
cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina
Modular scale-free architecture of Colombian financial networks: Evidence and challenges with financial stability in view

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina
Por: Carlos LeónRon J. Berndsen

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina
Núm. 799        2013

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina

cmunozsa
Texto escrito a máquina



 

Modular scale-free architecture of Colombian financial networks:  
Evidence and challenges with financial stability in view1 

 
 

Carlos León2 
Banco de la República 

Ron J. Berndsen3 
Tilburg University and  

De Nederlandsche Bank 
 
 
  

Abstract 

Scale-free (inhomogeneous) connective structures with modular (highly clustered) 

hierarchies are ubiquitous in real–world networks. Evidence from the main Colombian 

payment and settlement systems verifies that local financial networks have self-organized 

into a modular scale-free architecture that favors everyday robustness and performance in 

exchange for rare episodes of fragility but rapid evolution.  

Results provide new elements for understanding and modeling the formation and structure of 

financial networks, and suggest new insights and challenges for authorities contributing to 

their stability. For instance, (i) the observed architecture suggests that financial systems are 

complex adaptive systems; (ii) complex adaptive features invalidate traditional reductionist 

assumptions for modeling financial systems (e.g. homogeneity, normality, static equilibrium, 

linearity); (iii) the observed modular scale-free architecture tends to limit cascades and 

isolate feedbacks; and (iv) with financial stability in view, authorities should understand and 

take advantage of the existing architecture by means of designing and implementing macro-

prudential regulation and system-calibrated requirements. Yet, the quest for discovering, 

explaining and handling the emerging structure of financial systems is an enduring task. 
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1. Introduction 

Nature is plenty of complex adaptive systems. These systems result from the intricate and 

dynamic interaction between numerous and non-linearly-behaved participants (i.e. the living 

organisms) and their environment (i.e. the nonliving components). Due to their complexity 

and non-linear dynamics, understanding and analyzing biological systems (e.g. metabolic, 

genetic, neural) has demanded appropriate analytical tools, where the fundamental approach 

consists of analyzing the system as a whole, as a living organism, and not merely as the simple 

sum of the organisms that compose it.  

Understanding and analyzing biological systems has evolved through time. As acknowledged 

by Von Bertalanffy (1950), science used to explain phenomena by reducing them to an 

interplay of elementary units which could be investigated independently of each other, whereas 

contemporary modern science, irrespective of the object of study, deal with what is rather 

vaguely termed “wholeness”.  

Akin to nature’s systems, most human activities involve intricate and dynamic interactions 

between human beings or their creations (e.g. websites, academic papers, cities, countries, 

firms). Among many manmade systems, financial networks may be regarded as particularly 

convoluted, active and critical. As pointed out by Sornette (2003), financial markets constitute 

one among many other systems exhibiting a complex organization and dynamics, where a large 

number of mutually interacting parts […] self-organize their internal structure and dynamics 

with novel and sometimes surprising macroscopic (“emergent”) properties. 

Despite the paradigm change from reductionism to wholeness took place nearly a century ago, 

financial systems’ analysis has embraced such change rather recently. Traditional 

(reductionist) understanding of financial systems has relied on the individual understanding 

of financial firms, which has been known as the micro-prudential dimension of financial 

stability (De Nicoló et al., 2012; Hanson et al., 2011; Clement, 2010; Borio, 2003; Crocket, 

2000;), where, as highlighted by Crockett (2000), financial stability is ensured as long as each 

and every institution is sound. Despite the term macro-prudential is not new4, the analysis of 

financial systems as a whole appeared recently, mainly after the crisis that begun around 

2007 (henceforth referred as “the crisis”), where the perspective of financial authorities is 

system-calibrated, rather from that of the safety and soundness of individual institutions on a 

stand-alone basis (Borio, 2010). 

In this sense, as stressed by Barabási (2003), economic theory has considered agents as 

interacting not with each other but rather with “the market”, a mythical entity (e.g. Adam 

Smith’s invisible hand) that mediates all economic transactions. However, in reality, the 

market is nothing but a weighted and directed network, with economic agents as nodes, and 

with interactions (i.e. transactions, exposures) as links among them; therefore, the structure 

                                                      
4 Clement (2010) suggests that the term first appeared at a meeting of the BIS’ Cooke Committee (the forerunner of 
the Basel Committee on Banking Supervision) in June 1979.  
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and evolution of this weighted and directed network determine the outcome of all 

macroeconomic processes.  

Accordingly, a macro-prudential analytical approach to financial systems should begin by 

recognizing that they are adaptive nonlinear networks (Holland, 1998) or complex adaptive 

systems.5 Anderson (1999) suggests a description of complex adaptive systems by stating 

their four key elements:  

a. There is a cognitive structure (i.e. schema) that determines agents’ actions (agents 

with schemata);6 

b. The behavior of an agent depends on the behavior –or state- of some subset of all 

agents in the system, where the presence of feedback loops among agents result in 

self-organization by means of nonlinear interactions such as amplification and 

crowding out of agents’ behavior (self-organizing networks); 

c. Each agent’s payoff function depends on choices that the other agents make, where a 

dynamic equilibrium prevails such that small changes in behavior can have small, 

medium or large impacts on the system as a whole, according to a power-law 

(coevolution to the edge of chaos);7 

d. Systems evolve based on the entry, exit and transformation of agents or schemata 

(recombination and system evolution).   

It is because of these features that the building blocks of traditional economics, such as 

homogeneity and symmetry assumptions (Miller and Page, 2007); fixed rational agents that 

operate in a linear, static, statistically predictable environment (Holland, 1998); or the 

introduction of ceteris paribus conditions, summarizing or ignoring feedback loops, and making 

assumptions about the order of magnitude of counteracting effects (Berndsen, 1992), explicitly 

contradict the true nature of financial systems. Similarly, Anderson (1999) states that complex 

systems resist simple reductionist analysis –such as those typical of mainstream economic 

analysis- because interconnections and feedback loops preclude holding some subsystems 

constant in order to study others in isolation. This explains some of the limitations of 

traditional economic models for understanding and analyzing financial systems.  

It is useful to synthesize the definition of complex adaptive systems even further by means of 

etymology. “System” consists of interconnected components that work together (Anderson, 

1999); they are “complex” due to the highly nonlinear interactions within (Miller and Page, 

2007), which result from optimizing, predicting and anticipating –but potentially confused- 

                                                      
5 Complex adaptive systems are equivalent to adaptive nonlinear networks since nonlinearity results in complexity 
(Miller and Page, 2007), and a network is a representation of the interactions between the parts of a system 
(Newman, 2010). Under the adaptive nonlinear networks term Holland (1998) states that “the economy” is an 
example of a complex adaptive system.      
6 Each schema provides, in its own way, some combination of description, prediction, and prescriptions for action 
(Gell-Mann, 1994); it is a highly compressed description of the identified regularities in the observed system (Gell-
Mann, 1992). Schemata (also referred as models, theories or blueprints) may compete with each other, mutate, 
recombine, and there may be a selective process based on their success. The existence of schemata is what 
distinguishes adaptive from evolving yet non-adaptive systems (e.g. galaxies), which tend to rely on fixed rules.  
7 In this sense, complex adaptive systems do not reach ordinary equilibrium (i.e. small changes are self-corrective) 
or chaotic (i.e. small changes are self-reinforcing) states. Complex adaptive systems lying between equilibrium and 
chaos (i.e. small changes yield power-law distributed impacts) result in a balance between flexibility and stability 
that allows for continuously evolving systems.    
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participants; and they are “adaptive” because agents coevolve with one another, adapting to 

its environment by striving to increase a payoff or fitness function over time (Holland, 1998). 

Based on a similar synthetized definition, Haldane (2009) concludes that financial systems 

should be regarded as complex adaptive systems.  

Furthermore, not only financial systems may be characterized as complex adaptive systems, 

but they also share a common feature with the vast majority of real-world systems covered by 

network theory literature: they tend to be scale-free networks. First documented by Barabasi 

and Albert (1999), the ubiquity of scale-free networks refers to a broad spectrum of networks 

displaying degree (i.e. connections) distributions approximating a power-law, where the 

number of connections is distributed heterogeneously, with a few heavily connected 

participants and many poorly connected participants; due to the inhomogeneity there is no 

typical participant in the network, thus it has no scale (i.e. it is scale-free or scale-invariant).  

Such type of distributions contradicts the original homogeneous or exponential networks 

models first developed by Solomonoff and Rapoport (1951) and Erdös and Rényi (1960), 

where those models assumed that connections were homogenously distributed between 

participants due to the assumption of exponentially decaying tail processes such as the 

Poisson distribution.8 Divergence from exponentially decaying tail processes has significant 

consequences for understanding networks and their underlying systems: inhomogeneity 

results in the emergence of some key structural features of real-world networks that may 

significantly govern the efficiency and stability of the network, and may also explain the 

evolutionary process behind their formation.   

Based on the General Theory of Systems (Von Bertalanffy, 1972 & 1950), financial systems 

being complex adaptive and scale-free is not casual, but may be related to the existence of 

“isomorphic laws” or “system laws”, where different systems follow laws that are formally 

identical but pertain to quite different phenomena or even appear in different disciplines. In the 

same direction, Bak (1996) points out that there are a number of ubiquitous empirical 

observations across the individual sciences that cannot be understood within the set of 

references developed within the specific scientific domains, such as power-laws.   

Financial networks being scale-free, with connections obeying a power-law, is analogous to 

the law of allometric growth used in biology and demography; to Pareto’s law of wealth 

distribution; to Hurst’s law in hydrology; to the Gutenberg-Richter law of earthquakes and to 

the fractal nature of financial time-series’ returns. These and other analogies in the underlying 

probability mechanisms following a power-law have been extensively documented (e.g. Taleb, 

2007; Mandelbrot and Hudson, 2004; Bak, 1996; Peak and Frame, 1994; Von Bertalanffy, 

1972 & 1950; Mandelbrot, 1963; Simon, 1955).          

Financial networks displaying scale-free structures was documented by the time of the crisis 

(e.g. Pröpper et al., 2008; May et al., 2008; Cepeda, 2008; Renault et al. (2007) and even well-

before its arrival (e.g. Soramäki et al., 2006; Inaoka et al., 2004; Boss et al., 2004). However, it 

is customary and widespread to –explicitly or implicitly- assume that homogeneous networks 

describe financial systems (e.g. Gai and Kapadia, 2010; Nier et al., 2008; Iori et al., 2006; 

                                                      
8 Consequently homogeneous networks models are commonly referred as “Poisson random graph”.  
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Cifuentes et al., 2004; Allen and Gale, 2000; Freixas et al., 2000), where most works converge 

to diversification arguments that suggest a direct relation between connectedness and 

stability.  

After the crisis numerous efforts have aimed at (i) identifying the conditions upon 

connectedness does not convey stability under homogeneous networks (e.g.  Battiston et al., 

2012 & 2009; Haldane and May, 2011; May and Arinaminpathy, 2010; Gai and Kapadia,  2010) 

and (ii) identifying networks’ observed connectedness structure and analyzing the resulting 

impact in the efficiency and stability of the system, as in León and Pérez (2013), Martínez-

Jaramillo et al. (2012), Cont et al. (2012), Markose et al. (2012), Markose (2012), 

Arinaminpathy et al. (2012), Fricke and Lux (2012), Craig and von Peter (2010), Schweitzer et 

al. (2009), Haldane (2009), Bech and Atalay (2008). 

Whenever financial networks’ observed connectedness structure is inhomogeneous (e.g. 

scale-free) the issue of the resiliency of the system arises. In those networks, where most 

participants have very few connections and very few have most connections, the extraction or 

failure of a participant will have significantly different outcomes depending on how the 

participant is selected. When randomly selected, the effect will be negligible, and the network 

may withstand the removal of several randomly selected participants without significant 

structural changes; however, if selected because of their high connectivity, the effect of 

extracting a small number of participants may significantly affect the network’s structure. 

Therefore, a rising amount of financial literature is devoted to encouraging the usage of 

network theory metrics of importance (e.g. centrality) for identifying “super-spreaders” 

(Markose et al., 2012; Haldane and May, 2011) or systemically important participants (as in 

León and Pérez, 2013b; León and Machado, 2013; León and Murcia, 2012; Soramäki and Cook, 

2012; Lovin, 2012).        

Nevertheless, not all scale-free networks are the same. Networks with degree distributions 

approximating a power-law may display a community or modular structure as well. According 

to Newman (2003) a network displays a community structure when groups of vertices have a 

high density of edges within them, with a lower density of edges between groups. Despite the 

coincidence of power-law degree distributions and modular hierarchies in networks, the 

standard scale-free model is unable to reconcile both observed features, which has yielded a 

new type of network: a modular scale-free network (Barabási, 2003). To the best knowledge of 

the authors, modular scale-free financial networks are not well documented in related 

literature.   

