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ABSTRACT. Value at Risk (VaR) is a market risk measure widely used by risk managers and mar-
ket regulatory authorities. There is a variety of methodologies proposed in the literature for the
estimation of VaR. However, few of them get to say something about its distribution or its confi-
dence intervals. This paper compares different methodologies for computing such intervals. Several
methods, based on asymptotic normality, extreme value theory and subsample bootstrap, are used.
Using Monte Carlo simulations, it is found that these approaches are only valid for high quantiles.
In particular, there is a good performance for VaR(99%), in terms of coverage rates, and bad per-
formance for VaR(95%) and VaR(90%). The results are confirmed by an empirical application for
the stock market index returns of G7 countries.
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1. INTRODUCTION

Value at Risk (VaR) is a widely used risk measure by financial agents such as risk managers or
regulatory authorities. It is defined as the maximum loss of a certain asset for a given probability
level (α); then, VaR corresponds to the α−quantile of the distribution of the asset at a certain time.

There are several methods for obtaining the VaR point estimator of an asset for a forecasting hori-
zon. Nevertheless, few of them get to say something about the uncertainty of these estimators.
Knowledge about this uncertainty would allow to account for the accuracy of the VaR estimation,
and it can be quantified by estimating confidence intervals. Because VaR represents the expected
loss in the worst cases at a certain probability level, this measure is used to set capital requirements;
therefore, when its confidence intervals are found to be considerably wide, caution is necessary.
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Methodologies that allow VaR confidence interval estimation rely on different assumptions, some
of them are based on asymptotic normality. For example, Moraux [2011] gives a first approach
assuming that the returns are independent and identically normally distributed. He computes the
confidence intervals by applying the delta-method to estimate the asymptotic variance of VaR.
However, it is well known that financial series exhibit heteroscedastic and heavy-tailed behavior.

For this reason, other methods allow the return series to follow an ARMA-GARCH dynamic.
Some of them do not assume any particular distribution, but they use asymptotic theory. Spierdijk
[2014] mentions that some of these methods fail when the normality assumption does not hold
or when the sample size is not large enough. Gao and Song [2008], Francq and Zakoı̈an [2015]
and Chan, Deng, Peng, and Xia [2007] employ different approaches based on QML in order to
estimate the quantile of the residuals without the asymptotic normality assumption. Gao and Song
[2008] use filtered historical simulation, Francq and Zakoı̈an [2015] propose a reparametrization
of the GARCH errors while Chan, Deng, Peng, and Xia [2007] rely on extreme value theory.

Another method to estimate VaR confidence intervals is based on bootstrap techniques on the
standardized errors. However, conventional bootstrap is not consistent when asymptotic normality
does not hold, and its inconsistency arises when there are GARCH dynamics with an unbounded
fourth moment [Hall and Yao, 2003]. Therefore, Spierdijk [2014] proposes a subsample bootstrap
methodology for ARMA-GARCH models using QML. This methodology performs well when as-
ymptotic normality does not hold; and compared to conventional bootstrap, this method does not
requiere the fourth moment to be finite.

The purpose of this paper is to compare some of these methodologies, in order to identify the
scenarios under which such confidence interval techniques perform properly. This is done by
evaluating coverage rates for each method through Monte Carlo simulations. The scenarios con-
sider different persistence degrees in mean and variance, sample sizes, VaR probability levels,
confidence levels of the intervals and distributions of the standardized errors.

The results suggest that the evaluated methods have a good performance for VaR(99%) under the
classical features of financial time series, such as low mean persistence and high variance per-
sistence. However, Moraux [2011] method, based on asymptotic normality, presents the worst
coverage ratios yielding to extremely wide confidence intervals. Additionally, none of the meth-
ods have a good performance for VaR(90%) and VaR(95%). These conclusions are supported by
an empirical exercise for the stock market index returns of the G7 countries.

The rest of the paper is organized as follows. Section two explains the methods used to compute
the confidence intervals of VaR. A simulation exercise of those methods is given in section three.
Section four contains an empirical application for the stock market index returns of G7 countries.
Finally, some concluding remarks are presented in section five.
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2. METHODOLOGY

In this section four methods are considered to compute the confidence interval of VaR for a return
series rt .

2.1. Asymptotic normality. Moraux [2011] considers a simple case where the VaR is obtained
under normal iid assumption, rt

iid∼ N(µ,σ2). Then, V̂aR(t + 1|t)α = µ̂ + σ̂qα , where qα stands
for the α th quantile of the standard normal distribution.

Given the following asymptotic results,
√

T (µ̂ − µ)
d→ N(0,σ2) and

√
T (σ̂2−σ2)

d→ N(0,σ4),

using the delta method he shows that
√

T (V̂aR−VaR) d→ N
(
0,σ2(1+0.5q2

α)
)
.

Then, the β−asymptotic confidence interval of VaR is

V̂aR(t +1|t)α ±
σ̂√
T

√
1+0.5q2

α q0.5(1+β ) (1)

Even though this approach is very simple, does not take into account the stylized facts of finan-
cial series. In particular, heavy tail distributions and volatility clustering. However, the methods
described below consider both facts.

2.2. Asymptotic Hill estimator. This method uses the point estimator of a quantile by Chan,
Deng, Peng, and Xia [2007]. By using an Extreme Value Theory approach they showed that this
estimator is asymptotically normally distributed.

Suppose the returns follow an AR(P)−GARCH(p,q) model, namely,

rt = µ +
P

∑
i=1

φirt−i + εt (2)

σ
2
t = c+

p

∑
i=1

biε
2
t−i +

q

∑
i=1

aiσ
2
t−i (3)

where εt = σtzt , c < 0,bi ≥ 0,ai ≥ 0 for every i, ∑
p
i=1 bi +∑

q
i=1 ai < 1, and {zt} is a sequence of

independent identically distributed random variables with mean zero and variance one.

