}=6$	$\mathrm{h}=7$	$\mathrm{h}=8$	$\mathrm{h}=9$	$\mathrm{h}=10$	$\mathrm{h}=11$	$\mathrm{h}=12$
7	CHBRUTA		0.1939										
8	ICCV		0.4736									0.4060	
9	SECONOM		0.3469				0.1211		0.0048	0.0162			
10	ACTPROD												
11	EXISTEN								0.0001	0.0190		0.0294	
12	VOLACTPE	0.5059	0.2242	0.4909	0.0121			0.0222					
13	CAPINVOP		0.0576										
14	EXPPRO						0.0252			0.0162			
15	EXPSITEC						0.8174						
16	CAPINDE												
17	IPI												
18	IPC	0.9416							0.2301				
19	GALIM							0.2809	0.7388				
20	GAVIV		0.3858	0.5701	0.9572	0.1343							0.0000
21	GAVES		0.0700		0.0290		0.0678					0.0187	0.0016
22	GASAL	0.4067	0.3424		0.0118	0.0834			0.0263				
23	GAEDU			0.0319									
24	GACUL		0.1336	0.0131									
25	GATRAN					0.5591	0.0280	0.0456			0.0070		0.0000
26	GAOTGA	0.0144	0.9113	0.6916	0.0189					0.0985	0.0050	0.0146	0.9999
27	NCNOTRAN	0.0846	0.0682										
28	NCTRAN	0.4963		0.0649						0.7279	0.9877	0.3308	0.0000
29	NCREGUL					0.5562		0.0257		0.0218			
30	IPP	0.1328	0.1077							0.7718	0.7860		0.0002
31	AEA	0.0418				0.1377	0.0171				0.0035		
32	AEMIN	0.0274	0.0762	0.2051	0.0223	0.0578			0.0001		0.0036	0.0376	
33	AEIMAN		0.0295	0.0340	0.0086					0.0699			
34	PBPRODCO		0.0644	0.1776	0.0079	0.1292		0.0589		0.0909	0.9628	0.0656	
35	PBM	0.0181			0.8997		0.0634	0.0287			0.0273		
36	UECINTER		0.2541	0.0660	0.9323			0.0480				0.9138	0.9998
37	UECFINAL	0.1424								0.0354		0.0528	
38	UEFORK				0.0083		0.0592	0.0756				0.5999	0.0000
39	UEMATCO			0.0823			0.0254		0.0001		0.0042		
40	EXPAUMPR				0.9080		0.3370						
41	BASEMON								0.0677				
42	RESNETAS				0.0221					0.0404	0.0168		
43	M1	0.0301		0.1971								0.5095	0.0000
44	M2								0.2578				0.0000
45	M3	0.0276			0.0146	0.5631		0.0655					
46	CREDBR										0.0836	0.2740	
47	EFECTIV				0.0301	0.0755	0.0285	0.8285	1.0000	0.8352	0.0037		
48	TOTALDEP					0.5645							0.0004
49	DEPCTAHO									0.0968	0.0047		
50	DEPCTCOR			0.0134	0.0188								

No	Variable	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=3$	$\mathrm{h}=4$	$\mathrm{h}=5$	$\mathrm{h}=6$	$\mathrm{h}=7$	$\mathrm{h}=8$	$\mathrm{h}=9$	$\mathrm{h}=10$	$\mathrm{h}=11$	$\mathrm{h}=12$
51	CDT90DBA		0.5271	0.4067		0.1788	0.0666	0.0500				0.0890	1.0000
52	TIBPROME						0.0139	0.2800	0.0001				
53	DTFNO90D	0.1067		0.2704	0.9526	0.0767		0.2121	0.2301	0.0963		0.2446	0.0000
54	TASACTIV			0.4080	0.0165	0.2258	0.7393	0.0290					1.0000
55	CRBTES		0.1278	0.5050	0.0473							0.0236	
56	CRBBAN												
57	CRBCORP												0.0000
58	CRDOBPRI	0.0271				0.0617	0.0291	0.0392			0.8619		0.0000
59	TCNMPROM					0.0624	0.0382		0.0001		0.0052	0.0834	0.0000
60	TERMINTE	0.5430		0.0805								0.0550	
61	ITCRIPPN						0.4971	0.7464	0.0263	0.0721	0.0135		
62	ITCRIPCN	0.0262					0.5390	0.2635	0.7435	0.5077	0.1139	0.0127	
63	ITCRIPPT	0.1607		0.1778			0.4601	0.7471	0.2301	0.3132	0.0554		
64	ITCRIPCT	0.0540					0.5386	0.2915	0.7388		0.0093		
65	MBCNODU												
66	MBCDUR												
67	MBICOMLU												
68	MBISA												
69	MBISI			0.4194		0.2356			0.0862			0.1572	
70	MBKMATCO												0.0000
71	MBKSA					0.0743							
72	MBKSI												0.0002
73	MBKEQTRA												

* Posterior inclusion probabilities for the 20 variables selected for each horizon

Numbers in italic and bold indicate the variables not selected with the sample up to Dec/2009.

Table 5.3: Top models according to predictive likelihood. $\mathrm{h}=1$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
18	IPC	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
53	DTFNO90D	0,1	0,1	0,1	0,1	1,2	0,1	0,2	0,1		0,2	0,2	0,2	0,1	0,1	0,1	0,2	0,2	0,2		0,1
40	EXPAUMPR	0	0	0		0	1	1	0		0		0	0	0	1	1,2				1
42	RESNETAS				0	0				0	0	0	0	0	0			1,2	1,2	0	
56	CRBBAN		1	1	2				1		2					2		1		1	
73	MBKEQTRA	1	1	1		1		0	1							2					
66	MBCDUR											2			1	2				1	1
3	ISNIMAEM							0			2		2	2							
50	DEPCTCOR						2		1					0							1
69	MBISI									0		1									
2	ISNCOMIN									0,1										0,1	
72	MBKSI																0				0
71	MBKSA				1																
	terior prob.	0.111	0.107	0.079	0.077	0.053	0.047	0.045	0.045	0.043	0.040	0.040	0.038	0.037	0.037	0.035	0.035	0.034	0.033	0.033	0.032

* numbers in cells are the corresponding lags in the model.

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
38	UEFORK									0	1			1							
16	CAPINDE												2								2
62	ITCRIPCN														0					0	
64	itcripct															1			1		
33	AEIMAN										2										
	terior prob.	0.103	0.102	0.097	0.080	0.071	0.069	0.062	0.056	0.037	0.035	0.033	0.030	0.030	0.029	0.029	0.029	0.028	0.027	0.026	0.025

Table 5.5: Top models according to predictive likelihood. $\mathrm{h}=12$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
26	GAOTGA	0,1,2	0	1	0,1	0	0	0,1	0	0,1	1	0,1	0	0	0,2	1	0,1	0	0	0	1
31	AEA	0	0,2	0,2	0,2	0,2	0	0	0	0	0,2	0	0,1	0	0,2	2	0	0,2	0,1	0	0
29	NCREGUL	1	0	0	1	0	1		1	1	0	1	0		0	0	0	0	0		1
37	UECFINAL		2	0,2	0	2	0	1	0		2		1	0	0	2		2	1		
60	TERMINTE	0	1				0					0	0	0			0		0		
41	BASEMON		1			1	1	1						1			1	1			
49	DEPCTAHO				1			2		0	1									0	0
15	EXPSITEC				1				1	2			2					1			2
25	GATRAN		2					0						1						1	2
47	EFECTIV			2		2	2		2							2					
21	GAVES							0						0		1				1	
45	M3											1			2		2				2
51	CDT90DBA								0			1						0			
11	EXISTEN										2				2					0,2	
6	PCNOVIS			0												1					
67	MBICOMLU						1														
46	CREDBR															2					
22	GASAL	0,1																			
	terior prob.	0.120	0.070	0.059	0.058	0.055	0.049	0.049	0.047	0.046	0.044	0.042	0.042	0.042	0.041	0.040	0.040	0.040	0.040	0.039	0.038

Table 5.6: Top models according to marginal likelihood. $\mathrm{h}=1$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
2	ISNCOMIN	0,1	0,1	0	0,1	0,1	0	0	0,1	0,1	0,1	0,2	0,1	0	0,1	0,1	0	0,1	0	0,1	0,1
63	ITCRIPPT	1	0		0	0		0	1	0	0	1	0		1	0	0	0	2	0	1
18	IPC				1	1			1	1			1	2	1	0	1	1		1	1
26	GAOTGA				2	2			2	2			1	2	1		2	2			1
32	AEMIN	0	0	0			0	0			0	0							0	2	
27	NCNOTRAN			2			2	1	1			1	2	2			2		1		
22	GASAL			2			2	1,2				2	2		2		2		2		1,2
31	AEA	0	0	0			0	0				0				0			0		
28	NCTRAN									1		0			0	0					0
45	M3	2	2		2						2									2	
58	CRDOBPRI	1				1				1				1				1			
64	ITCRIPCT			2	2		2														
53	DTFNO90D		0													0					
12	VOLACTPE		1						2												
71	MBKSA			0																	
30	IPP													2							
37	UECFINAL										1										
60	TERMINTE																			0	
62	ITCRIPCN						0														
	sterior prob.	0.161	0.104	0.093	0.082	0.059	0.055	0.048	0.041	0.038	0.038	0.036	0.036	0.029	0.028	0.027	0.026	0.026	0.024	0.024	0.024

* numbers in cells are the corresponding lags in the model.