Regarding data sources for building financial networks, two main sources have been used in 

the literature: (i) financial transactions (i.e. flows), and (ii) financial exposures (i.e. stocks). 

Networks of financial transactions correspond to payments (i.e. delivery of money), 

settlements (i.e. delivery of securities or currencies) or trades (i.e. exchange of buy-sell 

orders) among financial institutions, which are automatically registered and safeguarded by 

financial market infrastructures (e.g. large-value payment systems, clearing houses, securities 

settlement systems, central securities depositaries, trading platforms, trade repositories) 

whenever a transaction occurs. As highlighted by some authors (Kyriakopoulos et al., 2009; 

Uribe, 2011a,b) the information conveyed in financial transactions is particularly valuable due 
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to (i) its granularity, with informative details such as sender, recipient, amount, type of 

transaction, underlying asset, etc.9; (ii) completeness, since all financial transactions 

ineludibly involve the delivery of money or securities, or a trade; and (iii) opportunity, with 

data usually available in real-time (or with a minimal lag).  

On the other hand, financial exposures ordinarily emerge from reports prepared and 

delivered by each financial firm to the corresponding authorities (e.g. financial statements), 

where the most commonly used for building financial networks are interbank credit and 

derivatives exposures. This type of information tends to be aggregated (i.e. details of 

individual exposures, counterparties, instruments, etc. are usually unavailable) and lagged, 

and its completeness, consistency and validity depends on accounting practices by each 

financial firm and the corresponding jurisdiction.   

Despite interbank credit and derivatives exposures have been the traditional source of 

information for understanding the financial system, its usefulness has been questioned after 

the crisis. For example, as documented in the BIS 81st Annual Report (BIS, 2011), the lack of 

detailed firm-level information (i.e. asset and liability positions broken down by currency, 

counterparty, instrument type) resulted in market uncertainty that contributed to funding 

problems for exposed and non-exposed institutions. Moreover, there is strong evidence of 

non-trivial debt masking in Enron and Lehman Brothers audited financial statements prior to 

their failures (Smith, 2011)10, which may verify the lack of completeness, consistency and 

validity of reported exposures as a rigorous source of information for financial networks’ 

building. These two facts contrast with the arguments of Kyriakopoulos et al. (2009), who 

states that financial transaction data sets provides a real-time picture of transactions and is 

particularly reliable from a supervisory perspective because payments and settlements 

cannot be falsified (or at least at substantially high costs and an increased likelihood of 

detection).   

Correspondingly, in order to make a contribution to the understanding of the structure of 

financial systems by means of network analysis, this document aims at characterizing and 

analyzing 236 observations of Colombian payment and settlement networks as modular scale-

free networks, an isomorphic topology of clusters of dense interaction resulting from financial 

systems being complex adaptive and self-organizing. Namely, the dataset consists of daily 

transactions registered during 2012 in the large-value payment system (CUD), the sovereign 

securities settlement system (DCV) and the currency settlement system (CCDC), which 

together represent about 88.4% of the value of the payments and deliveries within the local 

financial market infrastructures during 2012 (Banco de la República, 2013) and correspond to 

                                                      
9 Contrary to interbank and derivatives exposures, which is commonly extracted from reported financial 
statements (e.g. balance sheet data), payments and settlements data includes informative details for each 
transaction, such as the collateral involved (e.g. in a repo); the underlying asset (e.g. in an option); the time to 
maturity (e.g. in interbank lending); the intermediaries involved (e.g. debt market intermediaries) and the 
beneficiaries (e.g. financial institutions, households, non-financial companies).   
10 Smith (2011) reports that Lehman used sale-repurchase (repo) agreements to reduce its recognized debt for dates 
surrounding quarterly reporting periods; by means of interpreting accounting standards, Lehman removed over 
$50 billion from its balance sheet at the end of the fiscal quarter in May 2008, which reduced net leverage from 
13.9 to 12.1. Likewise, by means of interpreting accounting standards, Enron reduced its recognized debt about 
30%. 
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the three foremost systemically important financial market infrastructures in Colombia 

according to León and Pérez (2013). 

Due to its aim, the document differs from most financial network literature. First, as already 

mentioned, to the best knowledge of the authors there is no empirical work regarding 

financial networks as modular scale-free networks. Second, three different –but interrelated- 

financial networks are analyzed. Third, unlike most of the literature, the characterization of 

the three selected networks is not based on a single snapshot (i.e. observation) of the 

network;11 all network analysis metrics were applied to a set of 236 consecutive observed 

networks, which allowed for constructing time-series for the calculated metrics. Fourth, 

different from most empirical work on financial networks, the type of financial institutions 

considered is not limited to banking firms, which may reveal some otherwise concealed 

connective and hierarchical patterns in the networks; this is critical for analytical purposes 

due to the increasing interest in non-banking financial institutions and the so-called “shadow 

banking system”.    

The main quantitative findings confirm the isomorphism of the selected payment and 

settlement networks with other social networks, where they approximate a modular scale-

free architecture in the sense of Barabási (2003). Furthermore, the rationale behind such 

isomorphism agrees with three interrelated observations: (i) the economy is a complex 

adaptive system (Holland, 1998); (ii) the economy is a self-organizing system (Krugman, 

1996); and (iii) in the sense of Bak (1996), financial systems are complex adaptive systems 

that have self-organized in order to prevent criticality from arising. Thus, authors consider 

this document a significant contribution to the existing related literature, where the long-

standing call for mathematics and modeling techniques that emphasize the discovery of building 

blocks and the emergence of structure through the combination and interaction of these building 

blocks (Holland, 1998) is vindicated.      

 

2. Network analysis 

Systems and networks are closely related concepts. Trewavas (2006) defines “system” as a 

network of mutually dependent and thus interconnected components comprising a unified 

whole, whereas Newman (2010) defines network as a general yet powerful mean of 

representing patterns of connections or interactions between the parts of a system. Both 

statements concur in that a network is a depiction or simplification of the connective 

structure of a system, where it seems evident that without a connective structure, there would 

be no system at all (Casti, 1979). 

Network science is an emerging research area that contrasts, compares and integrates 

techniques and algorithms developed in disciplines as diverse as mathematics, statistics, 

physics, social network analysis, information science, and computer science, with the 

objective of developing theoretical and practical approaches and techniques to increase the 

understanding of natural and manmade networks (Börner et al., 2007), thus to increase the 

                                                      
11 Martínez-Jaramillo et al. (2012), Bech and Atalay (2008) and Sorämaki et al. (2006) are other related works with 
a similar time-series perspective.  
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understanding of systems. Intuitively, complex systems are the main target of network 

science.  

However, defining what a “complex system” is has proved to be particularly elusive, with 

standard definitions converging to the existence of a large number of participants that are 

related in an intricate way, as in May (1973) or Simon (1962). Yet, as emphasized by Casti 

(1979), different types of complexity coexist, namely static complexity and dynamic 

complexity, with the former matching the standard definition (i.e. number of participants and 

their intricate connections) and the latter relating to system’s time behavior (i.e. its motion 

and predictability). Hence, since the aim of this document is to make a contribution to the 

understanding of the structure of financial systems, the complexity to be captured and 

examined is mostly of the static type. 

The network science research process provides two different paths for understanding the 

structure of financial systems: network analysis and network modeling. As in Börner et al. 

(2007), the first path is dedicated to describing and understanding an underlying system, 

where the focus is on capturing the system’s structure, whereas the second attempts to design 

processes that reproduce empirical data and also serve the purpose of making predictions, 

where the focus is on model validation. Consistent with the aim of this document, this 

document employs the network analysis process (i.e. network sampling, measurement and 

visualization), which includes fitting empirical data to conventional models (i.e. exponential, 

scale-free, modular scale-free); however, no –new- models are designed to reproduce 

empirical data or make predictions. 

This section is intended to provide the theoretical and methodological background required 

to properly examine the static complexity of systems by means of network analysis. 

Accordingly, this section follows a particular structure, specifically aimed at the two principal 

aspects of static complexity, namely the system’s connective pattern and hierarchical 

structure (Casti, 1979). Basic concepts and notation are stated first. Afterwards, measures 

related to network’s connective pattern and to network’s hierarchical structure are presented, 

in that order.  

As usual, measures serve the purpose of characterizing the observed networks as pertaining 

to the existing network models. Emphasis will be made on centrality measures as relevant 

metrics for analyzing inhomogeneous networks.  

 

2.1. Concepts and notation  

Due to its interdisciplinary origin and recent use in economics and finance, network science’s 

concepts and notation are worth stating. Most of those concepts and notation is inherited 

from graph theory, the branch of mathematics that deals with networks since the XVII 

century.12  

                                                      
12 Euler´s solution to the Königsberg Bridge Problem in 1735 is documented as the origin of mathematical graph 
theory. 
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A network, or graph, represents patterns of connections between the parts of a system. Two 

concepts arise from this definition: parts and connections. The parts of the system correspond 

to the participants or elements, and are commonly referred to as vertices, whereas the 

connections correspond to the relations between the elements of the system, and are called 

edges. These concepts tend to have an equivalent when applied to specific networks, such as 

nodes and links in computer science, actors and ties in sociology, neuron and synapse in neural 

networks, web page and hyperlink in the World Wide Web network, or financial institution and 

payment (or exposure) in financial networks.     

The most common mathematical representation of a network is the adjacency matrix. Let   

represent the number of vertices, the adjacency matrix   is a square matrix of dimensions 

    with elements     such that  

 

    {
1 if there is an edge between vertices   and  ,
0 otherwise.                                                             

} [§1] 

 

A network defined by the adjacency matrix in [§1] is referred as an undirected graph, where 

the existence of the (   ) edge makes both vertices   and   adjacent or connected, and where 

the direction of the edge is unimportant; this may be the case in some social networks (e.g. 

acquaintances’ networks such as Facebook or Linkedin), in which the existence of a relation 

(e.g. friendship, professional link) implies a reciprocal relation between the vertices (e.g. 

friends, colleagues).  

However, the assumption of a reciprocal relation between vertices is inconvenient for some 

networks. For instance, the delivery of money between financial institutions (i.e. a payment 

network) constitutes a graph where the character of sender and recipient of the funds is a 

particularly sensitive source of information for analytical purposes, where the assumption of 

a reciprocal relation between both parties is unwarranted; likewise, co-citation networks (i.e. 

citations between academic papers) and the World Wide Web (i.e. hyperlinks between web 

pages) are directed networks by construction.  

Thus, the adjacency matrix of a directed network or digraph differs from the undirected case, 

with elements     such that      

              

    {
1 if there is an edge from   to  ,
 0 otherwise.                                   

} [§2] 

 

Consequently, the undirected adjacency matrix is always symmetrical with respect to the 

main diagonal, whereas the directed case tends to be non-symmetrical; the direction of the 

connection is usually displayed with an arrow, and it is common to use the terms arc and 
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directed edge interchangeably. If self-edges are allowed the main diagonal may have non-zero 

elements, and the graph may be known as a multigraph.13  

Moreover, networks may require edges to represent more information than that conveyed in 

a simple binary (0 or 1) relation; in the complex network context, edges are not binary, but 

are weighted according to the economic interaction under consideration (Schweitzer et al., 

2009). Therefore, it may be useful to assign real numbers to the edges, where these numbers 

may represent distance, frequency or value, in what is called a weighted network and its 

corresponding weighted adjacency matrix (   ).  

For a financial network the weights could be the monetary value of the transaction or of the 

exposure. Figure 1 presents samples of undirected (a.), directed (b.) and weighted directed 

(c.) graphs, along with the corresponding adjacency matrices. 

Figure 1 
Sample graphs 

 

   
   

    

    
     
     
     
     

     

    
     
     
     
     

     

    
     
     
     
     

 

   
a. Undirected graph b. Directed graph c. Weighted directed graph 

   
Source: authors’ design 

 

Despite graphs are illustrative about the topology of a network, the dimensionality of the 

system (e.g. the number of vertices or edges) may obscure the visual inspection of the 

underlying structure. In such cases it is convenient to use a tree. A tree may be described as a 

simplified but informative version of a graph that displays the most relevant edge for each one 

of the vertices, where such relevance is defined according to the type of network.14 For 

                                                      
13 The existence of self-edges in financial networks may be non-trivial. For instance, if two clients use the same 
securities’ broker, their transaction will be registered as occurring within the broker accounts (i.e. as a self-edge). If 
the brokerage business is to be addressed (e.g. León and Pérez, 2013b), assuming the absence of self-edges may be 
inconvenient.  
14 Formally, a tree is a graph that is connected (i.e. no vertices are disconnected), acyclic (i.e. no loops) and has 
    edges (Jungnickel, 2008). The construction of a tree usually implies the maximization or minimization of the 
sum of the network’s weights. Several algorithms are available for this purpose, but the most cited in the literature 
are Kruskal’s and Prim´s algorithms; yet, the main features of the tree do not depend on the choice of algorithm 
(Kim et al., 2005).  

a
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b
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instance, for a network of payments it is convenient to construct the tree based on the 

maximization of the system’s weights (i.e. a maximal spanning tree), although searching for 

the most efficient route within a highway system would require minimizing distances or 

commute times (i.e. a minimal spanning tree). In this sense, as highlighted by Braunstein et al. 