Therefore, the one-step ahead VaR(α) is of the form

VaR(t +1 | t)
α
= µ +

P

∑
i=1

φirt−i+1 +σt+1|tqα (4)

where qα is the α th quantile of zt+1.

Under the assumption that the tails of the distribution of zt decrease at constant rate γ , Extreme
Value Theory estimation of excesses over a given threshold can be analyzed in terms of the se-
quence {ẑt} of standardized residuals.
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Let ẑm,1 ≤ ẑm,2 ≤ ... ≤ ẑm,m be the order statistics of the m last standardized residuals ẑv, ..., ẑT ,
with v = T −m+1. Then, the Hill estimator of γ is

γ̂ =

[
1
k

k

∑
i=1

log
ẑm,m−i+1

ẑm,m−k

]−1

(5)

where k is the number of extreme observations, and ẑm,m−k can be considered as the threshold.

Hill [1975] proposes the following point estimator for qα

q̂α = (1−α)−
1
γ̂

(
k
m

) 1
γ̂

ẑm,m−k (6)

And then, the point estimator for VaR(t +1 | t)
α

is

V̂aR(t +1|t)
α
= µ̂ +

P

∑
i=1

φ̂irt−i+1 + σ̂t+1|t q̂α (7)

Chan, Deng, Peng, and Xia [2007] show that this estimator is consistent and converges in distri-
bution to a standard normal distribution

γ̂
√

k∣∣∣log
(

k
m(1−α)

)∣∣∣
[

V̂aR(t +1|t)
α

VaR(t +1 | t)
α

−1

]
d−→ N(0,1) (8)

Then, a β -level confidence interval for V̂aR(t +1|t)
α

is(
V̂aR(t +1|t)

α
exp
{

q(1−β )/2

∣∣∣∣log
(

k
m(1−α)

)∣∣∣∣/(γ̂
√

k
)}

, V̂aR(t +1|t)
α

exp
{

q(1+β )/2

∣∣∣∣log
(

k
m(1−α)

)∣∣∣∣/(γ̂
√

k
)})

(9)

2.3. Data tilting. Chan, Deng, Peng, and Xia [2007] propose to use data tilting to estimate VaR
confidence intervals. Data tilting method is a non-parametric approach which can be seen as a
generalization of the empirical likelihood methodology,1 where the observations are weighted in
order to minimize a distance function.2

Let zt and zm,m−k be defined as in section 2.2 and δt = I(ẑt ≥ ẑm,m−k). Then, this approach involves
the following steps.

First, for any fixed vector of weights w = (wv, . . . ,wT ) such that wt ≥ 0 and ∑
T
t=v wt = 1, the next

optimization problem is solved

1A complete discussion and analysis of empirical likelihood method is found in Owen [1988], Owen [1990], and
Owen [2001], among others.

2This method is useful for constructing confidence regions and one of its advantages is that it enables to compute
them allowing a certain degree of asymmetry.
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(γ̂(w), ĉ(w)) = argmax
γ,c

T

∑
t=v

wt log
((

cγ ẑ −γ−1
t

)δt
(

1− c ẑ −γ

m,m−k

)1−δt
)

(10)

This results in

γ̂(w) =
∑

T
t=vwtδt

∑
T
t=v wtδt (log ẑt − log ẑm,m−k)

(11)

ĉ(w) = ẑ γ̂(w)
m,m−k

T

∑
t=v

wtδt (12)

It is important to note that γ̂(w), ĉ(w) will be part of the constraints of data tilting optimization as
explained below.

Then, defining the distance function3 as

Dl(w) =


−m−1

∑
T
t=v log(mwt), if l = 0

∑
T
t=v wt log(mwt), if l = 1

(l(1− l))−1
(
1−m−1

∑
T
t=v(mwt)

l
)
, if l 6= 0,1

(13)

And solving for the weights to minimize this distance,

(2m)−1L(VaR(t +1 | t)α) = min
w

Dl(w) (14)

subject to

wt ≥ 0,

∑
T
t=v wt = 1, (15)

γ̂(w) log
((

VaR(t +1|t)α − µ̂t+1|t
)/

(σ̂t+1|t ẑm,m−k)
)
= log

(
∑

T
t=v wtδt/(1−α)

)
Gives the following solution after using standard Lagrange multiplier method for D1(w) 4

wt =


1
m e−1−λ1 , if δt = 0

1
m exp

{
−1−λ1 +λ2

(
log((VaR(t+1|t)α−µ̂t+1|t)

/
(σ̂t+1|t ẑm,m−k))

A2(λ1)

)
− 1

A1(λ1)

−A1(λ1)

A2
2(λ1)

log(ẑt/ẑm,m−k) log
((

VaR(t +1|t)α − µ̂t+1|t
)/

(σ̂t+1|t ẑm,m−k)
)}

, if δt = 1

(16)

where λ1 and λ2 satisfy

T

∑
t=v

wt = 1, γ̂(w) log
((

VaR(t +1|t)α − µ̂t+1|t
)/

(σ̂t+1|t ẑm,m−k)
)
= log

(
T

∑
t=v

wtδt/(1−α)

)
(17)

3This function measures the distance between the unconstraint weights and the weights given a uniform distribution
(1/m) and it is based on power divergence measures [Hall and Yao, 2003].