Table 5.7: Top models according to marginal likelihood. $\mathrm{h}=6$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
25	GATRAN	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1
35	PBM	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1,2	1
62	ITCRIPCN	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		0,2
31	AEA	1	1	1	1	1		0	2				0,1	0				0		1	1
61	ITCRIPPN	0	2	0			1	2		2		0,2			0	2	2	2	1		

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
58	CRDOBPRI	1	1	1	1		1						1,2	1,2	1		1			1	1
38	UEFORK			1	0	0		1	0		0,1			1	0		0	1			
64	ITCRIPCT				1	2			2		2			2		0	2		0,2		
14	EXPPRO	2					2		1	2								1	0		1,2
18	IPC					2		2	2		2	2							2		
40	EXPAUMPR		0		0		0			0,1						1				0	
59	TCNMPROM	1											1			2		2			
51	CDT90DBA							2								1	0				
9	SECONOM					1				0					2						
54	TASACTIV			2								1									
21	GAVES						1					2									
22	GASAL		0																		
52	TIBPROME			0																	
47	EFECTIV										2										
63	ITCRIPPT		0																		
	terior prob.	0.280	0.179	0.156	0.087	0.053	0.049	0.048	0.046	0.023	0.020	0.010	0.009	0.009	0.006	0.005	0.004	0.004	0.004	0.004	0.004

* numbers in cells are the corresponding lags in the model.

Table 5.8: Top models according to marginal likelihood. $\mathrm{h}=12$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
59	TCNMPROM	0	0	0	0	0	0	0		0	0	0		0	0	1	0	0	0	0	0
51	CDT90DBA		1	1		1	0	0	1	0	1	0	0		1	0	1	1	0	1	1
43	M1	1	2	2	2	2			2		2	1	2	2	2		1	2		2	1
20	GAVIV	0		0	0		0		0		2	0	0	0		0	0	2			0
4	ISNIMAOB		0			0	2	2		2	0	0		0	0			0	2	0	
44	M2	2		1	1	1			1		2	1	1				1	2			2
18	IPC	2	0			0	0,2	0,2		0,2				2		0,2			0,2	0	
28	NCTRAN			0	0				0			0	0	0		1			1	0	
26	GAOTGA	0,1		0	0				0				0			2	0				0
70	MBKMATCO	0					0	0		0									0		0
30	IPP						2	2	1					0	0						

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
48	TOTALDEP		0			0							2		1					0	
54	TASACTIV										0				0			0,1			0
72	MBKSI				2					1							0		1		
58	CRDOBPRI		2					1								2					
64	ITCRIPCT		0																		
25	GAtran			1																	
21	gaves		2																		
36	UECINTER				2																
	terior prob.	0.283	0.259	0.125	0.081	0.067	0.054	0.036	0.019	0.018	0.015	0.015	0.006	0.004	0.004	0.004	0.003	0.002	0.002	0.002	0.001

Table 5.9: Top models according to out-sample AIC criteria. $\mathrm{h}=1$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
18	IPC	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
69	MBISI	0,2	0	0	0	0	0,2	0	0,2	0	0	0	0	0	0	0	0,2	0	0	0,2	0
50	DEPCTCOR	0	1,2	1	2		2	1		0		0,2	2	2	2	2		1	2		
66	MBCDUR	1	2	2		1,2		0	1,2	1	1			1			1,2			1	1
61	ITCRIPPN						2		2	2			2			2	2	2			
63	ITCRIPPT	2	2	2	2			2				2							2		
56	CRBBAN													1	1,2		0	2			0
27	NCNOTRAN					0			1		0							0			0
40	EXPAUMPR						1						1,2	1						1	
71	MBKSA					1					0										0
46	CREDBR				1							0							0		
60	TERMINTE					2					2										2
72	MBKSI				1											0				2	
17	IPI			2											2						
3	ISNIMAEM																		0		
73	MBKEQTRA									2											
	t sample AIC	-2.341	-2.315	-2.313	-2.306	-2.295	-2.294	-2.288	-2.282	-2.280	-2.279	-2.278	-2.276	-2.275	-2.270	-2.270	-2.268	-2.267	-2.266	-2.266	-2.262

Table 5.10: Top models according to out-sample AIC criteria. $\mathrm{h}=6$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
22	GASAL	2	2	2	2		2	2	1	1	1	2	1	1	1	1		0	2	2	1
29	NCREGUL	2	2		2	2	2	1	2	2	2	2		2	2	2	2		1		1
14	EXPPRO	0	0		0	0	0	2		0,1	0,2	0,2		0,1	1	0,2	0	2	2		1
21	GAVES	0	0	1	0	0	0		0	0	0	1	0			0	0,2		S	1	1
51	CDT90DBA		0	0	0	0	0	0,2	0				0,1		0		0	0	0,2	0,1	0
44	M2	0		2	0	2		0	1			0		0	0		2	0			2
16	CAPINDE	2	1,2		1,2	1,2	2	1,2	2				1,2		2		2	2		2	
17	IPI						2		2		2	0			2	1,2			1		

* numbers in cells are the corresponding lags in the model.

Table 5.11: Top models according to out-sample AIC criteria. $\mathrm{h}=12$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
26	GAOTGA	2	1	0	2	1	1	2	2	2	1	1	1	2	1	2	1	1	0,2	0,1	1
29	NCREGUL	0	1	0	0	1	0	0,1	0	0	1	0	0	0	0	1	0	0	1	1	1
11	EXISTEN	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
22	GASAL	0		1	0	1	0	0	1	0	1		1	2		1					1
31	AEA			0	1	0	0		0,1	2		1	0		1		1	1		0	0
60	TERMINTE	0	2				2	0		2	1	2			2	0	2	1	2	2	
47	EFECTIV		0			2	0	2		0		1			1		1	0,2	1		2
21	GAVES	0		1	0	1			0				0	2		1					2
37	UECFINAL	1	0					1			1		1				0		1		
6	PCNOVIS			0,2		2			0					0					0		
15	EXPSITEC		0		0																0
41	BASEMON	1			1											1					
49	DEPCTAHO		0																	0,1	
51	CDT90DBA										1		2								
67	MBICOMLU														1			1			

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
46	CREDBR											1			1						
64	ITCRIPCT			0																	
18	IPC													2							
25	GATRAN																				2
	sample AIC	-0.649	-0.646	-0.554	-0.508	-0.504	-0.492	-0.479	-0.468	-0.452	-0.418	-0.417	-0.416	-0.402	-0.393	-0.390	-0.390	-0.382	-0.380	-0.373	-0.368

Table 5.12: Forecasts Evaluation. Selected models by BMA using predictive likelihood