(2007) and Wu et al. (2006), the resulting tree may be considered as the “skeleton” of the 

network.             

Regarding the characteristics of the system and its elements, a set of concepts is commonly 

used. The simplest concept is the vertex degree (  ), which corresponds to the number of 

edges connected to it. In directed graphs, where the adjacency matrix is non-symmetrical, in 

degree (  
  ) and out degree (  

   ) quantifies the number of incoming [§3a] and outgoing 

[§3b] edges, respectively; for undirected graphs,      
     

   .  

 

   
   ∑   

 

   

   
    ∑   

 

   

 [§3] 

   

a. In degree (   
  ) b. Out degree (   

   )  
 

In the weighted graph case the degree may be informative, yet inadequate for analyzing the 

network; financial networks are a good case of degree being limited for analytical purposes. 

The strength (  ) measures the total weight of connections for a given vertex, which provides 

an assessment of the intensity of the interaction between participants. Akin to degree, in the 

directed graph case in strength (  
  ) and out strength (  

   ) sum the weight of incoming 

[§4a] and outgoing [§4b] edges, respectively; for undirected graphs,      
     

   .    

 

   
   ∑   

 

   

   
    ∑   

 

   

 [§4] 

   

a. In strength (   
  ) b. Out strength (   

   )  
 

Intuitively, the larger the degree or the strength, the more important the vertex is for the 

network. Nevertheless, as will be discussed in forthcoming sections, the analytical reach of 

these two metrics as measures of the relative importance of a vertex is limited because they 

do not take into account the global properties of the network (i.e. they are local measures of 

importance by construction).   

 

2.2. Identifying connective patterns 

Some metrics allow for determining the connective pattern of the graph, which is one of the 

main aspects any static complexity measure must address according to Casti (1979). The 
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simplest metric for approximating the connective pattern is density or connectance ( ), which 

measures the cohesion of the network. The density of a directed graph is the ratio of the 

number of actual edges ( ) to the maximum possible number of edges ( (   )), as in 

[§5].15  

 

  
 

 (   )
 [§5] 

  
Density ( )  

 

By construction, density is restricted to the       range. Formally, Newman (2010) states 

that a sufficiently large network for which the density   tends to a constant as   tends to 

infinite is said to be dense, whereas if density tends to zero as   tends to infinite the network 

is said to be sparse. However, since it is frequent to work with non-sufficiently large networks, 

it is common to characterize a network as sparse when the density is much smaller than the 

upper limit (   ), and to use the term dense as the density approximates the upper limit 

(   ), where the term complete network is used when    . 

A particularly informative alternative to density is to examine the degree probability 

distribution (  ); such distribution provides a natural summary of the connectivity in the 

graph (Kolaczyk, 2009). Akin to density, the first moment of the distribution of degree (  ) 

measures the cohesion of the network, and is restricted to the        range. According to 

Börner et al. (2007), a sparse graph has an average degree (  ) that is much smaller than the 

size of the graph (    ). 

Since the number of edges in a directed network is equal to the number of incoming edges and 

to the number of outgoing edges, there is a unique average degree for the network, as in [§6]. 

 

   
 

 
∑   

  

 

   

 
 

 
∑   

   

 

   

 
 

 
 [§6] 

   
Average degree (  )  

 

The second moment of the distribution (  ) indicates how disperse is the vertices’ degree 

around the average degree. The standard deviation of the in and out degree may not be the 

same [§7]. 

 

                                                      
15 Please note that the calculation of the density varies according to the type of graph (e.g. graph, digraph, 
multigraph). In a digraph without self-edges the maximum possible number of edges is  (   ); if self-edges are 
allowed   .   
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∑ (  

     ) 
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∑ (  

      ) 

 

   

 [§7] 

   
a. In degree standard deviation (    

) b. Out degree standard deviation (     
)  

 

The third moment (i.e. skewness or asymmetry) of the degree distribution is particularly 

informative about the connective pattern of the network. If asymmetry is nil or negligible, the 

average degree is meaningful, and the majority of the vertices display an average degree, and 

few vertices are of low or high degree. In this case vertex degree is of a fairly similar order of 

magnitude across the graph –homogeneous-, the corresponding degree distribution is quite 

concentrated, and typically decay exponentially fast in   (Kolaczyk, 2009); in the limiting case 

of a symmetric distribution the degree follows a Poisson process, where the probability of 

observing a vertex with   edges becomes negligibly small when      or     .  

However, most real-world networks display right-skewed distributions, where the majority of 

vertices are of very low degree, and few vertices are of very high degree; hence 

inhomogeneous. Such right-skew of real-world network’s degree distributions has been found 

to approximate a power-law distribution (Barabási and Albert, 1999). On the other hand, in 

homogeneous networks all vertices have approximately the same number of edges. 

The power-law (or Pareto-law) distribution suggests that the probability of observing a 

vertex with   edges obeys the potential functional form in [§8], where   is an uninteresting 

and arbitrary constant, and   is known as the exponent of the power-law.  

 

        [§8] 
  

Degree distribution as a power-law  
 

Verifying that the degree distribution approximates a power-law (i.e. it is a scale-free 

network) is interesting for several reasons. For instance, power-law distributions not only 

appear to be ubiquitous in networks across many areas of sciences (Kolaczyk, 2009), but their 

fractal nature may be also informative about the evolutionary process of the underlying 

systems, as suggested by Dooley and Van de Ven (1999), Peak and Frame (1998) and Bak 

(1996). Furthermore, as addressed below, the scale-free nature of networks points out to 

systems robust to random changes, but fragile to targeted ones.  

Besides degree distributions approximating a power-law, other features have been identified 

as characteristic of real-world networks, such as low mean geodesic distances, high clustering 

coefficients, and significant degree correlation.  

Let     be the geodesic distance (i.e. the shortest path) from vertex   to  , the mean geodesic 

distance for vertex   (  ) corresponds to the mean of    , averaged over all vertices   in the 
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network (Newman, 2010), as in [§9a].16 Respectively, the mean geodesic distance or average 

path length of a network (i.e. for all pairs of vertices) is denoted as   (without the subscript), 

as in [§9b], and corresponds to the mean of    over all vertices.    

 

   
 

(   )
∑    

 (  )

   
 

 
∑  

 

 [§9] 

   
a. Mean geodesic distance of a vertex (  ) b. Mean geodesic distance of a network ( )  

 

Consequently, the mean geodesic distance or average path length reflects the global structure; 

it measures how big the network is, it depends on the way the entire network is connected, 

and cannot be inferred from any local measurement (Strogatz, 2003). 

The mean geodesic distance ( ) of random networks is small, and increases slowly with the 

size of the network; therefore, as stressed by (Albert and Barabási, 2002), random graphs are 

small-worlds because in spite of their often large size, in most networks there is relatively a 

short path between any two vertices. According to Newman et al. (2006),       for random 

networks, where such slow logarithmic increase with the size of the network coincides with 

the small-world effect (i.e. short average path lengths).  

However, the mean geodesic distance for scale-free networks has been found to be smaller 

than      . As reported by Cohen and Havlin (2010 & 2003), non-degree-correlated scale-

free networks with       have a mean geodesic distance that behaves as        ; 

networks with     yield      (     )⁄ ; and with    , the small-world      . For that 

reason, Cohen and Havlin (2010 & 2003) state that scale-free networks can be regarded as a 

generalization of random networks with respect to the mean average geodesic distance, in 

which scale-free networks with       are “ultra-small”.  

The clustering coefficient ( ), corresponding to the property of network transitivity, measures 

the average probability that two neighbors of a vertex are themselves neighbors; this is, it 

measures the frequency with which loops of length three (i.e. triangles) appear in the network 

(Newman, 2010). Let a triangle be a graph of three vertices that is fully connected, and a 

connected triple be a graph of three vertices with at least two connections, the calculation of 

the network’s clustering coefficient is as follows: 17 

 

                                                      
16 Some technical details are worth noting. First, the length of a path (or distance) is in terms of number of edges 
between vertices, not the number of vertices. Second, as in [§9a], it is convenient to exclude the     case from the 
calculations, where      . Third, in directed networks the distance from   to   and   to   may differ (       ); 

thus, both distances should be considered. Fourth, if there is no path between two vertices, the length is infinite; 
however, for the purpose of calculation of the mean geodesic of a network, only finite paths (i.e. reachable vertices) 
are considered. Fifth, the inverse of    is commonly known as the closeness centrality of vertex  .    
17 If three vertices (i.e. a, b, c) exist in a graph, a triangle exists when edges (a,b), (b,c) and (c,a) are present (i.e. the 
graph is complete), whereas a connected triple exists if at least two of these edges are present. In this sense, a 
triangle occurs when there is transitivity (i.e. two neighbors of a vertex are themselves neighbors). The factor of 
three in the numerator arises because each triangle is counted three times when the connected triplets are counted 
(Newman, 2010). 
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(number of triangles               )   

number of connected triples
 [§10] 

  
Clustering coefficient ( )  

 

Hence, by construction, clustering reflects the local structure; it depends only on the 

interconnectedness of a typical neighborhood, the inbreeding among nodes tied to a common 

center, and thus it measures how incestuous the network is (Strogatz, 2003). 

Intuitively, in a random graph the probability of connection of two vertices tends to be the 

same for all vertices regardless the existence of a common neighbor. Therefore, in the case of 

random graphs the clustering coefficient is expected to be low, about     (   )⁄   , and 

tends to zero in the limit of large random networks. 

Contrarily, real-world complex networks tend to exhibit a large degree of clustering. Albert 

and Barabási (2002) report that in most –if not all- real networks the clustering coefficient is 

typically much larger then it is in a comparable random network (i.e. with same number of 

vertices and edges), with this factor slowly increasing with the number of vertices. 

Accordingly, in inhomogeneous graphs, as those resulting from real-world networks, the 

probability of two neighbors of a vertex being themselves neighbors is reported to be in the 

10% and 60% range in most cases (Newman, 2010). In this sense, scale-free networks 

combining particularly low mean geodesic distance and high clustering implies that the 

existence of a few too-connected vertices with very large degrees plays a key role in bringing 

the other vertices close to each other (Wang and Chen, 2003), indicating that the scale-free 

topology is more efficient in bringing the vertices close than is the topology of random graphs 

(Albert and Barabási, 2002).  

Besides displaying low mean geodesic distances and clustering, real-world graphs also display 

non-negligible degree correlation between vertices. They are characterized by either positive 

correlation, where high-degree (low-degree) vertices tend to be connected to other high-

degree (low-degree) vertices, or negative correlation, where high-degree vertices tend to be 

connected to low-degree vertices. Positive degree correlation, also known as homophily or 

assortative mixing by degree, results in the core/periphery structure typical of social 

networks, whereas negative degree correlation (i.e. dissortative mixing by degree) is typical of 

technological, informational and biological networks, which display star-like features that do 

not usually have a core/periphery but uniform structures (Newman, 2010). On the other 

hand, the degree of random (i.e. homogeneous) networks tends to be uncorrelated.    

Degree correlation may be measured by means of estimating the assortativity coefficient 

(Newman, 2010). As before, let   be the number of edges, the degree assortativity coefficient  

of a network (  ) is estimated as follows [§11]:  

 

   
∑ (          ⁄ )      

∑ (            ⁄ )      

 
[§11] 

Where  



16 

 

    {
  if    
  if    

 
 

  
Degree assortativity coefficient (  )  

 

However, the assortativity coefficient is not limited to the degree correlation. Other types of 

characteristics may be underlying the formation of correlation (e.g. age, income, gender, 

ethnics, size), which results in assortative mixing by scalar characteristics (Newman, 2010). As 

stressed before, for payment and settlement networks it is important to assess the intensity of 

the interaction between participants; as highlighted by Leung and Chau (2007) and Barrat et 

al. (2004), the inclusion of weights and their correlations might consistently change our view 

of the hierarchical and structural organization of the network.18 Based on [§11], it is possible 

to estimate the assortative mixing by strength as in [§12].  

 

   
∑ (          ⁄ )      

∑ (            ⁄ )      

 
[§12] 

  
Strength assortativity coefficient (  )  

  
  

Differences in degree correlation are relevant for understanding the structure and dynamics 

of networks. For instance, a disease can persist more easily in an assortative mixing (i.e. 

positively correlated) network by circulating in the dense core, where there are many 

opportunities for it to spread; in a negatively correlated network the same disease finds it 

harder to persist, but if it does persist, then it typically spreads to the whole network 

(Newman, 2008). 