4Chan, Deng, Peng, and Xia [2007] claim that the distance function for l = 1 gives good robustness properties.
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and

A1(λ1) = 1− m− k
m

e−1−λ1 , A2(λ1) = A1(λ1)
log
((

VaR(t +1|t)α − µ̂t+1|t
)/

(σ̂t+1|t ẑm,m−k)
)

log(A1(λ1)/(1−α))
(18)

Under some conditions Chan, Deng, Peng, and Xia [2007] show that

L
(
VaR(t +1|t)0

α

) d→ χ
2(1) (19)

where VaR(t +1|t)0
α denotes the true value of VaR(t +1|t)α .

Finally, based on this result, the confidence interval with level β for VaR(t +1|t)0
α is

It
β
= {VaR(t +1|t)α : L(VaR(t +1|t)α)6 uβ} (20)

where uβ is the β -level critical value of χ2(1).

2.4. Subsample bootstrap. Spierdijk [2014] proposes a residual subsample bootstrap method-
ology for estimating confidence interval for VaR. She assumes that the return series follows an
ARMA-GARCH model. The procedure includes the following steps:

1. Use QML method to estimate an ARMA-GARCH model to the return series, r1, . . . ,rT .
2. Draw a l−random subsample without replacement from the standardized residuals of the pre-

vious step, z̃1, . . . , z̃l .
3. Using the estimated parameters of step-1 and z̃1, . . . , z̃l generate the bootstrap returns, r̃1, . . . , r̃l .
4. Use again QML method to estimate an ARMA-GARCH model to r̃1, . . . , r̃l
5. Compute q̃α

z as the α− sample quantile from the standardized residuals of the previous step.
6. Using the estimated parameters of step-4 and r1, . . . ,rT calculate µ̃t+1|t , σ̃t+1|t for t = 1 . . .T .
7. Calculate ṼaR(t +1|t)α = µ̃t+1|t + σ̃t+1|t q̃α

z̃ .

As a final stage, steps 1−7 are repeated B−times, resulting in ṼaR(t+1|t)α,1, . . . ,ṼaR(t+1|t)α,B.

Then, the proposed β -level confidence interval is[
ṼaR(t +1|t)α,1 +q(1−β )/2

VaR , ṼaR(t +1|t)α,1 +q(1+β )/2
VaR

]
(21)

where qx
VaR is the empirical x−quantile of

{
ṼaR(t +1|t)α,1−V̂aR(t +1|t)α , . . . ,ṼaR(t +1|t)α,B

−V̂aR(t +1|t)α

}
and V̂aR(t +1|t)α = µ̂t+1|t + σ̂t+1|t q̂α

z

3. SIMULATION EXERCISE

For this simulation exercise two processes are considered. The first one corresponds to an i.i.d.
process with expected value µ/(1−φ1) and variance c/(1−a1−b1). The second one follows an
AR(1)−GARCH(1,1) process. The parameters, described in equations (2) and (3), are initially
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set to: µ = 1,φ1 = 0.1,c = 0.1,b1 = 0.05,a1 = 0.92. The two processes are simulated with three
different distributions, normal and Student’s t with 3 and 10 degrees of freedom. Both, the number
of replications and the sample size are set in 1000 each.

The objective of these simulations is to evaluate the performance of the methodologies by com-
puting the 90% confidence intervals of the 1-step ahead VaR(99%) described in section 2. For this
purpose, coverage rates are calculated for four methods: asymptotic normality, asymptotic Hill
estimator, data tilting and subsample bootstrap.5 Coverage rates are defined as the proportion of
confidence interval replications that contain the real simulated VaR.

TABLE 1. Simulated Coverage Ratios for different AR Parameters
AR Method iid AR-GARCH

Parameters Normal t3 t10 Normal t3 t10

µ = 0
φ1 = 0

Asymptotic Normality 0.90 0.49 0.83 0.90 0.51 0.87
Asymptotic Hill 0.94 0.87 0.94 0.88 0.78 0.88
Data Tilting 0.92 0.89 0.93 0.84 0.82 0.89
Subsample Bootstrap 0.91 0.93 0.88 0.86 0.87 0.85

µ = 1
φ1 = 0.1

Asymptotic Normality 0.88 0.49 0.85 0.88 0.54 0.82
Asymptotic Hill 0.99 0.93 0.97 0.95 0.88 0.94
Data Tilting 0.90 0.90 0.92 0.87 0.86 0.88
Subsample Bootstrap 0.90 0.92 0.91 0.92 0.88 0.94

µ = 1
φ1 = 0.4

Asymptotic Normality 0.89 0.48 0.85 0.62 0.56 0.62
Asymptotic Hill 0.99 0.95 0.98 0.97 0.90 0.95
Data Tilting 0.89 0.91 0.91 0.86 0.82 0.88
Subsample Bootstrap 0.90 0.92 0.91 0.10 0.16 0.05

µ = 1
φ1 = 0.9

Asymptotic Normality 0.89 0.46 0.84 0.26 0.28 0.25
Asymptotic Hill 1.00 0.99 1.00 1.00 0.98 0.99
Data Tilting 0.90 0.89 0.91 0.85 0.81 0.87
Subsample Bootstrap 0.92 0.94 0.88 0.12 0.13 0.14

Simulated coverage rates for 90% confidence interval of one-step ahead VaR(99%). The DGP related to columns 3 through 5 (iid) is

rt
iid∼ F with mean µ/(1−φ1) and variance c/(1− b1− a1), with c = 0.1, b1 = 0.05 and a1 = 0.92, where F is normal, Student’s t with

3 degrees of freedom or Student’s t with 10 degrees of freedom. Meanwhile, the DGP related to the last three columns (AR-GARCH) is
rt = µ +φ1rt−1 + εt and σ 2

t = c+ b1ε2
t−1 + a1σ 2

t−1 with c = 0.1, b1 = 0.05 and a1 = 0.92. The standardized errors of the AR-GARCH
model are distributed as normal, Student’s t with 3 degrees of freedom and Student’s t with 10 degrees of freedom.