Forecasting model	$\mathbf{h}=\mathbf{1}$	$\mathbf{h}=\mathbf{2}$	$\mathbf{h}=\mathbf{3}$	$\mathbf{h}=\mathbf{4}$	$\mathbf{h}=\mathbf{5}$	$\mathbf{h}=\mathbf{6}$	$\mathbf{h}=\mathbf{7}$	$\mathbf{h}=\mathbf{8}$	$\mathbf{h}=\mathbf{9}$	$\mathbf{h}=\mathbf{1 0}$	$\mathbf{h}=\mathbf{1 1}$	$\mathbf{h}=\mathbf{1 2}$
Model 1	0.728	1.003	1.585	0.937	1.042	0.570	0.835	0.969	0.853	0.442	0.398	0.420
Model 2	0.722	1.197	1.566	0.903	1.144	0.985	0.657	0.664	0.857	0.540	0.339	0.366
Model 3	0.745	1.209	1.607	1.146	1.192	0.899	0.819	0.902	0.839	0.449	0.415	0.366
Model 4	0.822	1.138	1.509	1.242	0.960	0.632	0.816	0.924	0.856	0.639	0.374	0.389
Model 5	0.742	1.356	1.569	1.285	1.186	0.640	0.625	0.921	0.858	0.515	0.391	0.439
Model 6	0.761	1.511	1.553	1.172	0.778	0.978	0.547	0.878	0.852	0.408	0.429	0.377
Model 7	0.761	1.118	1.628	1.264	1.139	0.959	0.809	0.879	0.838	0.569	0.377	0.417
Model 8	0.719	1.205	1.617	1.098	1.001	0.934	0.556	0.972	0.791	0.491	0.429	0.401
Model 9	0.850	1.247	1.468	1.296	1.236	0.982	0.457	0.794	0.778	0.633	0.375	0.504
Model 10	0.761	1.209	1.633	1.040	0.753	0.971	0.566	0.697	0.778	0.588	0.390	0.411
Model 11	0.822	1.073	1.517	1.335	0.709	0.934	0.507	0.888	0.786	0.554	0.363	0.430
Model 12	0.761	1.108	1.514	1.417	1.001	0.590	0.846	0.758	0.855	0.666	0.398	0.396
Model 13	0.752	1.364	1.616	1.119	1.183	0.556	0.776	0.893	0.738	0.630	0.371	0.413
Model 14	0.758	1.303	1.565	1.261	0.791	0.590	0.767	0.908	0.849	0.440	0.412	0.388
Model 15	0.766	1.071	1.624	0.912	1.167	0.459	0.665	0.896	0.769	0.500	0.410	0.417
Model 16	0.726	1.988	1.575	1.247	1.226	0.647	0.848	0.858	0.820	0.481	0.340	0.403
Model 17	0.796	1.126	1.611	1.186	1.183	0.612	0.667	0.954	0.704	0.517	0.416	0.348
Model 18	0.801	1.109	1.505	1.212	1.219	0.664	0.689	0.909	0.834	0.662	0.407	0.393
Model 19	0.890	1.190	1.585	0.970	0.644	0.619	0.733	0.645	0.851	0.484	0.355	0.418
Model 20	0.736	1.018	1.602	1.233	1.182	0.678	0.692	0.763	0.826	0.630	0.397	0.507
BMA	0.949	1.512	0.743	0.640	0.432	0.439	0.631	0.692	0.377	0.345	0.364	
ITMA	0.756	1.184	1.547	1.122	1.012	0.669	0.670	0.815	0.809	0.517	0.377	0.388
Dymple average	0.855	0.911	0.961	0.994	0.975	0.879	0.848	0.845	0.816	0.785	0.830	

* RMSE relative to the RMSE of the random walk forecast

Table 5.13: Forecasts Evaluation. Selected models by BMA using marginal likelihood

Forecasting model	$\mathbf{h}=\mathbf{1}$	$\mathbf{h}=\mathbf{2}$	$\mathbf{h}=\mathbf{3}$	$\mathbf{h}=\mathbf{4}$	$\mathbf{h}=\mathbf{5}$	$\mathbf{h}=\mathbf{6}$	$\mathbf{h}=\mathbf{7}$	$\mathbf{h}=\mathbf{8}$	$\mathbf{h}=\mathbf{9}$	$\mathbf{h}=\mathbf{1 0}$	$\mathbf{h}=\mathbf{1 1}$	$\mathbf{h}=\mathbf{1 2}$
Model 1	2.748	1.163	1.198	1.304	0.921	1.219	0.837	0.857	0.889	0.722	0.487	0.561
Model 2	2.959	1.608	1.247	1.241	1.074	1.116	0.807	0.877	0.828	0.806	0.592	0.572
Model 3	2.783	1.169	1.222	1.301	0.805	1.124	0.832	0.956	0.909	0.787	0.365	0.637
Model 4	1.835	1.598	1.085	1.062	0.916	1.084	0.807	0.882	0.973	0.757	0.369	0.430
Model 5	1.849	1.328	1.213	1.296	1.181	1.092	0.804	0.949	0.586	0.831	0.385	0.784
Model 6	2.805	1.464	1.209	1.307	0.937	1.045	0.881	0.908	0.793	0.821	0.681	0.625
Model 7	2.594	1.106	1.186	1.321	0.658	0.974	0.870	0.937	0.952	0.563	0.332	0.649
Model 8	2.118	1.223	1.147	1.042	0.985	0.954	0.781	0.890	0.798	0.653	0.651	0.386
Model 9	1.881	1.593	1.100	1.278	0.881	0.885	0.842	1.012	0.803	0.515	0.627	0.754
Model 10	2.589	1.159	0.911	1.226	0.681	1.084	0.860	1.002	0.882	0.528	0.627	0.755
Model 11	2.795	1.413	1.104	1.273	0.918	1.025	0.825	0.937	0.931	0.705	0.588	0.713

(continued ...)

Forecasting model	$\mathbf{h}=\mathbf{1}$	$\mathbf{h}=\mathbf{2}$	$\mathbf{h}=\mathbf{3}$	$\mathbf{h}=\mathbf{4}$	$\mathbf{h}=\mathbf{5}$	$\mathbf{h}=\mathbf{6}$	$\mathbf{h}=\mathbf{7}$	$\mathbf{h}=\mathbf{8}$	$\mathbf{h}=\mathbf{9}$	$\mathbf{h}=\mathbf{1 0}$	$\mathbf{h}=\mathbf{1 1}$	$\mathbf{h}=\mathbf{1 2}$
Model 12	2.078	1.007	1.218	0.962	0.901	1.228	0.961	0.938	0.561	0.822	0.614	0.623
Model 13	2.551	1.162	1.163	1.219	0.970	1.203	0.762	0.808	0.789	0.524	0.500	0.568
Model 14	2.045	1.261	1.235	1.199	0.818	1.140	0.696	0.855	0.694	0.811	0.612	0.580
Model 15	0.964	1.554	1.220	1.455	0.855	0.931	0.804	0.854	0.786	0.498	0.360	0.479
Model 16	2.062	1.218	1.219	1.144	0.808	0.800	0.836	0.941	0.763	0.522	0.362	0.569
Model 17	1.848	1.405	0.839	0.965	0.993	1.187	0.776	0.837	0.698	0.795	0.362	0.759
Model 18	2.715	1.211	0.888	1.457	1.069	0.992	0.900	0.873	0.394	0.551	0.558	0.703
Model 19	1.472	1.905	1.206	1.193	0.980	1.035	0.813	0.924	0.737	0.648	0.537	0.769
Model 20	2.090	1.493	1.206	1.243	0.874	1.140	0.780	0.914	0.792	0.453	0.570	0.593
BMA	0.964	1.253	0.994	1.099	0.894	0.824	0.825	0.890	0.442	0.560	0.419	0.458
ITMA	2.014	1.246	1.104	1.198	0.867	1.006	0.804	0.885	0.755	0.621	0.476	0.596
Simple average	2.015	1.246	1.104	1.197	0.867	1.006	0.804	0.885	0.755	0.621	0.476	0.596