 

2.3. Assessing centrality 

Since the manifestation of a power-law suggests that few vertices are very highly connected 

and many are poorly connected, assessing the relative importance of those highly connected 

becomes a relevant issue for network analysis. In this sense, some metrics are informative 

about the importance of a vertex in the network, where centrality is the most common 

concept.  

There are many possible definitions of centrality, and correspondingly many centrality 

measures for networks (Newman, 2010). The simplest measure of centrality is the degree ( ), 

where importance arises from concentrating edges within the network; in the case of directed 

networks, two measures coexist: in degree (  
  ) and out degree (  

   ) centrality, calculated 

                                                      
18 Barrat et al. (2004) highlights that it is possible that a network simultaneously displays disassortative mixing by 
degree (i.e. high-degree vertices connected to a majority of low-degree vertices) and assortative mixing by strength 
(i.e. high-degree vertices concentrating the largest fraction of their strength only on high-strength vertices). In this 
sense, the topological features would point to disassortative properties, whereas the network could be considered 
assortative in an effective way.    
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based on [§3]. Likewise, concentrating strength (  ) in a weighted network may be a signal of 

importance. However, none of these two measures takes into account the global properties of 

the network (i.e. they are local measures of centrality); this is, the centrality of the adjacent 

vertices is not taken into account as a source of centrality.  

The simplest global measure of centrality is eigenvector centrality, whereby the centrality of a 

vertex is proportional to the sum of the centrality of its adjacent vertices; accordingly, the 

centrality of a vertex is the weighted sum of centrality at all possible order adjacencies. Hence, 

centrality arises from (i) being connected to many vertices; (ii) being connected to central 

vertices; (iii) or both. Let   be the largest eigenvalue of the adjacency matrix  , the 

eigenvector centrality ( ) is estimated as in [§13]: 

 

     
  ∑     

 

 [§13] 

In matrix terms,  
       

where  

        
  

Eigenvector centrality ( )  
 

Bonacich (1972) envisaged this global measure of centrality, which results from estimating 

popularity scores based on the eigenvector corresponding to the largest eigenvalue. Bonacich’s 

choice of the largest eigenvalue is consistent with it providing the highest accuracy (i.e. 

explanatory power) for reproducing the original adjacency matrix.19 

However, eigenvector centrality has some drawbacks. First, as stated by Bonacich (1972), 

eigenvector centrality works for symmetric structures only (i.e. undirected graphs). The most 

severe inconvenience from estimating eigenvector centrality on asymmetric matrices arises 

from vertices with only outgoing or incoming edges, which will always result in zero 

eigenvector centrality, and may cause some other non-strongly connected vertices to have 

zero eigenvector centrality as well (Newman, 2010); in the case of acyclic graphs, such as 

financial market infrastructures networks (León and Pérez, 2013b), this may turn eigenvector 

centrality useless.   

Some measures try to profit from eigenvector centrality’s global approach to importance 

within a network, whilst surmounting its main drawbacks.20 The most well-known measure 

                                                      
19 Straffin (1980) and Boots (1984) verify the convenience of estimating the largest eigenvalue for capturing the 
main features of networks (e.g. total connectivity, spread potential, equilibrium importance of vertices, degree of 
differentiation of vertices). Before Bonacich (1972), Gould (1967) and Tinkler (1972) suggested using the largest 
eigenvalue in Geography and Physics for similar reasons. It is worth noticing that if each entry of the eigenvectors 
is weighted by the square root of the corresponding eigenvalue, so that the elements of the eigenvectors associated 
with the smaller eigenvalues are successively reduced in scale, this is the conventional Principal Component 
Analysis (Gould, 1967). 
20 An alternative to the measures addressed in this document is Katz centrality. Katz centrality avoids some of the 
documented drawbacks by giving each node an initial amount of centrality. However, as documented by Newman 
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was developed for internet link analysis: PageRank, the algorithm behind Google’s search 

engine (www.google.com), developed by Brin and Page (1998). Similar to eigenvector 

centrality, PageRank was designed based on a thesis: a vertex (e.g. webpage) is important if it 

is pointed-to by other important vertices. However, PageRank’s design includes a stochastic 

adjustment to eigenvector centrality that overcomes the existence of vertices with only 

outgoing or incoming edges (i.e. dangling nodes).  

The estimation of PageRank may be stated as an eigenvector problem (Langville and Meyer, 

2012). Let    be the largest eigenvalue of  ;   a scalar between 0 and 1;     a row vector of all 

1s; and   the row-normalized original adjacency matrix, then the row vector of PageRank 

scores results from solving   in [§14]:    

 

       [§14] 

where  

     (   )(  ⁄ )(   )  

  

    {
((  ⁄ )  ) if vertex   has no outgoing edges,

0 otherwise.                                                             
}  

  

PageRank centrality ( )  

 

PageRank avoids the main drawbacks of eigenvector centrality in two steps. First, it 

suppresses dangling vertices (i.e. without outgoing edges) by forcing a  -dimension row-

normalized adjacency matrix ( ) into  , a  -dimension right stochastic matrix (i.e. square 

matrix of non-negative real numbers, with each row summing to 1). Second,  , commonly 

known as the Google matrix, is the weighted sum of   and a  -dimension matrix with all its 

elements equal to a homogeneous probability (  ⁄ ), where the weight is a scalar ( ) 

between 0 and 1 that controls the proportion of time that the system follows the network 

structure in  .21 

In this sense, as put forward by Soramäki and Cook (2012), PageRank and eigenvector 

centrality can be thought of as the proportion of time spent visiting each vertex in an infinite 

random walk through the network, where PageRank allows the measure to be calculated for 

all types of networks by means of adding a random jump probability for dangling vertices.   

                                                                                                                                                                  
(2010), this solution implies some other drawbacks that are conquered by PageRank; therefore, it is not discussed 
or used in the document. Soramäki and Cook (2012) introduced other alternative, SinkRank. 
21 PageRank originally suggested       ; it is important to highlight that increasing the value of   (as it gets 
closer to unity) significantly increases the time to convergence of the algorithm, and makes the results more 
volatile. The mathematical foundations of PageRank are outside the scope of this paper. Langville and Meyer 
(2012) present a comprehensive analysis of the conceptual and mathematical origins of PageRank. 
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Internet link analysis provides another enhanced version of eigenvector centrality: HITS 

(Hypertext Induced Topic Search), the algorithm designed by Kleinberg (1998), which powers 

Teoma’s (www.teoma.com) and Ask’s (www.ask.com) search engines. HITS main premise is 

to recognize that webpages serve two purposes: (i) to provide information on a topic, and (ii) 

to provide links to other webpages containing information on a topic.  

Therefore, Kleinberg’s algorithm identifies popularity or importance based on a pair of 

interdependent circular thesis: (i) a webpage is a good hub if it points to good authorities, and 

(ii) a webpage is a good authority if it is pointed-to by good hubs. This may be conveniently 

reduced as follows: authority central vertices receive edges from hub central vertices, and hub 

central vertices send edges to authority central vertices, where each vertex has some 

authority score and some hub score.  

As in the case of PageRank, HITS avoids the issues regarding the estimation of eigenvector 

centrality on directed networks. Instead of adding a random jump, HITS generates two 

modified versions of the original adjacency matrix, in which these two matrices correspond to 

an authority matrix ( ) and a hub matrix ( ). 

 

            [§15] 
   

a. Authority matrix ( ) b. Hub matrix ( )  
 

Both,   and   are symmetrical matrices by construction. Moreover, multiplying the 

adjacency matrix with a transposed version of itself allows identifying directed (in or out) 

second order adjacencies. Regarding  , multiplying   with   sends weights backwards –

against the arrows, towards the pointing node-, whereas multiplying   with     (as in  ) 

sends scores forwards –with the arrows, towards the pointed-to node (Bjelland et al., 2008).  

The estimation of authority and hub centrality results from estimating standard eigenvector 

centrality (as in [§13]) on   and  . In this sense, the authority centrality ( ) of each node is 

defined to be proportional to the sum of the hub centrality ( ) of the nodes that point to it, 

and that the hub centrality of each node is defined to be proportional to the sum of the 

authority centrality of the nodes it points-to. Let   and   be two unknown constants, and   

and   the vector of authority and hub centrality, respectively, the vector of authority and hub 

scores results from solving    and    in [§16], which is –as in the case of PageRank- an 

eigenvector problem with respect to the largest eigenvalue (  ) of  :  

 

    ∑     

 

     ∑     

 

 [§16] 

In matrix terms,   
              

   
Substituting,   
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     (  )         (  )     

   
Replacing (  )   with      

   
                   
               

   
a. Authority centrality ( ) b. Hub centrality ( )  

 

The HITS algorithm has some practical advantages. It provides two sets of centrality 

measures, corresponding to the importance as a source and recipient of edges; in the payment 

and settlement networks’ case this may be convenient since it is relevant to differentiate the 

role of financial institutions as originators or recipients of transactions involving money or 

securities. Second, HITS yields two symmetric modified versions of the adjacency matrix that 

share a single set of eigenvalues ( ), a byproduct that will be most useful when assessing the 

hierarchical structure of the network by spectral analysis. Third, as stressed by León and 

Pérez (2013b), PageRank’s introduction of a stochastic adjustment that randomly allows (i.e. 

creates) connections between nodes may be undesirable since for some graphs such 

randomness is implausible; this is the case with financial market infrastructures’ networks or 

with tiered payment systems.  

Despite some of the eigencentrality measures were originally designed for non-weighted 

graphs (e.g. PageRank, HITS), there are no formal restrictions to applying them for weighted 

graphs. As in Bonacich (1972), non-weighted graphs correspond to a particular case (i.e. a 

binary or Boolean case), and more general cases may be safely evaluated; moreover, as 

stressed by Casti (1979), the relative strength of the interactions among system’s elements is 

key for the assessment of static complexity.  

 

2.4. Identifying hierarchies 

Simon (1962) suggests a narrow definition of “hierarchical system” o “hierarchy”: a system 

that is composed of interrelated subsystems, each of the latter being, in turn, hierarchic in 

structure until we reach some lowest level of elementary subsystem. Correspondingly, Casti 

(1979) points out that the number of hierarchical levels in a given system represents a rough 

measure of its complexity. 

Some authors link the hierarchical structure of networks to the existence of communities or 

modules. For instance, Newman (2003) defines that a network displays community structures 

when groups of vertices have a high density of edges within them, with a lower density of 

edges between groups. Likewise, Barabási (2003) describes modularity in real-world 

networks as an architecture where the more connected a vertex is, the smaller its clustering 

coefficient, with such low clustering from central vertices contradicting the standard scale-

free model.  
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Hence, in order to quantitatively measure the hierarchical modularity of a network Barabási 

(2003) suggests assessing whether (or not) the most connected vertices display low local (i.e. 

single vertex) clustering, as the real-world observed hierarchical modularity suggests. 

Newman (2010) defines local clustering as in [§17]:  

 

   
(number of pairs of neighbors of   that are connected)

(number of pairs of neighbors of  )
 [§17] 

  
Local clustering coefficient (  )  

 

If there is no dependence between degree and clustering (i.e. clustering is democratically 

distributed), then the network has no hierarchical modularity, as expected from both 

standard random and scale-free networks. However, if degree and clustering display an 

inverse relation (i.e. the higher the degree, the smaller the clustering coefficient), there is 

evidence of hierarchical modularity, where central vertices tend to connect to vertices in their 

module and to other central vertices in other modules.    

Barabási (2003) and Dorogovtsev et al. (2002) suggest that hierarchical modularity may be 

captured by fitting a power-law to the distribution of local clustering as a function of average 

degree (  ), as in [§18]: 

 

   
    

   [§18] 
  

Local clustering distribution as a power-law  
 

Barabási (2003) highlights that the existence of hierarchical modularity in real-world 

networks is a defining feature of most complex systems, but it is not caused and may not be 

explained by the mere presence of scale-free properties. Consequently, because the standard 

scale-free model presumes the existence of a few central vertices connected to nodes in 

numerous modules (i.e. against the evidence of modularity in real-world networks), Barabási 

(2003) introduces a new type of network: a modular scale-free network.  

Therefore, based on the standard (i.e. Poisson, small-world, scale-free) and the modular scale-

free models of networks, Table 1 presents a summary of the statistical properties of networks, 

which allows for identifying the type of network under analysis. Following Barabási (2003) 

and Dorogovtsev et al. (2002), the clustering coefficient of a network and its local distribution 

by degree may determine the type of hierarchy of the system. 
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Table 1 
Main statistical properties of networks 

Network model 
Degree 

distribution (  ) 
Mean geodesic 

distance ( ) 
Clustering 

coefficient ( ) 
Degree/strength  
correlation ( ) 

H
o

m
o

ge
n

eo
u

s Random  
(e.g. 