Tables 1, 2 and 3 show the coverage rates for different simulations. The first column of these
Tables specifies the parameter of the simulation, whereas the parameters that are not mentioned

5Following Chan, Deng, Peng, and Xia [2007] and Spierdijk [2014], k is set to 1.5(logT )2 for asymptotic Hill
estimator and data tilting B is defined as l3 = (3.5T 1/2 +2T 2/3) for subsample bootstrap, respectively.
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take the initial values described earlier. The second column indicates the method evaluated and
the rest of the columns contains the coverage rates for the two DGPs (iid and AR-GARCH) and
the three distributions used to carry out the simulations (normal, t3, t10).

Table 1 displays the simulations for a set of AR parameter values, {(µ,φ1)} = {(0,0),(1,0.1),
(1,0.4),(1,0.9)}. In Table 2, the exercise is carried out for a set of GARCH parameters {(c,b1,a1)}
= {(0.1,0.05,0.92),(0.1,0.005,0.99),(0.1,0.3,0.4)}. Finally, Table 3 reports the coverage rates
for different VaR probabilities (α = {0.90,0.95,0.99}) and various confidence interval levels
(β = {0.90,0.95,0.99}).

TABLE 2. Simulated Coverage Ratios for different GARCH Parameters
GARCH Method iid AR-GARCH

Parameters Normal t3 t10 Normal t3 t10

c = 0.1
b1 = 0.05
a1 = 0.92

Asymptotic Normality 0.88 0.50 0.85 0.86 0.51 0.81
Asymptotic Hill 0.98 0.93 0.97 0.95 0.87 0.94
Data Tilting 0.90 0.90 0.92 0.87 0.86 0.88
Subsample Bootstrap 0.90 0.92 0.91 0.92 0.88 0.94

c = 0.1
b1 = 0.005
a1 = 0.99

Asymptotic Normality 0.89 0.50 0.82 0.87 0.51 0.88
Asymptotic Hill 0.96 0.89 0.94 0.95 0.86 0.93
Data Tilting 0.89 0.90 0.93 0.89 0.85 0.85
Subsample Bootstrap 0.91 0.92 0.89 0.94 0.91 0.92

c = 0.1
b1 = 0.3
a1 = 0.5

Asymptotic Normality 0.89 0.49 0.84 0.55 0.39 0.53
Asymptotic Hill 1.00 0.98 1.00 0.99 0.94 0.97
Data Tilting 0.88 0.90 0.91 0.84 0.83 0.86
Subsample Bootstrap 0.86 0.93 0.89 0.48 0.66 0.63

Simulated coverage rates for 90% confidence interval of one-step ahead VaR(99%) . The DGP related to columns 3 through 5 (iid) is rt
iid∼F

with mean µ/(1−φ1) and variance c/(1−b1−a1), with µ = 1 and φ1 = 0.1, where F is normal, Student’s t with 3 degrees of freedom or
Student’s t with 10 degrees of freedom. Meanwhile, the DGP related to the last three columns (AR-GARCH) is rt = µ +φ1rt−1 + εt and
σ 2

t = c+b1ε2
t−1 +a1σ 2

t−1 with µ = 1 and φ1 = 0.1. The standardized errors of the AR-GARCH model are distributed as normal, Student’s
t with 3 degrees of freedom and Student’s t with 10 degrees of freedom.

For the iid cases in Table 1, simulations show that the four methodologies perform adequately
with the exception of asymptotic normality method at a Student’s t distribution with 3 degrees of
freedom, as well as the asymptotic Hill estimator which overestimates its coverage ratios getting
too close to the unity under high unconditional expected value of the series. For the AR-GARCH
simulations, coverage rates are generally close to the expected values. Nevertheless, compared
with iid cases, most of the coverage rates decrease, which means a deterioration of the confidence
interval performance, with the exception of the Hill estimator whose decrease means a better per-
formance due to the overestimation of its intervals. Then, high mean persistence affects negatively
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the performance of both asymptotic normality and subsample bootstrap confidence intervals, while
data tilting intervals performance remains the same under higher persistence.

The failure to handle heavy-tailed distributions of asymptotic normality method is again confirmed
by results in Table 2. Additionally, the performance of the methods are negatively affected by low
variance persistence. In particular, asymptotic normality, subsample bootstrap and, in a smaller
magnitude, data tilting underestimate their coverage ratios, while the Hill estimator intervals tend
to overestimate coverage ratios in a higher magnitude.

TABLE 3. Simulated Coverage Ratios for different VaR and Confidence Levels
VaR(α) Method iid AR-GARCH
C.I.(β ) Normal t3 t10 Normal t3 t10

α = 0.99
β = 0.90

Asymptotic Normality 0.90 0.47 0.83 0.90 0.54 0.85
Asymptotic Hill 0.98 0.91 0.97 0.96 0.87 0.94
Data Tilting 0.90 0.90 0.92 0.87 0.86 0.88
Subsample Bootstrap 0.90 0.92 0.91 0.92 0.88 0.94

α = 0.95
β = 0.90

Asymptotic Normality 0.88 0.59 0.84 0.88 0.62 0.85
Asymptotic Hill 0.36 0.43 0.36 0.31 0.40 0.34
Data Tilting 0.59 0.73 0.61 0.55 0.60 0.58
Subsample Bootstrap 0.95 0.95 0.95 0.60 0.47 0.60