* RMSE relative to the RMSE of the random walk forecast

Table 5.14: Forecasts Evaluation. Selected models by out sample AIC criteria

Forecasting model	$\mathbf{h}=\mathbf{1}$	$\mathbf{h}=\mathbf{2}$	$\mathbf{h}=\mathbf{3}$	$\mathbf{h}=\mathbf{4}$	$\mathbf{h}=\mathbf{5}$	$\mathbf{h}=\mathbf{6}$	$\mathbf{h}=\mathbf{7}$	$\mathbf{h}=\mathbf{8}$	$\mathbf{h}=\mathbf{9}$	$\mathbf{h}=\mathbf{1 0}$	$\mathbf{h}=\mathbf{1 1}$	$\mathbf{h}=\mathbf{1 2}$
Model 1	0.766	0.711	0.761	0.556	0.494	0.358	0.451	0.288	0.260	0.331	0.255	0.272
Model 2	0.777	0.767	0.800	0.684	0.560	0.359	0.348	0.378	0.261	0.315	0.240	0.245
Model 3	0.753	0.723	0.811	0.645	0.504	0.390	0.371	0.325	0.312	0.328	0.228	0.299
Model 4	0.757	0.839	0.822	0.551	0.507	0.356	0.337	0.437	0.353	0.298	0.245	0.288
Model 5	0.782	0.778	0.834	0.748	0.442	0.345	0.381	0.360	0.315	0.283	0.228	0.236
Model 6	0.776	0.796	0.843	0.490	0.527	0.359	0.447	0.419	0.310	0.316	0.295	0.312
Model 7	0.781	0.855	0.823	0.692	0.503	0.385	0.349	0.440	0.366	0.301	0.237	0.245
Model 8	0.767	0.788	0.878	0.621	0.573	0.385	0.444	0.429	0.402	0.303	0.229	0.307
Model 9	0.764	0.858	0.849	0.575	0.438	0.421	0.390	0.396	0.419	0.328	0.299	0.297
Model 10	0.776	0.761	0.849	0.622	0.496	0.415	0.388	0.391	0.366	0.305	0.293	0.285
Model 11	0.780	0.799	0.824	0.730	0.548	0.438	0.389	0.396	0.450	0.353	0.275	0.319
Model 12	0.774	0.859	0.871	0.742	0.491	0.452	0.352	0.417	0.459	0.332	0.208	0.300
Model 13	0.766	0.840	0.822	0.592	0.582	0.436	0.368	0.455	0.472	0.307	0.279	0.314
Model 14	0.750	0.808	0.824	0.696	0.529	0.388	0.360	0.511	0.365	0.303	0.298	0.319
Model 15	0.766	0.820	0.861	0.778	0.545	0.405	0.395	0.515	0.466	0.336	0.277	0.295
Model 16	0.755	0.894	0.862	0.676	0.592	0.394	0.417	0.411	0.402	0.323	0.280	0.261
Model 17	0.789	0.837	0.835	0.629	0.521	0.397	0.438	0.467	0.453	0.272	0.269	0.316
Model 18	0.783	0.833	0.812	0.645	0.556	0.434	0.416	0.397	0.470	0.256	0.284	0.253
Model 19	0.769	0.845	0.834	0.731	0.432	0.461	0.360	0.442	0.455	0.340	0.296	0.366
Model 20	0.775	0.839	0.878	0.710	0.618	0.400	0.402	0.411	0.433	0.295	0.268	0.291
BMA	0.746	0.670	0.743	0.543	0.452	0.356	0.303	0.327	0.306	0.243	0.249	0.210
ITMA	0.761	0.753	0.808	0.629	0.491	0.369	0.346	0.377	0.350	0.267	0.241	0.264
Simple average	0.761	0.753	0.808	0.629	0.491	0.369	0.346	0.377	0.350	0.267	0.241	0.264

* RMSE relative to the RMSE of the random walk forecast

Table 5.15: Evaluation of forecast combination. Root Mean Square Error

Forecasting model	$\mathbf{h}=\mathbf{1}$	$\mathbf{h}=\mathbf{2}$	$\mathbf{h}=\mathbf{3}$	$\mathbf{h}=\mathbf{4}$	$\mathbf{h}=\mathbf{5}$	$\mathbf{h}=\mathbf{6}$	$\mathbf{h}=\mathbf{7}$	$\mathbf{h}=\mathbf{8}$	$\mathbf{h}=\mathbf{9}$	$\mathbf{h}=\mathbf{1 0}$	$\mathbf{h}=\mathbf{1 1}$	$\mathbf{h}=\mathbf{1 2}$
BMA-pl	$\mathbf{0 . 3 3 8}$	0.807	1.777	$\mathbf{1 . 0 8 3}$	1.114	$\mathbf{0 . 8 7 4}$	$\mathbf{1 . 0 0 0}$	1.560	1.804	1.022	0.962	1.021
BMA-ml	0.457	1.066	1.169	1.601	1.557	1.667	1.880	2.201	1.153	1.518	1.167	1.284
ITMA1	$\mathbf{0 . 3 5 8}$	1.007	1.819	1.636	1.762	1.355	$\mathbf{1 . 5 2 7}$	2.017	2.110	1.402	1.050	1.088
ITMA2	$\mathbf{0 . 3 6 0}$	$\mathbf{0 . 6 4 1}$	0.950	$\mathbf{0 . 9 1 6}$	0.856	$\mathbf{0 . 7 4 6}$	$\mathbf{0 . 7 8 9}$	0.932	0.913	0.724	0.671	0.739
Simple average	$\mathbf{0 . 3 5 8}$	1.007	1.819	1.635	1.762	1.355	$\mathbf{1 . 5 2 7}$	2.017	2.110	1.402	1.050	1.088
Dynamic factors	$\mathbf{0 . 3 0 7}$	$\mathbf{0 . 7 2 8}$	$\mathbf{1 . 0 7 1}$	1.400	1.732	1.974	2.003	2.097	2.203	2.213	2.189	2.326
Random Walk	0.473	0.851	1.175	1.457	1.742	2.024	2.278	2.473	2.608	2.712	2.789	2.801
RBC	0.400	0.559	0.862	1.133	1.439	1.851	2.158	3.022	3.615	$\mathrm{~N} / \mathrm{A}$	N / A	N / A

* RMSE corresponding to each forecast combination

Numbers in bold and italic correspond to the cases where MDM test for equal forecast ability compared to the random walk forecast is rejected
BMA-pl refers to BMA combination using predictive likelihood
BMA-ml refers to BMA combination using marginal likelihood
ITMA1 refers to the information theoretic model averaging combination of models selected by BMA
ITMA2 refers to the information theoretic model averaging combination of models selected by ITMA
RBC refers to a regression based combination. See Melo and Nuñez [2004].

Table 5.16: Bootstrapping forecasting errors

Forecasting model	$\mathbf{h}=\mathbf{1}$	$\mathbf{h}=\mathbf{2}$	$\mathbf{h}=\mathbf{3}$	$\mathbf{h}=\mathbf{4}$	$\mathbf{h}=\mathbf{5}$	$\mathbf{h}=\mathbf{6}$	$\mathbf{h}=\mathbf{7}$	$\mathbf{h}=\mathbf{8}$	$\mathbf{h}=\mathbf{9}$	$\mathbf{h}=\mathbf{1 0}$	$\mathbf{h}=\mathbf{1 1}$	$\mathbf{h}=\mathbf{1 2}$
BMA-pl	$\mathbf{1 . 0 0 0}$	0.528	0.154	0.806	$\mathbf{0 . 9 2 4}$	$\mathbf{0 . 9 9 4}$	$\mathbf{0 . 9 9 0}$	0.898	0.734	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 9 9 8}$	$\mathbf{0 . 9 9 8}$
BMA-ml	0.458	0.304	0.360	0.374	0.578	0.692	0.578	0.456	0.290	0.542	$\mathbf{0 . 9 7 0}$	$\mathbf{0 . 9 8 8}$
ITMA1	$\mathbf{0 . 9 8 6}$	0.352	0.140	0.284	0.450	0.770	0.756	0.520	0.542	0.488	$\mathbf{0 . 9 5 0}$	$\mathbf{0 . 9 4 6}$
ITMA2	$\mathbf{0 . 9 9 6}$	0.884	0.710	0.768	$\mathbf{0 . 9 8 2}$	$\mathbf{1 . 0 0 0}$	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 9 9 8}$	$\mathbf{1 . 0 0 0}$	$\mathbf{1 . 0 0 0}$	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 9 9 8}$
simple average	$\mathbf{0 . 9 9 0}$	0.348	0.150	0.304	0.396	0.798	0.760	0.542	0.574	0.480	$\mathbf{0 . 9 4 4}$	$\mathbf{0 . 9 4 0}$
Dynamic factors	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 9 8 4}$	$\mathbf{0 . 9 6 0}$	0.550	0.810	0.726	0.602	0.390	0.320	0.280	0.356	0.356
RBC	$\mathbf{1 . 0 0 0}$	$\mathbf{0 . 9 4 6}$	$\mathbf{0 . 9 0 6}$	0.532	0.801	0.762	0.612	0.308	0.310	N/A	N/A	N/A

$\%$ of samples with reduction in RMSE of at least 5% relative to the random walk forecast