Poisson) 

Homogeneous, 
non-skewed, 
exponentially 
decaying 
distributions 

Small, with 
 
       

Low, with  
 

  
  

(   )
   Non-significant 

(   ) 

Small-world 

  
  

(   )
   

In
h

o
m

o
ge

n
eo

u
s 

Scale-free 

Inhomogeneous, 
skewed, with 
distributions 
decaying as  
        

Ultra small, with  
 
              

Significant 
(   ) 

Modular 
scale-free 

 

  
  

(   )
 , but  

 
distributed as a 
power-law, where 
 
   

       

  
Source: authors’ design. 

 

Alternatively, graph partitioning is a useful tool for finding subsets of vertices that 

demonstrate “cohesiveness” with respect to the underlying relational patterns, with two well-

established methods: hierarchical clustering and spectral partitioning (Kolaczyk, 2009). The 

first method produces a hierarchical representation in which the clusters at each level of the 

hierarchy are created by merging clusters at the next lower level (Hastie et al., 2009), whereas 

the second relies on spectral graph theory that associates connectivity with the eigen-analysis 

of certain matrices (Kolaczyk, 2009). 

Hierarchical clustering, also known as cluster analysis, is the traditional method for extracting 

community or hierarchical structure from a network (Newman, 2003). Hierarchical clustering 

is a method used in data analysis (i.e. data mining), pertaining to a category commonly 

referred as unsupervised learning. This method uses similarities of instances to find groups 

such that instances in a group are more similar to each other than instances in different 

groups (Alpaydin, 2009), and they usually yield a tree-like graph diagram that represents the 

hierarchical relations among vertices. Several tree-like graphs are available, such as spanning 

trees and dendrograms. 

The construction of a tree is based on a measure of cohesiveness, which is a distinctive feature 

of each system. Simon (1962) suggests defining hierarchies in terms of the intensity of 

interaction between its elements, which allows for reconciling different types of networks, 

namely physical, biological and social. Accordingly, based on the measure of cohesiveness, 

hierarchical clustering optimizes (i.e. maximizes or minimizes) the intensity of interaction for 

each element. For instance, for a network of payments it is convenient to construct the tree 
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based on the maximization of the system’s weights (i.e. a maximal spanning tree). In this sense 

the resulting spanning tree may be considered as the “skeleton” of the network (Braunstein et 

al., 2007; Wu et al., 2006) or the “communication kernel” (Kim et al., 2005), whereas the 

dendrogram summarizes the process of clustering by displaying similar records joined by 

lines whose length reflects the distance between the records (Shmueli et al., 2010).  

Hierarchical clustering has received a lot of attention lately in economics. One of the most 

prolific fields has been analyzing the taxonomy of financial markets by means of employing 

hierarchical clustering on correlation matrices, as suggested by the early work of Mantegna 

(1999 & 1998).22 For example, León et al. (2013) describes and analyzes the hierarchical 

structure behind the sovereigns' CDS market by means of constructing the minimal spanning 

tree that results from transforming CDS correlation matrix into an adjacency matrix, which 

may be accompanied by the corresponding dendrogram (panel a. and b., Figure 2). 

Figure 2 
Hierarchical clustering of sovereign CDS correlation matrix 

(November 24, 2009 – February 22, 2012)* 
 

  
a. Minimal spanning tree b. Dendrogram 

 
(*) The diameter of the vertices in a. corresponds to the eigenvector centrality of the sovereign; each sovereign is 

reported along with its long-term S&P credit rating as of April 4, 2013. 
Source: León et al. (2013) and authors’ calculations. 

 

The hierarchical clustering of the sovereigns' CDS market enabled León et al. (2013) to 

identify the existence of subsystems driven by geographical location and credit rating grade. 

Moreover, this method allowed for pinpointing the most influential sovereigns in the system, 

and for detecting the main transmission channels between sovereigns.     

                                                      
22 Research works on hierarchical clustering for analyzing the taxonomy of financial markets comprise several 
types of assets, such as stocks (Eryigit and Eryigit, 2009; Bonanno et al., 2004 & 2003; Onnela et al., 2003; 
Kullmann et al., 2002; Mantegna and Stanley, 2000; Mantegna, 1998 & 1999), fixed income securities (Gilmore et 
al., 2010), credit default swaps (León et al., 2013), interest rates (Aste and Di Matteo, 2005), currencies (Naylor et 
al., 2007; Mizuno et al., 2006), commodities (Gilmore et al., 2012).  
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Some other works based on hierarchical clustering have also tried to identify central and 

peripheral issuers (Marsh et al., 2003) and to overcome the empirical problem of noise in –

historical- correlation matrices (Naylor et al., 2007; Bonnano et al., 2003). All in all, most of 

the authors stress the usefulness of hierarchical clustering for characterizing financial 

markets by means of identifying their underlying structure, taxonomy or hierarchy (León et 

al., 2013). 

Regarding spectral partitioning, this method relies on spectral graph theory that associates 

connectivity with the eigen-analysis of certain matrices, such as the adjacency matrix 

(Kolaczyk, 2009). In that case, (i) the  -eigenvalues of the adjacency matrix   (i.e. the 

spectrum of the graph) are ordered from the largest to the smallest (i.e.           ) in 

absolute terms; (ii) starting with the largest eigenvalues (i.e. the most informative for the 

system)23, the entries of the related eigenvectors are sorted; (iii) the vertices corresponding to 

particularly large positive or negative entries, in conjunction with their immediate neighbors, 

are declared to be a cluster24.  

Regarding the final step of spectral partitioning, it is worth recalling that the eigenvector 

corresponding to the principal (i.e. largest) eigenvalue is the eigenvector centrality, a global 

measure of importance (e.g. centrality popularity, accessibility) within a network. As stated by 

Straffin (1980), since the principal eigenvector has all positive components, all other –

orthogonal- eigenvectors have positive and negative components, where such sign and level 

partition might pick out significant clusters or subsystems of the graph.  

For instance, based on the sovereigns' CDS market series used by León et al. (2013), the 

spectral partitioning confirms the existence of subsystems driven by geographical location 

(Figure 3).  

Figure 3 
Spectral partitioning of sovereign CDS correlation matrix 

(November 24, 2009 – February 22, 2012) 

 
Source: authors’ calculations based on León et al. (2013). 

                                                      
23 In practice attention is usually restricted to just the  -th largest eigenvalues, where       (Kolaczyk, 2009).  
24 For instance, Gould (1967) and Straffin (1980) implement this type of spectral analysis to geographical data. The 
analysis of successive eigenvectors enabled them to break road networks into successive strong nodal regions, and 
to classify each city in these regions.   
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In this sense, as highlighted by Albert and Barabási (2002), the interest in spectral properties 

is related to the fact that spectral density can be directly linked to the graphs topological 

features.  

 

3. Colombian payment and settlement networks 

Each transaction between financial institutions has to complete a sequence of processes, 

namely (i) the exchange of buy-sell orders; (ii) orders’ match and registry; (iii) the calculation 

of the parties mutual obligations (i.e. clearance); (iv) the transfer of monetary claims by the 

payer to the payee (i.e. payment); (v) the transfer of securities or financial instruments (i.e. 

delivery); and, finally, (vi) discharging the obligations between the parties as a consequence of 

the payment and delivery (i.e. settlement).25 In this sense, Colombian financial market 

infrastructures may be classified according to the processes they fulfill: trading and 

registration platforms, clearing and settlement systems, and large-value payment systems, as 

presented in Figure 4. 

Figure 4 
Colombian Financial Market Infrastructures 

 

 
a Vertices’ diameter and edges’ thickness correspond to the monetary value of transactions. b Edges representing 

net (gross) flows are in black (red). c Vertices in blue pertain to the retail payment system.  
Source: authors’ design. 

 

There are six trading and registration platforms (TPs). Regarding securities’ TPs, the Central 

Bank (Banco de la República - BR) owns and operates SEN (Sistema Electrónico de 

Negociación), the main sovereign securities’ TP. Sovereign securities may also be traded in the 

                                                      
25 These definitions concur with the standard terms used in payment and settlement systems, as reported by CPSS 
(2003).  
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Colombian Stock Exchange (Bolsa de Valores de Colombia - BVC) trading platform (i.e. MEC, 

Mercado Electrónico Colombiano), which also provides the trading and registration platform 

for other types of fixed income securities such as corporate, municipal and commercial 

papers, and for equity and financial futures. 

Deceval Registration (DSR) provides registration services for fixed income securities; it is 

owned and operated by Deceval securities settlement system (SSS). Derivex provides TP 

services for the energy futures market only. Local branches (subsidiaries) of international 

inter-dealer brokerage firms (Brokers) allow transactions between participants through 

hybrid (i.e. voice and data) systems. Regarding Peso/Dollar trading and registration 

platforms, SET-FX and Brokers provide TP services for foreign exchange market participants. 

Regarding clearing and settlement systems, BR owns and operates DCV (Depósito Central de 

Valores), a FMI that is both the securities settlement system (SSS) and the central securities 

depository (CSD) for sovereign securities exclusively. DCV and privately owned Deceval 

(Depósito Centralizado de Valores de Colombia) work under a Real-Time Gross Settlement 

System (RTGS) and a Delivery-versus-Payment (DvP) mechanism. Deceval provides CSD and 

SSS services for corporate and non-sovereign public securities, along with CSD services for the 

equity market. Central counterparty (CCP) services for futures markets are provided by CRCC 

(Cámara de Riesgo Central de Contraparte de Colombia). BVC provides both TP and SSS 

services for local equity markets. About foreign exchange, CCDC (Cámara de Compensación de 

Divisas de Colombia) provides clearing and settlement for the Peso/Dollar spot market, 

whereas the CRCC offers clearing and settlement services for Peso/Dollar non-delivery 

forwards. 

Four IMFs (vertices in blue) are in charge of the clearing and settlement of retail payments.26 

The Central Bank (BR) owns and operates both CENIT Automated Clearing House (ACH) and 

Cheques Clearing House (CCH), whereas commercial banks own ACH-Colombia. ATM provides 

clearing and settlement for transactions made through debit cards and credit cards, via point-

of- sale and automated teller machines.  

The only large-value payment system (LVPS), where all cash leg’s settlement (in local 

currency) takes place, is owned and operated by Colombia’s Central Bank (BR). This IMF is 

known as CUD (Cuentas de Depósito), and works under a Real-Time Gross Settlement System 

(RTGS) framework. Unlike many LVPS around the world (e.g. CHAPS in the United Kingdom), 

the Colombian LVPS works under a non-tiered framework in which all types of financial 

institutions (i.e. banking and non-banking) are eligible for an account at BR that allows for 

settling payments directly to other participants of the LVPS; furthermore, central bank’s 

ordinary liquidity facilities (e.g. repos) are not restricted to banking institutions either.  

In order to analyze and understand the structure of Colombian financial system three 

financial market infrastructures were selected as sources of transactions: the large-value 

payment system (CUD), the sovereign securities settlement system (DCV) and the currency 

settlement system (CCDC). The rationale behind this selection follows five facts: first, these 

                                                      
26 Retail payments are those not included in the definition of large-value payments, mainly consumer payments of 
relatively low value and urgency (CPSS, 2003). 
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three financial market infrastructures account for 88.4% of the value of the payments and 

deliveries within the local financial market infrastructure during 2012 (Banco de la República, 

2013); second, based on León and Pérez (2013), they are the three most systemically 

important local financial market infrastructures; third, these three infrastructures provide 

consolidated and standardized data for most of the existing trading and registering platforms; 

fourth, the sovereign securities settlement system (DCV) and the foreign exchange settlement 

system (CCDC) provide detailed data for the two largest local financial markets (i.e. local 

sovereign securities and foreign exchange); and, fifth, the large-value payment system (CUD) 

provides aggregated data for all financial transactions occurring in the local market (i.e. from 

all financial market infrastructures).27 Therefore, this selection may be considered 

comprehensive and representative, yet parsimonious.  