α = 0.90
β = 0.90

Asymptotic Normality 0.89 0.66 0.84 0.83 0.66 0.82
Asymptotic Hill 0.26 0.41 0.27 0.28 0.34 0.28
Data Tilting 0.64 0.73 0.74 0.65 0.64 0.66
Subsample Bootstrap 0.95 0.95 0.96 0.46 0.34 0.47

α = 0.99
β = 0.95

Asymptotic Normality 0.94 0.57 0.89 0.93 0.61 0.89
Asymptotic Hill 0.99 0.97 0.99 0.97 0.95 0.98
Data Tilting 0.95 0.94 0.96 0.93 0.92 0.94
Subsample Bootstrap 0.96 0.96 0.95 0.96 0.93 0.97

α = 0.99
β = 0.99

Asymptotic Normality 0.98 0.70 0.96 0.99 0.75 0.96
Asymptotic Hill 1.00 0.99 1.00 1.00 0.96 0.99
Data Tilting 0.99 0.98 1.00 0.98 0.96 0.99
Subsample Bootstrap 0.99 0.99 0.99 0.99 0.98 0.99

Simulated coverage rates for β confidence interval of one-step ahead VaR(α) . The DGP related to columns 3 through 5 (iid) is rt
iid∼ F

with mean µ/(1−φ1) and variance c/(1−b1−a1), with µ = 1, φ1 = 0.1, c = 0.1, b1 = 0.05 and a1 = 0.92, where F is normal, Student’s t
with 3 degrees of freedom or Student’s t with 10 degrees of freedom. Meanwhile, the DGP related to the last three columns (AR-GARCH)
is rt = µ +φ1rt−1 + εt and σ 2

t = c+b1ε2
t−1 +a1σ 2

t−1 with µ = 1, φ1 = 0.1, c = 0.1, b1 = 0.05 and a1 = 0.92. The standardized errors of
the AR-GARCH model are distributed as normal, Student’s t with 3 degrees of freedom and Student’s t with 10 degrees of freedom.
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In general, the conclusions of Tables 1 and 2 remain unchanged when considering VaR(99%) at
95% and 99% confidence intervals, as shown in Table 3. However, calculating VaR for lower
probability levels (VaR(90%) and VaR(95%)) severely decreases the intervals performance. For
the AR−GARCH series Hill estimator, data tilting and subsample bootstrap are not capable to
reach a coverage rate higher than 0.70. These results lead to conclude that the considered method-
ologies are only valid for high quantiles (VaR(99%)).

Tables 4, 5 and 6 in Appendix A present the coverage ratios for the same exercises using a sample
size of 500 observations instead of 1000. As expected, most of the confidence intervals worsen
their performance. Particularly, the data tilting method has a remarkable decrease of the coverage
ratio compared to the other three methodologies. Nonetheless, previous conclusions remain sub-
stantively unaffected.

To sum up, as presumed, the asymptotic normality method has a bad performance for most of
the simulations as well as a poor capacity to capture mean and variance dynamics specially for
heavy-tailed distributions. More important, the coverage rates of the asymptotic Hill estimator,
data tilting and subsample bootstrap methods are close to the expected values for VaR(99%).
Furthermore, these three methods present their best performance when considering the scenarios
exhibited by financial time series, being these heavy-tailed distributions, high variance persistence
and low mean persistence. On the contrary, none of the studied methods appears to estimate
properly the confidence intervals for a VaR with non-extreme probability levels, as simulation
results show for VaR(90%) and VaR(95%).

4. EMPIRICAL EXERCISE

This section contains an empirical application of the four methods for estimating VaR confidence
intervals presented in section 2. For this purpose, the negative returns of the stock market indexes
of G7 countries from September 9, 2010 to October 10, 2015 are used, resulting in a sample sizes
around 1250 observations. The return series and the normal QQ-plot are presented in Figures 1
and 2, respectively. These graphs exhibit the classic stylized facts for financial time series, i.e.
volatility clustering and heavy-tailed behavior.

In order to evaluate the performance of these methods, 90% confidence intervals for one step
ahead VaR(95%) and VaR(99%) are computed. For this purpose, VaR is initially computed by
fitting an AR(p)-GARCH(1,1) model using the available information up to September 25, 2014.
Thereafter, the information set is augmented by one observation at a time, for which a new AR(p)-
GARCH(1,1) model is fitted. This procedure is implemented recursively, 250 times, until the
information set reaches the period September 22, 2015.6 7

6The standardized residuals and some specification tests associated to the AR(p)-GARCH(1,1) model for the whole
sample are presented in Figure 7 and Tables 7, 8 and 9 of Appendix B, respectively. The results of these tests show no
evidence of misspecification

7Table 10 in Appendix C show the backtesting results for VaR series computed using the four methodologies for
the G7 countries. Following Leccadito, Boffelli, and Urga [2014], the generalized Christoffersen [2011] backtesting
tests are implemented jointly for both VaR(95%) and VaR(99%). The null hypotheses of the three tests (independence,
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FIGURE 1. Negative returns of G7 stock market indexes
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FIGURE 2. QQ-plot of G7 stock market indexes
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unconditional coverage and conditional coverage) are not rejected for almost all of the countries and methods. Nev-
ertheless, it is important to note that asymptotic normality method is the only one that rejects conditional coverage
hypothesis for some countries, while the other three methodologies perform properly since the Christoffersen’s tests are
not rejected.
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Figures 3, 4, 5 and 6 display the (negative) returns of G7 stock market indexes from October,
2014 to October, 2015; the 250 estimates of 1-step ahead VaR (95%) and VaR(99%), and the
90% confidence intervals computed for each method. As a result, it can be appreciated that for
normally distributed scenarios, the confidence intervals are wider than those computed using the
other techniques. This method also fails to enhance the volatility dynamics of the return series,
mainly because this method assumes that time series is independent and identically normal dis-
tributed. Meanwhile, the other three methodologies do model this feature.