Figure 5.2: Inflation Forecasts

REFERENCES

Bates, J. and Granger, C. (1969). The combination of forecasts. Operations research quarterly, 20:451-468.
Berger, J. and Pericchi, L. (1996). The intrinsic bayes factor for model selection and prediction. Journal of the American Statistical Association, 91(433):109-122.
Boivin, J. and Ng, S. (2005). Understanding and comparing factor-based forecast. International Journal of Central Banking, 1(3):117-151.
Caporello, G. and Maravall, A. (2004). Program TSW, Reference Manual,. Banco de España.
Clemen, R. (1989). Combining forecasts: A review and an annotated bibliography. International Journal of Forecasting, 5(4):559-583.
Eklund, J. and Karlsson, S. (2005). Forecast combination and model averaging using predictive measures. Sveriges Riskbank Working Papers Series 191, Sveriges Riskbank.
Fernandez, C., Ley, E., and Steel, M. (2001). Benchmark priors for bayesian model averaging. Journal of Econometrics, 100:381-427.
Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic - factor model: Identification and estimation. The Review of Economics and Statistics, 82(4):540554.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005). The generalized dynamic - factor model: One-sided estimation and forecasting. Journal of the American Statistical Association, (471):830-840.
González, E., Melo, L., Monroy, V., and Rojas, b. (2009). A dynamic factor model for the colombian inflation. Borradores de Economía 549, Banco de la República. Colombia.
González, E. and Reyes, A. (2009). An empirical comparison of different approaches of forecast combination. the colombian inflation case. Revista Monetaria. Centro de Estudios Monetarios Latinoamericanos, CEMLA, forthcoming.
Green, P. (1995). Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika, 82(4):711-732.
Harvey, D., Leybourne, S., and Newbold, P. (1998). Tests for forecast encompassing. Journal of Business and Economic Statistics, 16:254-259.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning. Springer series in Statistics.
Hoeting, J., Madigan, D., Raftery, A., and Volinsky, C. (1999). Bayesian model averaging: A tutorial. Statistical science, 14(4):382-417.
Jacobson, T. and Karlsson, S. (2002). Finding good predictors for inflation: A bayesian model averaging approach. Sveriges Riskbank Working Papers Series 138, Sveriges Riskbank.
Kapetanios, G., Labhard, V., and Price, S. (2006). Forecasting using predictive likelihood model averaging. Economic Letters, 91:373-379.
Kapetanios, G., Labhard, V., and Price, S. (2008). Forecasting using bayesian and information theoretic model averaging: an application to UK inflation. Journal of Business and Economic Statistics, 26:33-41.
Koop, G. and Potter, S. (2003). Forecasting in large macroeconomic panels using bayesian model averaging. Federal Reserve Bank of New York Staff Reports 163, Federal Reserve

Bank of New York.
Madigan, D. and Raftery, A. (1994). Model selection and accounting for uncertainty in graphical models using occams window. Journal of the American Statistical Association, 89:1535-1546.
Melo, L. and Nuñez, H. (2004). Combinación de pronósticos de la inflación en presencia de cambios estructurales. Borradores de Economía 286, Banco de la República. Colombia.
Newbold, P. and Granger, C. (1974). Experience with forecasting unviariate time series and the combination of forecasts. Journal of the Royal Statistical Society, Series A(137):131-165.
Ohara, A. and Sillampaa, R. (2009). A review of bayesian variable selection. Bayesian Analysis, 4(1):85-118.
Raftery, A., Madigan, D., and Hoeting, J. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92(437):179-191.
Stock, J. and Watson, M. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97(460):1167-1179.
Wright, J. (2003). Forecasting u.s inflation by bayesian model averaging. International Finance Discussionm Papers 780, Board of Governors of the Federal Reserve System.
Zellner, A. (1986). On assessing prior distributions and bayesian regression analysis using g-prior distributions. In Goel, P. and Zellner, A., editors, Bayesian Inference and Decision techniques - Essays in hounour of Bruno de Finetti, North Holland, Chapter 15, pages 233243.

Appendix A. Variables Description

	Description	Acronym	Source	Transformation
I.	Real Activity			
1	Real wage index of manufacturing industry excluding coffee threshing	ISRSINT	BANREP	2
2	Nominal wage index by economic activity - retails	ISNCOMIN	BANREP	2
3	Nominal wage index by economic activity - Manufacturing industry - white collar workers	ISNIMAEM	BANREP	2
4	Nominal wage index by economic activity - Manufacturing industry - blue collar workers	ISNIMAOB	BANREP	2
5	Building permits for housing of social interest (VIS)	PCVIS	Cámara colombiana de la construcción (CAMACOL)	2
6	Building permits for housing - No VIS	PCNOVIS	CAMACOL	2
7	Gross mortgage portfolio	CHBRUTA	CAMACOL	2
8	Cost index for housing construction	ICCV	CAMACOL	2
9	Current economic condition for the industrial sector	SECONOM	Fundación para la educación Superior y el desarrollo (FEDESARROLLO)	1
10	Industrial production activity	ACTPROD	FEDESARROLLO	1
12	Industrial inventory stock	EXISTEN	FEDESARROLLO	1
12	Number of merchandise orders for industrial sector (NMOIS)	VOLACTPE	FEDESARROLLO	1
13	Installed capacity, given the NMOIS for the current month	CAPINVOP	FEDESARROLLO	1
14	Expected industrial production for the next 3 months	EXPPRO	FEDESARROLLO	1
15	Expected economic situation for the next 6 months	EXPSITEC	FEDESARROLLO	1
16	Installed capacity, given the expected NMOIS for the next 12 months	CAPINDE	FEDESARROLLO	1
17	Consumption goods imports - non-durables	MBCNODU	Departamento Administrativo Nacional de Estadstica (DANE)	2
18	Consumption goods imports - durables	MBCDUR	DANE	2
19	Intermediate and raw goods imports - Fuel and others	MBICOMLU	DANE	2
20	Intermediate and raw goods imports - Agriculture sector	MBISA	DANE	2
21	Intermediate and raw goods imports - Industrial sector	MBISI	DANE	2
22	Capital goods imports - Building materials	MBKMATCO	DANE	2
23	Capital goods imports - Agriculture sector	MBKSA	DANE	2
24	Capital goods imports - Industrial sector	MBKSI	DANE	2
25	Capital goods imports - Apparel materials	MBKEQTRA	DANE	2
26	Industrial production index	IPI	BANREP	2
II	Prices			
27	Consumer price index (CPI)	IPC	BANREP	2
28	CPI for Food	GALIM	BANREP	2
29	CPI for housing	GAVIV	BANREP	2
30	CPI for clothing	GAVES	BANREP	2
31	CPI for health	GASAL	BANREP	2
32	CPI for education	GAEDU	BANREP	2
33	CPI for recreation	GACUL	BANREP	2
34	CPI for transportation	GATRAN	BANREP	2
35	CPI for other expenses	GAOTGA	BANREP	2

(continued)

	Description	Acronym	Source	Transformation
36	CPI non-tradable goods and services	NCNOTRAN	BANREP	2
37	CPI of tradable goods and services	NCTRAN	BANREP	2
38	CPI of regulated goods and services	NCREGUL	BANREP	2
39	Producer price index (PPI)	IPP	BANREP	2
40	PPI by economic activity (IPPAE): for Agriculture and others	AEA	BANREP	2
41	PPI for mining	AEMIN	BANREP	2
42	PPI for manufacturing industries	AEIMAN	BANREP	2
43	PPI by origin of goods (IPPPB): Produced and consumed	PBPRODCO	BANREP	2
44	PPI for imports	PBM	BANREP	2
45	PPI by use or economic destiny (IPPUE): for intermediate consumption	UECINTER	BANREP	2
46	PPI for final consumption	UECFINAL	BANREP	2
47	PPI for capital formation	UEFORK	BANREP	2
48	PPI for building materials	UEMATCO	BANREP	2
49	Price expectations for the next 3 months	EXPAUMPR	FEDESARROLLO	1
III	Credit, Money and Exchange Rate			
50	Monetary base	BASEMON	BANREP	2
51	Net international reserves	RESNETAS	BANREP	2
52	M1	M1	BANREP	2
53	M2	M2	BANREP	2
54	M3	M3	BANREP	2
55	Total gross credit	CREDBR	BANREP	2
56	Currency in circulation	EFECTIV	BANREP	2
57	Total deposits	TOTALDEP	BANREP	2
58	Deposits in saving accounts	DEPCTAHO	BANREP	2
59	Deposits in current accounts	DEPCTCOR	BANREP	2
60	Interest rate of 90-day certificate	CDT90DBA	BANREP	1
	of deposits for banks and financial corporations			
61	Interbank interest rate - monthly average	TIBPROME	BANREP	1
62	Nominal interest rate of 90-day fixed term deposit (DTF)	DTFNO90D	BANREP	1
63	Lending interest rate	TASACTIV	BANREP	1
64	Gross domestic credit to treasury	CRBTES	BANREP	2
65	Gross domestic credit to commercial banks	CRBBAN	BANREP	2
66	Gross domestic credit to financial corporations	CRBCORP	BANREP	2
67	Gross domestic credit to financial sector	CRDOBPRI	BANREP	2
68	Nominal exchange rate - average	TCNMPROM	BANREP	2
69	Terms of trade	TERMINTE	BANREP	2
70	Real exchange rate index for non-traditional commerce deflated by IPP	ITCRIPPN	BANREP	2
71	Real exchange rate index for non-traditional commerce deflated by IPC	ITCRIPCN	BANREP	2
72	Real exchange rate index for total commerce deflated by IPP	ITCRIPPT	BANREP	2
73	Real exchange rate index for total commerce deflated by IPC	ITCRIPCT	BANREP	2