Consequently, three financial transactions networks will be analyzed: large-value payment, 

sovereign securities settlement and the foreign exchange settlement systems. The three 

corresponding datasets consist of daily transactions for year 2012, with each transaction 

containing the time (date, hour, minute, etc.), sender, receiver and amount. For the large-value 

payment system the original dataset (i.e. in edge list format) consists of 450.124 transactions 

during year 2012, whereas for the sovereign securities settlement system (DCV) and the 

foreign exchange settlement system (CCDC) datasets consist of 169.398 and 115.733 

registries, respectively.28  

Transforming the registries datasets from edge lists to adjacency matrices resulted in three 

datacubes (i.e. hypermatrices). Each datacube has dimensions      , where the first two 

dimensions correspond to the traditional adjacency matrix of size    , and the third 

dimension corresponds to the number of observations from January 3rd to December 28th 

2012 (     ). Thus, for the CUD, DCV and CCDC, the datacubes have dimensions 

           ,            ,          , respectively; differences in the first two 

dimensions results from not all financial institutions participating in all networks, whereas 

the coincidence in the third dimension results from choosing the dates in which the three 

networks concurrently operated.29    

 

                                                      
27 Data from the three selected financial market infrastructures does not capture the equity, corporate securities 
markets or retail-value payments directly. Besides not being representative (i.e. less than 12% of all payments and 
settlements), since all the cash settlement (i.e. payments) of the equity and corporate markets, and retail-value 
payments is included in the large-value payment system (CUD) data, the loss of detail is by no means critical. 
28 DCV data was filtered out from the CUD database. This is feasible and does not entail any loss of detail for the 
purpose of this document since CUD works under a real-time gross settlement framework and DCV under delivery-
versus-payment, where all related transactions are settled on an individual basis (i.e. one-by-one). Therefore, only 
transactions that do not result in an exchange of money (e.g. exchanging securities between accounts from a single 
financial institution or a single institution acting as a broker for different participants) are discarded, about 5.08% 
and 9.04% of the value and number of transactions, respectively. Moreover, the connective pattern and hierarchies 
of networks are not affected by such type of self-connecting transactions; only when considering the end-
buyer/seller of each transaction this filtering would affect the analysis of the network.      
29 Adjusting the datasets in order to work with the same number of observations (     ) is convenient for 
comparative purposes; since the number of observations (i.e. dates) of the original databases is 244, 244 and 236, 
respectively, the loss of information (i.e. eight non-consecutive days out of 244) due to this adjustment is trivial. 
Non-financial institutions (e.g. Ministry of Finance, IMFs) and the Central Bank were discarded from the datasets 
due to their special nature. 
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4. Network analysis on Colombian selected payment and settlement systems 

The rich scientific literature on networks and graph theory may have some bearing on the 

management of economic and financial system risk (Kambhu et al., 2007). Therefore, based on 

the network analysis metrics previously described, this section aims to classify the three 

selected datasets (i.e. CUD, DCV, CCDC) according to their connective patterns and hierarchical 

structure. Centrality measures for the three networks will be presented in order to further 

understand the connective pattern of the networks.  

 

4.1. Identifying connective patterns 

Figure 5 presents the graphs corresponding to the selected networks. As expected, due to the 

dimensionality of each system (i.e. the large number of vertices and edges), visual inspection 

and analysis of the graphs is rather difficult. 

Figure 5 
Weighted graphs 

CUD DCV CCDC 

   
Source: authors’ calculations. 

 

A simpler and more tractable alternative to a graph is an intensity plot, a method for 

displaying three-dimensional data on a two-dimensional plot by using a normalized color 

scale (i.e. from the lowest to the highest value) to display the values of the third dimension. 

Figure 6 presents the intensity plots corresponding to the adjacency matrices (first row) and 

weighted matrices (second row) for each network.  

Adjacency matrices result from the mode of the (236) observed networks, whereas weighted 

matrices correspond to the arithmetic sum of the 236 observed networks;30 in order to 

                                                      
30 Using the mode for the adjacency matrix is convenient since aggregating edges across time results in artificially 
dense networks; this is, since adjacency matrices are binary, the mere existence of a single transaction during the 
analyzed period would result in a disproportionate bias towards admitting that such edge exists on a regular basis. 
On the other hand, aggregating weighted matrices is sound since adding monetary values preserves the true 
intensity of the network.  
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facilitate visual inspection and analysis, the order of the participating financial institutions in 

the axis obeys their strength (i.e. high-strength vertices appear in the upper-left corner). Each 

(   ) element in the adjacency matrix corresponds to the existence of a local currency payment 

from   to   on a regular basis, whereas each (   ) element in the weighted matrix represents 

the contribution of all   to   payments to all system’s payments along the period under 

analysis.  

Figure 6 
Intensity plots 

 CUD DCV CCDC 
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Source: authors’ calculations. 

 

All six intensity plots share a common feature: connections and their corresponding 

intensities are not homogeneous across participants, but heavily and almost symmetrically 

concentrated in the upper-left corner of the plots, whereas most of the plots are empty. Such 

concentration provides a preliminary –yet illuminating- indication of the connectedness 

structure of the networks: they appear to be (i) sparse; (ii) inhomogeneous; and (iii) 

clustered. Moreover, loosely following the block analysis suggested by Craig and von Peter 

(2010), there may be evidence of tiered structures, where participants operate in a 

hierarchical manner in which lower-tier (i.e. peripheral) financial institutions deal with each 

other through high-tier (i.e. core) institutions; this is an interesting finding since the three 

systems under analysis are formally non-tiered, where all participating institutions may 

directly connect to each other.  

Regarding the sparseness of the networks, the estimation of density ( ) and average degree 

(  ) confirms the preceding visual inspection. As is evident in the left panel of Figure 7, CUD 

and DCV networks are particularly sparse, with densities below 0.10 (i.e. less than 10% of the 

potential links are observed), whereas CCDC network is sparse but with densities usually in 

the (0.15, 0.30) range. Likewise, the average degree of each network is much smaller than the 

number of participants (    ), which verifies the sparse nature of the networks and the 
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particularly high sparseness of CUD and DCV; for instance, CUD’s average degree during 2012 

was always below 12, much lower than the size of the network (        ).  

Figure 7 
Density and average degree 

Density Average degree 

  
Sample mean: CUD 0.07; DCV 0.05; CCDC 0.24 Sample mean: CUD 9.75; DCV 5.93; CCDC 10.66 

Source: authors’ calculations 

 

It is worth noting a sharp drop in the density and average degree levels starting from the first 

days of November, most evident for CUD and DCV networks. This drop concurs with the 

failure of a broker-dealer institution (i.e. Interbolsa) on November 2, an institution that had 

been implicitly or explicitly considered systemically important due to its connectedness.31   

The second moment of the distribution of the degree, measured by the in and out degree 

standard deviation, is presented in Figure 8. It is noticeable that the dispersion around the 

mean is rather high, with the sample mean standard deviation dominating the sample mean 

average degree for CUD and DCV.  

Figure 8 
Standard deviation of in and out degree 

Out degree In degree  

  
Sample mean: CUD 13.45; DCV 8.84; CCDC 8.43 Sample mean: CUD 13.45; DCV 8.96; CCDC 8.47 

Source: authors’ calculations. 

                                                      
31 Despite the appeal of analyzing the failure of an institution considered systemically important (e.g. IMF, 2013; 
IMF, 2013b; León and Pérez, 2013; León and Machado, 2013; León and Murcia, 2012; Saade, 2010; Cepeda, 2008), 
such issue is outside the scope of this document. Notwithstanding the magnitude of the effects of this failure in the 
other metrics (below), no particular analysis will be provided.   
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Since the degree is limited to positive numbers, such high dispersion around the mean 

suggests the presence of skewness and kurtosis. Estimating the third and fourth moments of 

the degree distribution confirms such suggestion: the sample mean of out (in) degree 

skewness is 2.05 (1.92), 2.34 (2.38) and 0.46 (0.49) for CUD, DCV and CCDC, respectively, 

whereas the sample mean of out (in) degree kurtosis is 6.43 (13.45), 9.48 (8.84) and 2.23 

(8.43), correspondingly.32 This concurs with most real-world networks displaying right-

skewed distributions.        

The histogram of the degree distribution is the customary graphical test for the presence of 

right-skewed (i.e. heterogeneous) connective patterns. Figure 9 presents three out degree 

histograms for a single day (i.e. June 1st, 2012). As expected, the distributions are right-

skewed, where the average degree (black triangle) does not characterize the distribution of 

edges among the vertices, especially for the CUD and DCV networks.      

Figure 9 
Out degree distribution 

(June 1st, 2012) 
CUD DCV CCDC 

   
Source: authors’ calculations. 

 

In order to display the in and out degree distribution for the entire sample, Figure 10 presents 

six intensity plots. In all cases the horizontal axis corresponds to in or out degree, the vertical 

axis corresponds to the   daily-observations analyzed, and the intensity corresponds to a 

logarithmic transformation of the frequency; such transformation enhances the visualization 

of differences across degree levels and observations.        

Concurrent with the single-day histograms in Figure 9, all systems consistently display right-

skewed in and out degree distributions. Therefore, concurrent with most real-world 

networks, the majority of vertices are of very low degree and few vertices are of very high 

degree; hence, the connectedness pattern of the three networks may be characterized as 

inhomogeneous.  

Likewise, Figure 11 confirms that the strength distribution is right-skewed; in this case the 

horizontal axis corresponds to each participant’s contribution to total payments for each 

observed day, where the intensity still corresponds to a logarithmic transformation of the 

frequency. This indicates that not only the connections but also the value of the payments are 

inhomogeneous in nature.  

                                                      
32 Kolmogorov-Smirnov normality tests were rejected at traditional significance levels.   
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Figure 10 
In and out degree distribution intensity plot 
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 Source: authors’ calculations. 

 

 
Figure 11 

In and out strength distribution intensity plot 
 CUD DCV CCDC 
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 Source: authors’ calculations 
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As usual, agreeing with Barabási and Albert (1999) seminal findings, the right skew in the 

distribution of degree and strength approximates to a power-law distribution. Figure 12 

exhibits the estimated exponent of the power-law for the degree (  ) and strength (  ), for 

each system under analysis, on a daily frequency.33  

Figure 12 
Degree and strength power-law exponent ( ) 
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 Sample mean: CUD 1.94; DCV 1.83; CCDC 2.43 Sample mean: CUD 1.93; DCV 1.83; CCDC 2.42 

Source: authors’ calculations 

 

Estimated exponents for the three systems agree with typical values for real-world networks 

(i.e.      ).34 However, it is evident that CUD and DCV exponents share a common (lower) 

level, whereas CCDC displays a higher exponent level; such difference suggests that 

connectedness in the CCDC is less heterogeneous, as manifested in the preceding intensity 

                                                      
33 The simplest method for estimating the exponent of the power-law ( ) consists of an ordinary least squares 
(OLS) regression on a logarithmic transformation of [§8]:   (  )    ( )     ( ). However, as stressed by Clauset 
et al. (2009), OLS fitting may be inaccurate due to large fluctuations in the most relevant part of the distribution 
(i.e. the tail). Therefore, all estimations of   employed the maximum-likelihood algorithm developed by Clauset et 
al. (2009).         
34 Values in the range       are typical, although values slightly outside it are possible and are observed 
occasionally (Newman, 2010). For instance, as reported by Albert and Barabási (2002), different authors converge 
to a 2.1 exponent for the in degree distribution of the World Wide Web, long-distance telephone calls, internet 
domains, and of neuroscientists’ co-authorship networks. Values close to 2.5 have been reported for networks 
consisting of mathematicians’ co-authors, Internet routers, and the out degree of the World Wide Web. Networks of 
sexual contacts have been reported to display values above 3, whilst food webs have been reported to display 
values close to 1.      
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plots (i.e. figures 6, 9, 10, 11). It is also evident that strength’s power-law exponent tends to be 

lower than degree’s; due to the functional form of the power-law distribution, this suggests 

that the distribution of the payments is more right-skewed (i.e. more heterogeneous) than the 

distribution of edges.  

Based on the graphical and numerical evidence previously reported, it is possible to 

characterize the networks under analysis as scale-free. Unlike any homogeneous network (e.g. 

Poisson or small-world), CUD, DCV and CCDC networks lack characteristic vertices, and 

exhibit structures where most vertices have very few connections and yet a few vertices have 

many connections.      

As formerly stated, other features have been identified as characteristic of real-world 

networks: low mean geodesic distances, high clustering coefficients, and significant degree 

correlation. Regarding the first, as presented in Figure 13, the mean geodesic distance is 

particularly low for the three networks. The CUD, DCV and CCDC networks have sample 

means about          ,           and           ; this may be interpreted as the 

average geodesic distance between financial institutions in the three networks being close to 

2 edges (i.e. one single institution in-between).  

Figure 13 
Mean geodesic distance ( ) 

 
Sample mean: CUD 2.20; DCV 2.21; CCDC 1.83 

Source: authors’ calculations 

 

The observed mean geodesic distances are much lower than the expected for homogeneous 

networks of the corresponding size (i.e.            ;            ;             ). 