For the case of VaR(95%) in Figures 8, 9, 10 and 11 in Appendix D, the characteristics of the
asymptotic normality intervals remain, but for the other three methodologies, there are important
differences. The confidence intervals for both, asymptotic Hill estimation and data tilting, are
extremely narrow. This implies a more efficient estimation of the confidence intervals; however,
they might be inconsistent since they show a low coverage rate in the simulation exercise. On the
other hand, subsample bootstrap intervals are not as narrow as the other two confidence interval
methods.

In the case of VaR(99%), the Hill estimator and data tilting confidence intervals are quite similar.
This result is expected since both methods are based on QML estimation with extreme value
theory. For subsample bootstrap techniques, the confidence intervals obtained are wider (less
efficient) than the former two. However, Spierdijk [2014] states that the subsample bootstrap
confidence interval width is driven by the method robustness to the lack of asymptotic normality.

FIGURE 3. 90% confidence intervals for VaR(99%) of G7 stock market indexes
negative returns using Asymptotic Normality
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FIGURE 4. 90% confidence intervals for VaR(99%) of G7 stock market indexes
negative returns using Asymptotic Hill Estimator
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FIGURE 5. 90% confidence intervals for VaR(99%) of G7 stock market indexes
negative returns using Data Tilting
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FIGURE 6. 90% confidence intervals for VaR(99%) of G7 stock market indexes
negative returns using Subsample Bootstrap
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5. CONCLUDING REMARKS

This paper evaluates the performance of different methodologies to estimate the confidence in-
tervals for Value at Risk by using Monte Carlo exercises. The methods evaluated are asymptotic
normality, asymptotic Hill estimator, data tilting and subsample bootstrap. The simulation study
relies on coverage rates as a measure of performance to find the robustness of the methodologies
under some scenarios, such as, mean and variance persistence, VaR probability levels, confidence
interval levels and probability distributions.

In general, the subsample bootstrap method presents the best performance of the four evaluated
methodologies. As expected, the asymptotic normality approach yields the worst coverage rates,
since this assumes iid dynamics. It is also important to note that the coverage rates of the four
methods studied present a slight decrease when dealing with heavy-tail distributions. Finally, the
simulation results show that the four methods that were considered are only valid for high quan-
tiles. In particular, there is a good performance at VaR(99%), in terms of coverage rates, and bad
performance for VaR(95%) and VaR(90%).

The empirical exercise confirms the main results found in the simulations. VaR(95%), VaR(99%)
and their confidence intervals obtained by the asymptotic normality method do not capture the
volatility dynamics of the analyzed series. Additionally, these intervals are considerably wider
than the rest of the studied methodologies. On the other hand, confidence intervals for VaR(95%)
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computed by data tilting, asymptotic Hill estimator and subsample bootstrap are extremely nar-
row, which could indicate inconsistency in the estimations, as shown in the simulation exercises.
Finally, the VaR(99%) confidence intervals for these three methods present similar dynamics. This
fact suggests that any of them can be used for measuring the uncertainty of VaR for the returns of
the G7 stock market indexes.
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APPENDIX A. SIMULATED COVERAGE RATIOS FOR A SMALL SAMPLE SIZE

TABLE 4. Simulated Coverage Ratios for different AR Parameters and a Sample
Size of 500 Observations
AR Method iid AR-GARCH

Parameters Normal t3 t10 Normal t3 t10

µ = 0
φ1 = 0

Asymptotic Normality 0.88 0.48 0.84 0.91 0.53 0.85
Asymptotic Hill 0.85 0.90 0.88 0.79 0.83 0.85
Data Tilting 0.67 0.80 0.69 0.67 0.78 0.59
Subsample Bootstrap 0.80 0.84 0.83 0.77 0.77 0.75

µ = 1
φ1 = 0.1

Asymptotic Normality 0.89 0.49 0.84 0.87 0.52 0.83
Asymptotic Hill 0.96 0.94 0.96 0.90 0.89 0.92
Data Tilting 0.66 0.85 0.78 0.65 0.85 0.67
Subsample Bootstrap 0.83 0.84 0.82 0.88 0.79 0.88

µ = 1
φ1 = 0.4

Asymptotic Normality 0.90 0.47 0.84 0.64 0.57 0.64
Asymptotic Hill 0.98 0.98 0.98 0.94 0.94 0.95
Data Tilting 0.66 0.90 0.73 0.67 0.79 0.64
Subsample Bootstrap 0.82 0.84 0.82 0.07 0.30 0.16

µ = 1
φ1 = 0.9

Asymptotic Normality 0.90 0.49 0.84 0.24 0.27 0.27
Asymptotic Hill 1.00 1.00 1.00 1.00 0.98 1.00
Data Tilting 0.69 0.79 0.73 0.63 0.78 0.67
Subsample Bootstrap 0.83 0.84 0.82 0.04 0.04 0.05

Simulated coverage rates for 90% confidence interval of one-step ahead VaR(99%). The DGP related to columns 3 through 5 (iid) is

rt
iid∼ F with mean µ/(1−φ1) and variance c/(1− b1− a1), with c = 0.1, b1 = 0.05 and a1 = 0.92, where F is normal, Student’s t with

3 degrees of freedom or Student’s t with 10 degrees of freedom. Meanwhile, the DGP related to the last three columns (AR-GARCH) is
rt = µ +φ1rt−1 + εt and σ 2

t = c+ b1ε2
t−1 + a1σ 2

t−1 with c = 0.1, b1 = 0.05 and a1 = 0.92. The standardized errors of the AR-GARCH
model are distributed as normal, Student’s t with 3 degrees of freedom and Student’s t with 10 degrees of freedom.
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TABLE 5. Simulated Coverage Ratios for different GARCH Parameters and a
Sample Size of 500 Observations