*(1) no transformation, (2) $\log \left(X_{t} / X_{t-12}\right)$.

Table A.18: Variables with high posterior probability - Predictive Likelihood

	Variable	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=3$	$\mathrm{h}=4$	$\mathrm{h}=5$	$\mathrm{h}=6$	$\mathrm{h}=7$	$\mathrm{h}=8$	$\mathrm{h}=9$	$\mathrm{h}=10$	$\mathrm{h}=11$	$\mathrm{h}=12$
1	ISRSINT												
2	ISNCOMIN	0.0978											
3	ISNIMAEM	0.0630											
4	ISNIMAOB												
5	PCVIS												
6	PCNOVIS	0.0551										0.0002	0.0018
7	CHBRUTA	0.0822					0.0554	0.9270	0.0606	0.7492	0.0057		
8	ICCV		0.0232		0.0008								
9	SECONOM								0.0031			0.0001	
10	ACTPROD					0.0004		0.0187				0.0003	
11	EXISTEN				0.0051			0.0000					
12	VOLACTPE						0.0070	0.0585	0.9363	0.0023			
13	CAPINVOP				0.0057		0.0126						0.0001
14	EXPPRO				0.9977	0.4799	0.1475	0.3608	0.0544				
15	EXPSITEC			0.0213	0.0002					0.0000			
16	CAPINDE				0.0014		0.0044		0.0002	0.1749	0.0021	0.0005	
17	IPI	0.1141	0.1362	0.7061		0.5201	0.8410	0.5807	0.0060	0.0859	0.6581	0.0048	
18	IPC	1.0000	0.9966	0.8445	0.0002			0.0086		0.0026			
19	GALIM	0.0598		0.1543	0.9975	0.4795	0.0834						
20	GAVIV		0.0232	0.0280						0.6873	0.2560	0.0007	
21	GAVES		0.0277		0.0014								
22	GASAL			0.0186	0.0014		0.1400	0.9270	1.0000	0.2631	0.3529	0.0032	0.0000
23	GAEDU										0.0928	0.0001	0.0001
24	GACUL							0.0030					
25	GATRAN			0.1173		0.0000			0.0000				
26	GAOTGA										0.6522	0.9972	0.9946
27	NCNOTRAN	0.0978	0.0259										
28	NCTRAN	0.0540						0.0000	0.0000	0.7369	0.0038		
29	NCREGUL	0.0545		0.1335			0.0846		0.9393	0.2485	0.0035		
30	IPP		0.0238	0.4054						0.0620			
31	AEA		0.6123	0.8635									
32	AEMIN	0.9989	0.9726	0.5731	0.9848	0.9890	0.9701	1.0000	1.0000	0.3101	0.0021		0.0000
33	AEIMAN		0.0229	0.4410			0.0115	0.0368	0.0000	0.0026	0.2469		
34	PBPRODCO		0.0435	0.0568		0.0120		0.0730	0.0053				
35	PBM								0.0541	0.0493	0.7510	0.9998	1.0000
36	UECINTER					0.0000							
37	UECFINAL								0.0007			0.0003	
38	UEFORK							0.4647				0.9937	1.0000
39	UEMATCO					0.0000						0.0005	
40	EXPAUMPR	0.1250	0.1596									0.0005	0.0004
41	BASEMON												
42	RESNETAS						0.0563						

	Variable	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=3$	$\mathrm{h}=4$	$\mathrm{h}=5$	$\mathrm{h}=6$	$\mathrm{h}=7$	$\mathrm{h}=8$	$\mathrm{h}=9$	$\mathrm{h}=10$	$\mathrm{h}=11$	$\mathrm{h}=12$
43	M1												
44	M2			0.0604	0.9775	0.9995	0.8600	0.0730			0.6428	0.9946	
45	M3					0.0000							0.0000
46	CREDBR	0.0894											
47	EFECTIV												
48	TOTALDEP					0.0000					0.0027		
49	DEPCTAHO				0.0007				0.0000				0.9961
50	DEPCTCOR												0.0004
51	CDT90DBA	0.0452	0.0798	0.0309	0.9978	0.7578	0.3376	0.0730	0.0000		0.2469	0.0021	0.0004
52	TIBPROME	0.1567	0.0577		0.0007	0.0961	0.2084	0.0000	0.9393	0.2399			0.0044
53	DTFNO90D	0.0469		0.0239									
54	TASACTIV		0.1145	0.0276	0.0014	0.2280	0.5302						
55	CRBTES												
56	CRBBAN		0.0724			0.0010						0.0005	
57	CRBCORP												
58	CRDOBPRI												
59	TCNMPROM							0.2260					0.0003
60	TERMINTE										0.0033		
61	ITCRIPPN									0.6866	0.5170	0.0001	
62	ITCRIPCN									0.6866			
63	ITCRIPPT						0.0020				0.4772	0.9983	0.9944
64	ITCRIPCT							0.1348	0.0004	0.0109		0.0016	0.0020
65	MBCNODU						0.2685	0.0344		0.0007			
66	MBCDUR	0.0756	0.0364	0.0865	0.0007	0.2452	0.0130						
67	MBICOMLU	0.0487	0.0582		0.0001	0.0000				0.0000			0.0000
68	MBISA				0.0143	0.0229			0.0001				0.0001
69	MBISI	0.1910	0.5278	0.0956							0.0017		
70	MBKMATCO			0.0338	0.0008		0.0287				0.0748		
71	MBKSA	0.0763	0.0506										0.0000
72	MBKSI					0.0433							
73	MBKEQTRA												

Sample Nov/1999 to Dec/2009

* Numbers in cells are the corresponding inclusion posterior probability. An empty cell means a negligible probability.

Table A.19: Variables with high posterior probability - Marginal Likelihood

	Variable	$\mathbf{h}=\mathbf{1}$	$\mathbf{h}=\mathbf{2}$	$\mathbf{h}=\mathbf{3}$	$\mathbf{h}=\mathbf{4}$	$\mathbf{h}=\mathbf{5}$	$\mathbf{h}=\mathbf{6}$	$\mathbf{h}=\mathbf{7}$	$\mathbf{h}=\mathbf{8}$	$\mathbf{h}=\mathbf{9}$	$\mathbf{h}=\mathbf{1 0}$	$\mathbf{h}=\mathbf{1 1}$	$\mathbf{h}=\mathbf{1 2}$
1	ISRSINT					0.1082			0.0711	0.0330	0.0011		
2	ISNCOMIN	0.9896	0.1380										
3	ISNIMAEM		0.0579		0.0033	0.2533	$\mathbf{0 . 0 2 6 9}$		0.0076				
4	ISNIMAOB				0.0126	0.0669				0.9495	1.0000	0.8152	0.9802