They approximate to the characterization proposed by Cohen and Havlin (2010 & 2003), 

which states that networks with        (i.e. CUD and DCV) have a mean geodesic distance 

that behaves as        , whereas networks with      (i.e. CCDC) yield      (     )⁄ . In 

the first case, the expected mean geodesic distance of CUD and DCV is 1.60 and 1.56, 

respectively, whereas that of CCDC is 2.85. Therefore, since the mean geodesic distance of the 

three networks is much lower than the homogeneous case (     ), and it is closer to those 
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typical of ultra-small networks in the Cohen and Havlin sense, the scale-free characterization 

is reinforced.35   

The second additional characteristic of real-world networks is the evidence of clustering. As 

previously stated, in a random graph the probability of two vertices being connected tends to 

be the same for all vertices regardless the existence of a common neighbor. Thus, the 

clustering coefficient of a large random network should be close to zero (    (   )⁄ ), 

where the expected clustering coefficient for CUD, DCV and CCDC is about 0.07, 0.05 and 0.24, 

respectively. As presented in Figure 14, the observed clustering coefficients estimated for CUD 

and DCV adjacency and weighted matrices are much larger (i.e. more than twice) than those 

expected for a homogeneous network, and slightly higher in the case of CCDC. 

Figure 14 
Clustering coefficient ( ) 

Clustering coefficient Weighted clustering coefficient 

  
Sample mean: CUD 0.17; DCV 0.15; CCDC 0.24 Sample mean: CUD 0.25; DCV 0.19; CCDC 0.28 

Source: authors’ calculations 

 

Not only the evidence of clustering reinforces the non-random features of the three networks, 

but also the sample mean of the weighted clustering coefficient being higher than the non-

weighted conveys relevant information about the structure of the networks. According to 

Barrat et al. (2004), this fact reveals that clusters are more likely formed by edges with larger 

weights, which further underlines the importance of clusters in the structure of the network; 

likewise, Leung and Chau (2007) points out that this fact suggests that the topological (i.e. 

non-weighted) clustering underestimates the cohesiveness of the vertices within their 

neighborhoods.   

The third additional characteristic of real-world networks is the presence of significant degree 

correlation ( ), as measured by the degree assortativity coefficient in [§11]. Since edges in 

homogeneous networks are evenly distributed among vertices, where the degree of all 

vertices does not deviate significantly from the average degree, vertices’ degree should 

display no correlation. Nevertheless, as depicted in Figure 15, degree correlation appears to 

                                                      
35 The absolute difference of the observed mean geodesic distance for CUD, DCV and CCDC with respect to the 
mean geodesic distance for a random network is 4.6, 3.9 and 1.95 times the absolute difference with respect to the 
expected mean geodesic distance according to the “ultra-small” characterization by Cohen and Havlin (2010 & 
2003). 
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be significant for the three networks, where the sample mean out (in) degree correlation for 

CUD, DCV and CCDC is 0.37 (0.36), 0.31 (0.33) and 0.59 (0.60), respectively.  

Figure 15 
Degree assortativity coefficient (  ) 

Out degree In degree 

  
Sample mean: CUD 0.37; DCV 0.31; CCDC 0.59 Sample mean: CUD 0.36; DCV 0.36; CCDC 0.60 

Source: authors’ calculations 

 

The observed positive degree correlation, also known as assortative mixing by degree, where 

high-degree vertices have a larger probability to be connected to other high-degree vertices, is 

typical of social networks (e.g. co-authoring, film actors), and concurs with the presence of 

core-periphery structures within a network (Newman, 2010). Consequently, for the three 

systems under analysis, the level and sign of the degree correlation suggests the existence of a 

core-periphery structure, as the visualization and interpretation of intensity plots in Figure 6 

initially suggested.36 

Despite degree correlation is illustrative by itself regarding the topological features of the 

networks, the intensity of the links among the vertices (i.e. the strength) may reveal 

additional hierarchical and organizational structures within the systems, verifying (or 

contradicting) the degree-based correlation analysis. In this sense, based on Newman (2010), 

Figure 16 displays the strength correlation (i.e. assortative mixing by strength).  

 
 
 
 

 

                                                      
36 Evidence of assortative mixing in the selected Colombian payment and settlement networks contradicts the 
findings of Bech and Atalay (2008) for the Federal Funds Market network and of Soramäki et al. (2006) for Fedwire 
interbank network. However, those networks being restricted to commercial banks (in Sorämaki et al.) or 
depositary institutions (in Bech and Atalay) may determine the disassortative nature of those networks; in the 
selected Colombian networks all types of financial institutions are considered, where such heterogeneity may be 
leading the results. Alternatively, due to the size of those networks (e.g. Söramaki et al. above 7,000, and Bech and 
Atalay above 450), results may be biased by the tendency to observe disassortative networks by degree because 
the number of edges that can fall between high-degree vertices is limited with respect to the total size of the 
network; correspondingly, Bech and Atalay report that the dissasortative by degree nature of the Federal Funds 
Market network weakens or vanishes when weights are considered, a result also documented by Leung and Chau 
(2007) for other networks.      
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Figure 16 
Strength assortativity coefficient (  ) 

Out strength In strength 

  
Sample mean: CUD 0.13; 0.20; 0.37 Sample mean: CUD 0.15; 0.19; 0.34 

Source: authors’ calculations 

 

Evidence of significant positive correlation in the three networks confirms the presence of 

core-periphery structures typical of social networks (Newman, 2010). However, the strength 

correlation is lower than the degree correlation, which may be interpreted as the degree 

being more relevant as an explanatory variable than strength for explaining vertices’ affinity 

to connect to others. More importantly, the presence of significant correlation suggests that 

some preferential attachment exists within these networks. 

All the statistical properties of the three networks under analysis are presented in Table 2. 

Expected values for random networks are included –in brackets- when feasible.  

 

Table 2 
Basic statistics of the networks* 

Statistic CUD DCV CCDC 
  144  116  46  
  0.07  0.05  0.24  
   9.75  5.93  10.66  

        
 13.45/13.45  8.96/8.84  8.47/8.43  

        
 2.26/2.23  2.26/2.28  3.10/3.12  

        
 1.93/1.94  1.83/1.83  2.42/2.43  

  2.20 [     ] 2.21 [     ] 1.83 [     ] 
  0.17 [       0.15 [       0.24 [       
   0.25 [       0.19 [       0.28 [       

        
 0.36/0.37 [       0.33/0.31 [       0.60/0.59 [       

        
 0.15/0.13 [       0.19/0.20 [       0.34/0.37 [       

(*) Statistics presented are: number of vertices ( ); density ( ); average degree (  ); in/out degree standard 
deviation (        

); in/out degree Power-law exponent (        
); in/out strength Power-law exponent (        

); 

mean geodesic distance ( ); clustering coefficient ( ); degree correlation (        
); strength correlation (        

). 

Expected values for random networks are reported in brackets. 
Source: authors’ calculations. 
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4.2. Assessing centrality 

Since all visual and numerical evidence points out to the scale-free nature of the weighted and 

non-weighted versions of the networks under analysis, assessing the relative importance of 

those vertices concentrating connections or their related intensities becomes relevant. As 

previously mentioned, centrality is the most common concept regarding the relative 

importance of vertices within a network.  

The existence of vertices whose degree and strength excel over the rest of vertices is evident 

in Figure 10 and 11, respectively; those particularly connected and contributing vertices may 

be identified as central to the system they belong to. Figure 17 displays the relation between 

degree and strength for the whole sample, where a typical direct relation between both 

centrality metrics is rather clear; heterogeneity (i.e. skewness) in both metrics is again 

noticeable.   

Figure 17 
Degree and strength centrality 

CUD DCV CCDC 

   
Source: authors’ calculations. 

 

Yet, as previously stated, degree and strength are local measures of centrality; these two 

measures do not take into account the global properties of the network since the centrality of 

the adjacent vertices is not taken into account as a source of centrality. Figure 18 displays 

authority and hub centrality for the whole sample, where it is evident the presence of a typical 

direct relation between both metrics, which reveals that an institution being central usually 

involves a dual role in the systems: sending and receiving payments.  

     Figure 18 
Authority and hub centrality 

CUD DCV CCDC 

   
Source: authors’ calculations. 
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Akin to the distribution of degree and strength, authority and hub centrality are concentrated 

in a few vertices; as suggested by Newman (2010), the distribution of non-degree-related 

measures, while of lesser importance in the study of networks are nonetheless of some 

interest. As displayed in Figure 19, authority and hub centrality also follow a power-law 

distribution, which further emphasizes the skewed (i.e. heterogeneous) nature of the systems 

under analysis. 

Figure 19 
Authority and hub centrality power-law exponent ( ) 

Authority centrality Hub centrality 

  
Source: authors’ calculations. 

 

4.3. Identifying hierarchies 

Following Newman (2010) and Barabási (2003) about the information conveyed in the 

relation between degree and local clustering for identifying modular hierarchies, Figure 20 

exhibits the pair-wise relation between average degree37 (horizontal axis) and the local 

clustering coefficient [§17] for the whole sample. It is evident that heavily connected vertices 

are restricted to low clustering coefficients (i.e. less than 0.10 for CUD and DCV, and less than 

0.20 for CCDC), whereas poorly connected vertices may display a broad spectrum of 

clustering coefficients, including particularly high levels of local clustering (i.e. above 0.30).   

     Figure 20 
Degree and local clustering coefficient 

CUD DCV CCDC 

   
Source: authors´calculations. 

 

                                                      
37 This is the simple average of in and out degree.  
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Correspondingly, the local clustering coefficient as a function of average degree appears to 

follow a power-law distribution (Figure 21), as suggested by Barabási (2003) and 

Dorogovtsev et al. (2002) when characterizing modular networks; hence, the low clustering 

coefficient of central vertices reveals that they are not connected to vertices in numerous 

modules, as the standard scale-free model suggests, whereas peripheral vertices tend to share 

neighbors among them. Therefore, the three systems appear to be modular scale-free 

networks, where such modularity exceeds the framework of standard network models (i.e. 

Poisson and scale-free). 

     Figure 21 
Local clustering power-law exponent ( ) 

 
Sample mean: CUD 3.51; DCV 3.01; CCDC 4.37 

Source: authors’ calculations 

 

Regarding hierarchical clustering, which typically yields tree-like graphs that represent 

hierarchical relations among vertices based on a measure of the intensity of their interaction, 

Figure 22 presents the maximal spanning trees for the weighted aggregated networks under 

analysis, which results in the “skeleton” or the “communication kernel” of the network 

(Braunstein et al., 2007; Wu et al., 2006; Kim et al., 2005). In order to assist visual inspection 

and analysis, the size of each vertex results from its authority and hub centrality [§16], where 

the former (latter) metric determines the width (height) of the square; also, vertices are 

assigned different colors according to their remoteness with respect to those vertices that 

may be identified as pertaining to the core (red vertices) of the maximal spanning tree.  
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Figure 22 
Maximal spanning trees 

   
CUD DCV CCDC 

 

 
 

Source: authors’ calculations 

 

The three “skeletons” resulting from the maximal spanning trees have some common features. 

For instance, a few vertices (in red) are interconnected in the center of the skeleton, generally 

corresponding to those displaying the largest (i.e. the most hub and authority central) and 

most connected vertices in the tree; these few central vertices may be considered as the 

“spine in the skeleton” or the “superhighways” within the system (Braunstein et al., 2007; Wu 

et al., 2006). As expected from an assortative mixing network, high-degree nodes tend to stick 

together, and to be surrounded by clusters of other less connected peripheral vertices that 

tend to be densely connected within each cluster.  

It is also worth noticing that the almost perfectly-squared shape of these few central vertices 

reveals a dual role as hubs and authorities within the network, where they serve as the parent 

node for less connected vertices, with those less connected vertices making part of a 

hierarchical module or community around one of these few central vertices. In this sense, 

despite the resulting spanning tree simplifies the system excessively (Serrano et al., 2009), it 

retains its salient features (Gilmore et al., 2010), such as its core-periphery and hierarchical 

structure.  

A critical, yet non-observable (due to disclosure reasons) feature in the maximal spanning 

trees is that some of the largest and most connected vertices (in red) overlap across the three 

networks. One financial institution concurs in the three networks as a central vertex; three 

concur in two of them; three appear just in one network. Such overlapping is important for 

the stability of the financial infrastructure and for the financial system as whole. As stressed 

by CPSS (2008), financial institutions overlapping across systems may increase the 

interdependence of domestic systems, with such interdependence raising the potential for 

disruptions to spread widely and quickly across the financial system.  
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Comparing the three maximal spanning trees reveals that the CCDC network differs from the 

other two. For example, the size of the vertices (i.e. their authority and hub centrality) located 

in the core of the graph is not much larger than several others around them, whilst in CUD and 

DCV networks the differences tend to be manifest. As with preceding metrics and 

visualizations, CCDC network appears to be less heterogeneous.  

Figure 23 presents the dendrogram for each weighted network. Akin to the maximal spanning 

tree, the dendrogram summarizes the process of clustering among vertices in a tree-like 

graph. In the CUD dendrogram it is evident the existence of two main partitions: a five-vertex 

core (in red) that dominates the value of payments and a 139-vertex periphery, where the 

former (latter) represents about 37% (63%) of the payments, with the five-vertex cortex 

matching the five central vertices in the maximal spanning tree. Within the periphery other 

clusters emerge based on the intensity of their connections.  