GARCH Method iid AR-GARCH
Parameters Normal t3 t10 Normal t3 t10

c = 0.1
b1 = 0.05
a1 = 0.92

Asymptotic Normality 0.89 0.49 0.84 0.87 0.52 0.83
Asymptotic Hill 0.96 0.94 0.96 0.90 0.89 0.92
Data Tilting 0.66 0.85 0.78 0.65 0.85 0.67
Subsample Bootstrap 0.83 0.84 0.82 0.88 0.79 0.88

c = 0.1
b1 = 0.005
a1 = 0.99

Asymptotic Normality 0.88 0.49 0.82 0.87 0.53 0.84
Asymptotic Hill 0.88 0.93 0.91 0.91 0.93 0.93
Data Tilting 0.73 0.86 0.70 0.62 0.83 0.63
Subsample Bootstrap 0.84 0.83 0.82 0.88 0.82 0.83

c = 0.1
b1 = 0.3
a1 = 0.5

Asymptotic Normality 0.89 0.50 0.85 0.57 0.40 0.52
Asymptotic Hill 1.00 0.99 1.00 1.00 0.99 1.00
Data Tilting 0.62 0.78 0.65 0.67 0.74 0.60
Subsample Bootstrap 0.78 0.81 0.78 0.62 0.66 0.68

Simulated coverage rates for 90% confidence interval of one-step ahead VaR(99%) . The DGP related to columns 3 through 5 (iid) is rt
iid∼F

with mean µ/(1−φ1) and variance c/(1−b1−a1), with µ = 1 and φ1 = 0.1, where F is normal, Student’s t with 3 degrees of freedom or
Student’s t with 10 degrees of freedom. Meanwhile, the DGP related to the last three columns (AR-GARCH) is rt = µ +φ1rt−1 + εt and
σ 2

t = c+b1ε2
t−1 +a1σ 2

t−1 with µ = 1 and φ1 = 0.1. The standardized errors of the AR-GARCH model are distributed as normal, Student’s
t with 3 degrees of freedom and Student’s t with 10 degrees of freedom.
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TABLE 6. Simulated Coverage Ratios for different VaR and Confidence Levels,
and a Sample Size of 500 Observations

VaR(α) Method iid AR-GARCH
C.I.(β ) Normal t3 t10 Normal t3 t10

α = 0.99
β = 0.90

Asymptotic Normality 0.89 0.49 0.84 0.87 0.52 0.83
Asymptotic Hill 0.96 0.94 0.96 0.90 0.89 0.92
Data Tilting 0.66 0.85 0.78 0.65 0.85 0.67
Subsample Bootstrap 0.83 0.84 0.82 0.88 0.79 0.88

α = 0.95
β = 0.90

Asymptotic Normality 0.88 0.60 0.84 0.85 0.61 0.83
Asymptotic Hill 0.63 0.72 0.66 0.55 0.67 0.63
Data Tilting 0.67 0.79 0.71 0.65 0.57 0.55
Subsample Bootstrap 0.91 0.91 0.92 0.68 0.53 0.69

α = 0.90
β = 0.90

Asymptotic Normality 0.89 0.63 0.86 0.87 0.67 0.83
Asymptotic Hill 0.14 0.21 0.19 0.14 0.16 0.14
Data Tilting 0.69 0.78 0.63 0.57 0.62 0.71
Subsample Bootstrap 0.91 0.92 0.92 0.58 0.43 0.56

α = 0.99
β = 0.95

Asymptotic Normality 0.94 0.56 0.90 0.93 0.58 0.91
Asymptotic Hill 0.99 0.98 0.99 0.97 0.95 0.97
Data Tilting 0.76 0.89 0.83 0.65 0.89 0.76
Subsample Bootstrap 0.89 0.91 0.89 0.94 0.85 0.93

α = 0.99
β = 0.99

Asymptotic Normality 0.98 0.69 0.96 0.98 0.76 0.96
Asymptotic Hill 1.00 0.98 1.00 0.99 0.99 1.00
Data Tilting 0.92 0.97 0.94 0.90 0.94 0.84
Subsample Bootstrap 0.96 0.96 0.96 0.97 0.93 0.98

Simulated coverage rates for β confidence interval of one-step ahead VaR(α) . The DGP related to columns 3 through 5 (iid) is rt
iid∼ F

with mean µ/(1−φ1) and variance c/(1−b1−a1), with µ = 1, φ1 = 0.1, c = 0.1, b1 = 0.05 and a1 = 0.92, where F is normal, Student’s t
with 3 degrees of freedom or Student’s t with 10 degrees of freedom. Meanwhile, the DGP related to the last three columns (AR-GARCH)
is rt = µ +φ1rt−1 + εt and σ 2

t = c+b1ε2
t−1 +a1σ 2

t−1 with µ = 1, φ1 = 0.1, c = 0.1, b1 = 0.05 and a1 = 0.92. The standardized errors of
the AR-GARCH model are distributed as normal, Student’s t with 3 degrees of freedom and Student’s t with 10 degrees of freedom.
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APPENDIX B. RESIDUALS AND DIAGNOSTIC TESTS OF THE AR-GARCH MODEL FOR G7
STOCK MARKET INDEXES RETURNS

FIGURE 7. Standardized residuals of the AR-GARCH model for G7 stock market
indexes negative returns
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TABLE 7. Sign Bias Test

Canada France Germany Great Britain Italy Japan USA
t-stat p-value t-stat p-value t-stat p-value t-stat p-value t-stat p-value t-stat p-value t-stat p-value