	Variable	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=3$	$\mathrm{h}=4$	$\mathrm{h}=5$	$\mathrm{h}=6$	$\mathrm{h}=7$	$\mathrm{h}=8$	$\mathrm{h}=9$	$\mathrm{h}=10$	$\mathrm{h}=11$	$\mathrm{h}=12$
5	PCVIS												
6	PCNOVIS					0.2299							
7	CHBRUTA		0.2534										
8	ICCV		0.3194	0.0248									
9	SECONOM		0.0937				0.0321	0.0541			0.0010		
10	ACTPROD												
11	EXISTEN									0.0223			
12	VOLACTPE	0.0816	0.4124	0.4927			0.0256	0.0348					
13	CAPINVOP		0.0761				0.0409						
14	EXPPRO												
15	EXPSITEC						0.7950		0.0478				
16	CAPINDE												0.0004
17	IPI												
18	IPC	0.9596		0.2497					0.0819				
19	GALIM							0.2934	0.8392				0.0000
20	GAVIV		0.1486	0.4647	0.9796	0.3127							
21	GAVES				0.6667						0.0097		
22	GASAL	0.8508	0.3420	0.0473	0.0052	0.2499			0.0534	0.0176			0.0000
23	GAEDU												0.0001
24	GACUL		0.0685	0.0398				0.0832				0.0323	0.0002
25	GATRAN					0.3995	0.0671	0.0445	0.0221				
26	GAOTGA	0.0355	0.7756	0.5119						0.0317	0.0080		0.9975
27	NCNOTRAN	0.0773											
28	NCTRAN	0.0700		0.0479	0.0020					0.9243	0.9822	0.7234	0.0022
29	NCREGUL					0.4015	0.0323	0.0519		0.0064			
30	IPP	0.7168	0.1930		0.0027				0.0076	0.9350	0.6350	0.0498	
31	AEA	0.0307	0.0632			0.0759				0.0084		0.0347	
32	AEMIN			0.3197	0.0079	0.1321					0.0643	0.2578	
33	AEIMAN	0.0208		0.0799	0.0035		0.0338		0.0342				0.0011
34	PBPRODCO		0.1718							0.0304	0.9873	0.1167	
35	PBM	0.0207			0.3028	0.0939	0.0331			0.0063		0.0253	
36	UECINTER		0.2442	0.0714	0.9706			0.0441				0.8126	0.9988
37	UECFINAL											0.0751	
38	UEFORK				0.0127			0.0426			0.1738	0.5857	
39	UEMATCO			0.0494	0.0022		0.0801				0.0080		0.0000
40	EXPAUMPR				0.9706								
41	BASEMON	0.0288											
42	RESNETAS		0.0957			0.1825				0.0383	0.0139		
43	M1											0.2215	
44	M2	0.1054							0.0990	0.0169			0.0000
45	M3	0.2712		0.0596	0.0046	0.2661				0.0099			
46	CREDBR								0.0534		0.0097	0.1849	
47	EFECTIV							0.8660	1.0000	0.9476	0.0098		
48	TOTALDEP					0.2797							

	Variable	$\mathrm{h}=1$	$\mathrm{h}=2$	$\mathrm{h}=3$	$\mathrm{h}=4$	$\mathrm{h}=5$	$\mathrm{h}=6$	$\mathrm{h}=7$	$\mathrm{h}=8$	$\mathrm{h}=9$	$\mathrm{h}=10$	$\mathrm{h}=11$	$\mathrm{h}=12$
49	DEPCTAHO		0.0687					0.0330					
50	DEPCTCOR	0.1432							0.0235			0.0412	0.0171
51	CDT90DBA		0.2980	0.4794	0.0135		0.0286	0.0442				0.1760	1.0000
52	TIBPROME							0.2796					
53	DTFNO90D	0.0811		0.3594	0.9775	0.3195		0.1476	0.0990	0.0197	0.0097	0.2376	
54	TASACTIV			0.4634	0.0151	0.1188	0.8276	0.0393					1.0000
55	CRBTES		0.1699	0.4201	0.0216							0.0426	
56	CRBBAN						0.0610						
57	CRBCORP												
58	CRDOBPRI					0.2514	0.1599	0.0396			0.9643		0.0000
59	TCNMPROM	0.0240				0.1138			0.0174	0.9037	0.0037	0.0873	
60	TERMINTE	0.0726	0.0819	0.0938			0.0315					0.1150	0.0000
61	ITCRIPPN					0.0742	0.5036	0.7347	0.0553	0.0113			0.0001
62	ITCRIPCN						0.4694	0.2680	0.8788	0.0084	0.0943	0.0258	
63	ITCRIPPT						0.5039	0.7350	0.0534	0.0296	0.0015		
64	ITCRIPCT	0.0267		0.0252			0.4702	0.2676	0.8645				
65	MBCNODU							0.0399					
66	MBCDUR												
67	MBICOMLU										0.0008		
68	MBISA												
69	MBISI	0.0434		0.4329	0.0023	0.2042	0.0522						
70	MBKMATCO												
71	MBKSA												0.0000
72	MBKSI												0.0001
73	MBKEQTRA								0.0219				

Sample Nov/1999 to Dec/2009

* Numbers in cells are the corresponding inclusion posterior probability. An empty cell means a negligible probability.

Table A.20: Top models according to predictive likelihood. $\mathrm{h}=1$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
18	IPC	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
51	CDT90DBA	1	1	0	1	0	2	0	1	1	1	0	1	0	0		1	0		0	1
32	AEMIN	0			0	1	0		0	2	0	1	0,1	0	0	0	0	0	0	0	0
69	MBISI			0		0		0			0	0	0	0	1	0	0	1	0	0,1	0
66	MBCDUR			0,1		0,1		1			0	1	2		1	2					
67	MBICOMLU	1	1,2		1			1	1,2	1							2	1			
40	EXPAUMPR		0		0		0			0	1			2				1		2	2
19	GALIM						2	0,2				0									
17	IPI	2			1		2		2												
29	NCREGUL								2	0				1							
27	NCNOTRAN			1		1															2
71	MBKSA		2																1		2
52	TİPPROME															2			2		
3	ISNIMAEM												1								
28	NCTRAN														1						
6	PCNOVIS																0				
	terior prob.	0.178	0.086	0.065	0.065	0.061	0.058	0.051	0.046	0.042	0.042	0.040	0.034	0.034	0.032	0.032	0.032	0.027	0.025	0.025	0.024

Sample Nov/1999 to Dec/2009

* numbers in cells are the corresponding lags in the model.

Table A.21: Top models according to predictive likelihood. $\mathrm{h}=6$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
32	AEMIN	1	1	1	2	1,2	1	2	2	1	2	1	2	1	2	1	1	2	1	1	2
22	GASAL	0	0	2	2	2	2	2	2	0	0	2	0	2	2	0	2	2	2	2	2
17	IPI	2	2	1	0	2	2	2	2			2		2	2	2	1	2	1	2	

(continued ...)

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
29	NCREGUL	2	2	2	2	2	2	2	2			2		2	2		2	2	2	2	2
52	TİPROME	0	0	0	0	1	0	1	0			1		2	2		0	2		0	0
44	M2	2		2	2	2		2	2			2		2	2		2	2			2
14	EXPPRO						0			0	0,1		0						0	0	1
33	AEIMAN									0,1	2		2			0,2					
51	CDT90DBA									0			0			2	0		0		
7	CHBRUTA									2	2		2			2			2		
13	CAPINVOP				0	2					1					0					
42	RESNETAS	2	1				2														2
54	TASACTIV								0		0	1			1						
65	MBCNODU			1	0										2						
18	IPC									1			2								
16	CAPINDE																1	1			
70	MBKMATCO											1								1	
66	MBCDUR			2																	
	terior prob.	0.136	0.093	0.080	0.078	0.070	0.054	0.052	0.047	0.039	0.039	0.034	0.034	0.034	0.033	0.032	0.032	0.031	0.029	0.025	0.025

Sample Nov/1999 to Dec/2009

* numbers in cells are the corresponding lags in the model.

Table A.22: Top models according to predictive likelihood. $\mathrm{h}=12$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
35	PBM	0,2	0,2	0,2	0,2	0,2	0,2	0,2	1	0,2	0,2	1	0,2	0,2	1	0,2	1	1	0	2	1
38	UEFORK	2	2	2	2	2	2	2	1,2	2	2	1	2	2	1	2	1	1	0	2	1
49	DEPCTAHO	2	2	2	2	2	2	2	1	2	2		1	1				2	1		
59	TCNMPROM	0	0		0	0	0	0	,12	0	0		0	0		0					
40	EXPAUMPR	0	0					0				0,1			0,1			0		1,2	0
52	TIBPROME								0			0			1		2	2	1,2	2	2
6	PCNOVIS				1					1	1,2	1,2					2		0		

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
71	MBKSA	1			1		1							0		0	1			1	
13	CAPINVOP												0	0	0	0	1	0			0
51	CDT90DBA					0				0								0,1			0,1
50	DEPCTCOR				1	1	1						2	2		2					
26	GAOTGA	2	0	0												1					
68	MBISA		1				2	1									2				
63	ITCRIPPT			0													0		0		0
32	AEMIN			0																1	
67	mbicomlu			0																	
23	GAEDU																		2		
64	ITCRIPCT			0																	
	terior prob.	0.631	0.349	0.015	0.002	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Sample Nov/1999 to Dec/2009

* numbers in cells are the corresponding lags in the model.

Table A.23: Top models according to marginal likelihood. $\mathrm{h}=1$

Table A.24: Top models according to marginal likelihood. $\mathrm{h}=6$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
44	M2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
33	AEIMAN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29	NCREGUL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	GALIM	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0,2
22	GASAL	2	0	0	2	1	0	2	0	2	2	0	0	0	2	2	0	1	2	0	2
7	CHBRUTA		0			0		0,1		0	0				0						
17	IPI											1	1	1			1	0		1	
32	AEMIN	0										1	1	1						2	
14	EXPPRO			0,1	2		0		0												
65	MBCNODU						1						1		2				2		
18	IPC					0			2											1	1
66	MBCDUR		1												1				2		2
13	CAPINVOP									0		0					2				
52	TIBPROME			0				0			0										
51	CDT90DBA															2					
42	RESNETAS																	2			
54	TASACTIV									2											
16	CAPINDE										2										
12	VOLACTPE																		2		
	sterior prob.	0.176	0.154	0.096	0.082	0.074	0.068	0.067	0.055	0.043	0.042	0.037	0.036	0.035	0.013	0.012	0.009	0.002	0.001	0.001	0.000
Sample Nov/1999 to Dec/2009																					

Table A.25: Top models according to marginal likelihood. $\mathrm{h}=12$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
26	GAOTGA	0	0	0,1	1	1	1	1	0	1	1	1	1	1	1	1,2	1	2	1,2	0,1	
18	IPC	0	0	0	0	0	0	0	0,2	0	0	0	0	0	0	0	0	2	0	1	1
38	UEFORK	2	1	0,1	2	2	2	2	0,1	2	1	1	1	1	1	1	1	2	1		
63	ITCRIPPT		0,2		0,2	0	0,2	2		2	1		1	1			1				
64	ITCRIPCT		0			2		1		1	2	2	2	2	2	2	2		2		
35	PBM	2		0				2	1	2		1			1	1		2	1		
32	AEMIN	2	2						0		0	0	0		0	0				2	2
6	PCNOVIS	0	0	0	0	0		0		0	0									0	
23	GAEDU	1			2		2				0		0				0	1			2
52	TIBPROME	1			2	2	2											2		0	
51	CDT90DBA											0			0	0			0	0	
13	CAPINVOP					0								2			2			2	
67	MBICOMLU													2					0		0,2
59	TCNMPROM			0				0										0			
71	MBKSA						2														0
40	EXPAUMPR			0																	
50	DEPCTCOR																				1
68	MBISA														2						
	sterior prob.	0.436	0.267	0.166	0.111	0.019	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sample Nov/1999 to Dec/2009																					

Table A.26: Top models according to out-sample AIC criteria. $\mathrm{h}=1$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
18	IPC	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0	1,1	1,1	1,1	1,1	1,1	1,1	1,1
32	AEMIN		0	0	0		0	0	0	0		0,2	0	0	0	2	0	0	0	0	0
51	CDT90DBA	1	0	1	0	1	1	1	1	0	0		2		1	1	1		1	2	0
67	MBICOMLU	1,2			1	1,2				1	1			1		1				1	
3	ISNIMAEM			2			2	2	2	1			2		0			0	1	2	
19	GALIM				0		1						2	0,1	1		1			2	1
40	EXPAUMPR	0		1		0			1				0			0				0	1
71	MBKSA	2						1	1			1						1	1		1
69	MBISI		1		2						I	I		I			2	I			
66	MBCDUR		1	0					0		1	1					1		0		
28	NCTRAN		1												2		1				
29	NCREGUL					2					1					0					
52	TIBPROME										0	1						0			
27	NCNOTRAN						1	1		1											
	t sample AIC	-2.495	-2.474	-2.473	-2.466	-2.459	-2.454	-2.449	-2.445	-2.442	-2.438	-2.435	-2.434	-2.430	-2.426	-2.421	-2.420	-2.417	-2.417	-2.417	-2.411

Sample Nov/1999 to Dec/2009

* numbers in cells are the corresponding lags in the model

Table A.27: Top models according to out-sample AIC criteria. $\mathrm{h}=6$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
29	NCREGUL	2	2	0	2	2	2	2	0,2	1	2	2	2	2		1	2	2	0,1	2	
52	TIBPROME	0	0	0	1	0	0	1	E	1	1	0	0	1	0	0	0		0	0	0,1
22	GASAL	2	2	2	2	1	2		2	1	2	2	2	2	1	1	2	2	1	2	1
32	AEMIN	1	1	2	2	1	1	1	1	1	1	2	2		1	2	1	2	1	1	1
12	VOLACTPE		0	2	2	2	2	2		2	2	2	2	2	2	2	2	1,2	2	2	2

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
44	M2	2		2	0	2		2	2			0		2	1		1	1			2
19	GALIM	1			1	2		0	0				0	1		0	1		2		
18	IPC		0			0				1,2	1									2	
14	EXPPRO	0							2			2	2					2			
70	MBKMATCO	1										0	0		1						2
13	CAPINVOP			1			2									2				1	
16	CAPINDE			0										1	0		1				
17	IPI						2													2	
33	AEIMAN			0												2					
51	CDT90DBA										1										
54	TASACTIV							1													
	sample AIC	-0.768	-0.752	-0.750	-0.738	-0.733	-0.728	-0.716	-0.712	-0.708	-0.704	-0.704	-0.697	-0.697	-0.694	-0.690	-0.689	-0.681	-0.680	-0.677	-0.673

Sample Nov/1999 to Dec/2009

* numbers in cells are the corresponding lags in the model

Table A.28: Top models according to out-sample AIC criteria. $\mathrm{h}=12$

	Variable	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20
35	PBM	2	1	0,2	1	0,2	2	0,2	1	0,2	0	1	1	1,2	0,2	0,2	0	0,2	1	0,2	0,2
38	UEFORK	2	1	2	1,2	2	1,2	2	1	2	0,2	1	1	1	2	2	0	2	1	2	2
40	EXPAUMPR	1,2	0				2	0	0,1	0		0,1	0		0		1				
59	TCNMPROM				1,1	0		0		0					0	0				0	0
49	DEPCTAHO		0	2	1	2		2		2					2	2				2	
52	TIBPROME	2	2		0		2		0			1	2						2		
71	MBKSA	1				1									1	1	2	1	1		0
6	PCNOVIS						2		1,2					1		1			2	1	
51	CDT90DBA		0,1								2		0,1					0		0	
13	CAPINVOP		0									0	0	0			0		1		0
68	MBISA					2		1		1	1,2			1					2		

Sample Nov/1999 to Dec/2009

* numbers in cells are the corresponding lags in the model.

[^0]: Date: March 2010.

 * The opinions expressed here are those of the authors and do not necessarily represent neither those of the Banco de la República nor of its Board of Directors. As usual, all errors and omissions in this work are our responsibility.
 \dagger Member of the Macroeconomic Models Department.

[^1]: ${ }^{1}$ See Appendix A for a detailed description of the variables

[^2]: ${ }^{2}$ The top models for the other horizons are available under request

[^3]: ${ }^{3}$ Results of all variables and the posterior inclusion probabilities for the second run are available under request
 ${ }^{4}$ Due to the small out-sample to evaluate the combinations, the results of the MDM test have to be taken cautiously and in order to support these results, a bootstrapping approach was used to compare the predictive ability of the combinations. See González and Reyes [2009] for details.

[^4]: ${ }^{5}$ Results of the posterior inclusion probabilities of all variables and selected models for the run of the algorithm with the whole sample are found in the Appendix at the end of the document