Sign Bias 1.12 (0.26) 0.11 (0.91) 0.57 (0.57) 0.60 (0.55) 0.01 (0.99) 1.27 (0.20) 2.14 (0.03)
Negative Sign Bias 1.39 (0.17) 2.35 (0.02) 2.25 (0.02) 2.08 (0.04) 2.25 (0.02) 1.84 (0.07) 1.44 (0.15)
Positive Sign Bias 0.46 (0.64) 1.16 (0.25) 1.35 (0.18) 1.70 (0.09) 1.08 (0.28) 2.05 (0.04) 0.96 (0.34)

TABLE 8. Ljung-Box Test for the Standardized Residuals

Canada France Germany Great Britain Italy Japan USA
χ2-stat p-value χ2-stat p-value χ2-stat p-value χ2-stat p-value χ2-stat p-value χ2-stat p-value χ2-stat p-value

20 11.60 (0.93) 14.79 (0.79) 14.02 (0.83) 11.53 (0.93) 16.57 (0.68) 21.76 (0.35) 18.97 (0.52)
50 48.87 (0.52) 42.01 (0.78) 36.46 (0.92) 41.10 (0.81) 49.78 (0.48) 42.97 (0.75) 51.12 (0.43)
100 79.95 (0.93) 99.26 (0.50) 89.21 (0.77) 106.82 (0.30) 88.21 (0.79) 74.24 (0.97) 103.56 (0.38)
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TABLE 9. Ljung-Box Test for the Squared Standardized Residuals

Canada France Germany Great Britain Italy Japan USA
χ2-stat p-value χ2-stat p-value χ2-stat p-value χ2-stat p-value χ2-stat p-value χ2-stat p-value χ2-stat p-value

20 29.59 (0.08) 18.71 (0.54) 12.80 (0.89) 17.46 (0.62) 22.69 (0.30) 32.60 (0.04) 28.72 (0.09)
50 63.29 (0.10) 32.54 (0.97) 36.92 (0.92) 54.79 (0.30) 51.53 (0.41) 61.5 (0.13) 49.77 (0.48)
100 116.11 (0.13) 88.36 (0.79) 81.41 (0.91) 130.35 (0.02) 92.38 (0.69) 98.22 (0.53) 93.27 (0.67)

APPENDIX C. BACKTESTING TESTS

TABLE 10. Leccadito Test for VaR(95%) and VaR(99%)

Independence Unconditional Coverage Conditional Coverage
χ2

1 -stat p-value χ2
1 -stat p-value χ2

2 -stat p-value

Asymptotic Normality
Canada 5.93 (0.43) 10.39 (0.01) 16.32 (0.01)
France 7.74 (0.26) 3.69 (0.16) 11.43 (0.08)
Germany 15.33 (0.02) 5.50 (0.06) 20.83 (0.00)
Great Britain 8.70 (0.19) 5.64 (0.06) 14.34 (0.03)
Italy 4.08 (0.67) 3.64 (0.16) 7.71 (0.26)
Japan 4.69 (0.58) 16.73 (0.00) 21.42 (0.00)
USA 6.48 (0.37) 9.49 (0.01) 15.97 (0.01)

Asymptotic Hill
Canada 4.92 (0.55) 5.11 (0.08) 10.03 (0.12)
France 5.33 (0.50) 0.50 (0.78) 5.83 (0.44)
Germany 6.01 (0.42) 3.28 (0.19) 9.29 (0.16)
Great Britain 4.37 (0.63) 2.04 (0.36) 6.41 (0.38)
Italy 3.69 (0.72) 0.20 (0.90) 3.89 (0.69)
Japan 4.00 (0.68) 7.74 (0.02) 11.73 (0.07)
USA 6.40 (0.38) 1.96 (0.38) 8.36 (0.21)

Data Tiling
Canada 4.82 (0.57) 4.04 (0.13) 8.86 (0.18)
France 5.33 (0.50) 0.50 (0.78) 5.83 (0.44)
Germany 7.67 (0.26) 1.58 (0.45) 9.25 (0.16)
Great Britain 4.88 (0.56) 2.08 (0.35) 6.96 (0.32)
Italy 3.75 (0.71) 0.50 (0.78) 4.25 (0.64)
Japan 8.29 (0.22) 3.10 (0.21) 11.40 (0.08)
USA 6.40 (0.38) 1.96 (0.38) 8.36 (0.21)

Subsample Bootstrap
Canada 4.10 (0.66) 2.88 (0.24) 6.98 (0.32)
France 5.33 (0.50) 0.50 (0.78) 5.83 (0.44)
Germany 7.67 (0.26) 1.58 (0.45) 9.25 (0.16)
Great Britain 2.96 (0.81) 6.43 (0.04) 9.39 (0.15)
Italy 3.69 (0.72) 0.20 (0.90) 3.89 (0.69)
Japan 6.65 (0.35) 2.88 (0.24) 9.53 (0.15)
USA 6.40 (0.38) 1.96 (0.38) 8.36 (0.21)
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APPENDIX D. 90% CONFIDENCE INTERVALS FOR VaR(95%)

FIGURE 8. 90% confidence intervals for VaR(95%) of G7 stock market indexes
negative returns using Asymptotic Normality
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FIGURE 9. 90% confidence intervals for VaR(95%) of G7 stock market indexes
negative returns using Asymptotic Hill Estimator
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FIGURE 10. 90% confidence intervals for VaR(95%) of G7 stock market indexes
negative returns using Data Tilting
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FIGURE 11. 90% confidence intervals for VaR(95%) of G7 stock market indexes
negative returns using Subsample Bootstrap
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