The DCV dendrogram displays a similar structure. However, in the DCV the core and 

periphery appear to be even more heterogeneous. The core consists of twelve vertices that 

represent about 73% of the payments, where these twelve vertices correspond to the four red 

vertices in the maximal spanning tree (in red) plus other five well-connected vertices that are 

directly linked to these four.  

The CCDC dendrogram verifies the distinct features of this system when compared to CUD and 

DCV. The dendrogram is less dispersed (i.e. it is more homogeneous), with two main clusters, 

where the most representative (in red) is composed of the three red vertices in the maximal 

spanning tree plus other twelve vertices; this fifteen-vertex core contributes with 32% of the 

payments, whereas the remaining 31-vertex periphery contribute with 68%.  

Figure 23 
Dendrograms 

CUD DCV CCDC 

   
Source: authors’ calculations. 

 

Therefore, dendrograms confirm the hierarchical structure of the networks under analysis. 

The intensity of the linkages among financial institutions reveals communities or groups 
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within the network, in which core (peripheral) institutions are intensely connected among 

them.  

Finally, following Straffin (1980), the spectral partitioning of the weighted matrix uses 

differences in the sign and level of the first two non-principal eigenvectors to pick out 

significant clusters or subsystems in the corresponding graph. Figure 24 presents the spectral 

partitioning of the cumulative weighted matrix for the three systems38, where the spectral 

space corresponds to the conjunction of the second and third eigenvector, and where the size 

of the vertex corresponds to the value of the first eigenvector’s (i.e. eigenvector centrality) for 

each financial institution.  

Figure 24 
Spectral partitioning 

CUD DCV CCDC 

   
Source: authors’ calculations 

 

It is evident that there are vertices that display particularly large positive or negative 

deviations from the origin (i.e. the (0,0) coordinate), where most of these remote vertices (in 

red) coincide with those considered as central in the maximal spanning tree and the 

dendrograms. Therefore, as suggested by Kolaczyk (2009), these remote vertices, in 

conjunction with their most immediate neighbors, may be declared to be a cluster. Very close 

to the origin of each spectral partitioning plot lie the peripheral vertices, which are of low size 

due to their low eigenvector centrality.       

 

5. Emergent properties of complex adaptive systems: modular scale-free payment and 

settlement networks 

Disparate networks show the same three tendencies: short chains, high clustering and scale-free 

link distributions; the coincidences are eerie, and baffling to interpret (Strogatz, 2003). 

Similarly, Ravasz and Barabási (2003) and Barabási (2003) point out that many real networks 

in nature and society share two generic properties: they are scale-free and they display 

hierarchical organizations (i.e. high degree of clustering), where standard models reproducing 

                                                      
38 Since the weighted matrix is non-symmetrical (i.e. directed), the weighted matrix is no longer guaranteed to 
have a complete real spectrum. Therefore, spectral analysis commonly uses a similarity transformation consisting 
of multiplying the matrix by its transpose (Kolaczyk, 2009; Gkantsidis et al., 2003). Such transformation is the 
same used in [§15] for attaining the hub matrix ( ).       
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scale-free (e.g. Barabási and Albert, 1999) or random structures (e.g. Erdös and Rényi, 1960) 

are blind to the modular hierarchies observed in real-world networks; this is, the Poisson and 

the scale-free models do not explain the emergence of order from chaos. 

Likewise, selected Colombian payment and settlement networks are ultra-small, and exhibit 

the connective pattern (i.e. scale-free) and the hierarchical structure (i.e. modularity) typical 

of many real networks in nature and society. Financial and real networks coinciding in their 

size and connective pattern is by no means new, but their modular hierarchy has not been 

documented to the best knowledge of the authors.  

If isomorphic or “system laws” (Von Bertalanffy, 1972 & 1950) govern financial and real 

networks, there should be some commonalities that may help explain financial systems’ 

structure and dynamics as non-coincidental outcomes of randomness or chance; in fact, 

financial networks literature agrees on finding similar structures across different countries 

and markets39, which may already signal the existence of some sort of isomorphism among 

financial systems as well.  

The most evident commonality across financial systems is their complex adaptive nature, and 

it may also be at the origin of their formation and the resulting scale-free and modular 

architecture. In this sense, emergence, the phenomenon whereby well-formulated and robust 

aggregate behavior arises from individual behavior (Miller and Page, 2007) may explain the 

connective patterns and hierarchical organizations herein documented, a form of organized 

complexity in the Colombian payment and settlement systems. This concurs with Krugman 

(1996) view of the economy as a self-organizing system.    

Therefore, results provide some elements that financial and economic theory has not been 

successful at capturing or including in models, and –therefore- may help to understand the 

formation and structure of financial networks as emergent properties of complex adaptive 

financial systems.  

The proposed analytical approach (i.e. emergence from complex adaptive financial systems) is 

divided in two parts. The first one address the connective patterns, where the scale-free and 

ultra-small properties result from the evolution of a network of institutions within the 

competitive environment of financial systems. The second addresses modularity as the result 

of financial institutions inadvertently organizing themselves into a self-organized critical state 

(Bak, 1996), where the particular emergent modular hierarchy favors evolution within a 

structure that leads the system away from critical regimes.    

 

 

 

                                                      
39 León and Pérez (2013b) document that some financial networks diverging from the typical structure in the 
Colombian case result from regulatory issues. For instance, the sovereign securities SEN network has a few 
participants (    ), it is dense (   ) and homogeneous (e.g. all participants share the same degree,     ) 
due to regulatory requirements imposed to the participants, which are considered as a club of market-makers; 
however, as point out by León and Pérez, such homogeneity reinforces inhomogeneity at an aggregated level (i.e. 
when adding all sovereign securities’ trading and registering platforms). 
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5.1. Scale-free financial networks: adaptation within a competitive environment 

Despite the presence of power-law degree distributions in networks was well documented 

before Barabási and Albert (1999)40, their work is particularly influential since they are 

largely responsible for starting the current wave of interest in scale-free networks, and 

because they make three important contributions (Newman et al., 2006): first, they verify that 

a power-law degree distribution is a property of many real-world networks; second, they 

explain the main properties of such networks by introducing a model in which a network 

grows dynamically; third, they propose a specific model of a growing network that generates 

power-law degree distributions.41  

Regarding the second and third contributions, Barabási and Albert (1999) state the main 

features of scale-free networks: growth and preferential attachment. About growth, all 

standard models before Barabási and Albert assumed that networks were static, with an 

initial fixed number of vertices ( ) that are connected under some distributional assumption, 

without modifying  , whereas Barabási and Albert acknowledged that real-networks 

continuously expand by the addition of new vertices that are connected to those already 

present in the system. 

Furthermore, Barabási and Albert linked the growing nature of real-world networks to 

another real-world feature: preferential attachment.42 Instead of assuming that new vertices 

connect to the existing vertices in a random (i.e. uniform) manner, the probability of 

connecting to an existing vertex depends on its present degree; this is, growth and 

preferential attachment allow for early nodes to have more time to acquire links, and allow 

for early nodes to be selected more often and to grow faster than their younger and less 

connected peers (Barabási, 2003), akin to a seniority-based rich-get-richer phenomenon.   

However, seniority (i.e. the advantage of older nodes) may be limited for explaining 

preferential attachment.43 In a competitive environment each vertex has some ability to get 

                                                      
40 Barabasi and Albert (1999) introduced the scale-free term for networks with power-law degree distributions, 
documented its ubiquity in many types of real-world networks, and proposed an explanatory framework and the 
corresponding genetaring model. However, other authors before them had documented degree distributions 
approximating a power-law, such as Price (1965) for scientific citation networks; Watts and Strogatz (1998) for 
networks of film actors; Albert et al. (1999) for the World Wide Web (i.e virtual network of hyperlinked 
documents); and Faloutsos et al. (1999) for the physical network of computers and routers that compose the 
Internet. 
41 The standard model introduced by Barabási and Albert (1999) results in a scale-free network with γ=2.9±0.1, 
about the same order exhibited by some real-world networks such as the collaboration network of movie actors 
(     ), the World Wide Web (     ), the electrical power grid of the western United States (   ), and the co-
citation of scientific publications (   ). 
42 Preferential attachment is a systems’ feature documented before Barabási and Albert (1999). Simon, Nobel Prize 
in economics (1978), suggested a growth model producing skewed distributions (Simon, 1955). Similarly, Price 
(1976) used a “cumulative advantage” rationale for bibliometrics.   
43 For example, the five most central financial institutions in CUD network were established –on average- 57 years 
ago, whereas the average credit institution was established 44 years ago. A handful of banks that are non-central to 
the three networks were established about a century ago, whereas three out of the five most central were 
established less than fifty years ago. Therefore, seniority provides a rather weak rationale for preferential 
attachment in the Colombian case (with data from Mora et al., (2011) and public information from Financial 
Superintendence of Colombia).       
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related relative to its peers, where this ability may be related to some metric of fitness (e.g. 

seniority, size, geographical location, popularity, etc.); in this sense, the fitness model allows 

us to describe networks as competitive systems in which nodes fight fiercely for links 

(Barabási, 2003).  

Therefore, the intuition behind the scale-free model may be generalized as follows: together, 

growth and preferential attachment within a competitive environment allow for fit vertices to 

progressively attract new edges, and allow for fit edges to be selected more often and to grow 

faster than their less attractive peers, resulting in a fit-get-rich phenomenon that leads to a 

scale-free connective pattern.  

When choosing the right metric(s) for fitness, this generalization allows for understanding 

diverse types of social dynamics, such as the formation of agglomerations by humans (e.g. 

cities) or animals (e.g. termites colonies), the structure of the World Wide Web, the networks 

of scientific co-citation, etc.; moreover, as will be addressed below, it allows for understanding 

modular hierarchies within financial systems.  

Both features, growth and preferential attachment, are intricately related to the elements that 

define a complex adaptive system. Together, growth and preferential attachment are behind 

the recombination and system evolution element stated by Anderson (1999), which points out 

that systems evolve and adapt over time based on the entry, exit and transformation of agents. 

Likewise, it is also related to the system’s adaptive process resulting from those processes 

where building blocks are recombined and revised continually as the system accumulates 

experience (Holland, 1998).   

In financial networks growth and preferential attachment are marked and interrelated 

features as well. Financial systems are not static; they are the result of a long evolutionary 

process where new financial institutions, business niches or cognitive structures (i.e. 

schemata) appeared, some old ones disappeared, and where some existing ones recombined 

(e.g. merged) in a new form, with such evolution modifying the main characteristics (e.g. 

pattern, intensity, direction) of the connections between financial institutions. As illustrated 

by Miller and Page (2007), agents in the stock market actively adapt and alter the 

fundamental behavior of the system and, in so doing, force it into new realms of activity. 

Moreover, this evolutionary process is by no means random, but is related to financial 

systems’ competitive environment and to the mutually dependent adaptive efforts of 

institutions to improve their own fitness, which result in financial institutions acting based on 

the fitness of their peers, and of financial market’s niches and schemata.44 Accordingly, 

financial institutions may decide (i) who to make deals with based on its counterparties’ 

efficiency, costs, size, connectedness, seniority, geographical location, market position, access 

to last-resort lending, reputation, etc.; (ii) to modify its business line based on the rise (or fall) 

of new (old) market niches; and (iii) to modify its strategies (e.g. trading rules) based on 

                                                      
44 As highlighted by Anderson (1999), adaptive efforts of individual agents that attempt to improve their own payoffs 
is a distinctive feature of complex adaptive systems, where each agent is to be considered adaptive if its actions can 
be assigned a value (e.g. payoff, fitness), and the agent behaves so as to increase this value over time dependent on 
the choices of other agents. Clearly, this is the case of financial institutions.   
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competitors’ success or technological advances.45 Therefore, as in Barabási and Albert (1999) 

seminal work, the evolution of financial systems around preferential attachment principles 

results in a scale-free topology, which also results in financial networks being ultra-small 

according to Cohen and Havlin (2010 & 2003). 

In this sense, financial systems evolutionary process (i.e. growth) implies an adaptation 

process within the network, where institutions, business niches and schemata evolve based 

on a preferential attachment principle, with the fittest institutions, niches and schemata 

dominating the networks’ connective pattern; hence, ultra-small and scale-free financial 

networks appear to be an emergent property of complex adaptive financial systems.  

 

5.2. Self-organizing criticality of payment and settlement systems: order emerging 

out of chaos   

There is a certain agreement regarding a consequence of a system being characterized by 

power-law distributions: the system may be organizing itself (Andriani and McKelvey, 2009; 

Dorogovtsev and Mendes, 2003; Strogatz, 2003; Barabási, 2003; Barabási and Albert, 1999; 

Bak, 1996). In this sense, the origin of the architecture of networks is their self-organization 

(Dorogovtsev and Mendes, 2003), with power-laws as the patent signature of self-

organization in complex systems (Barabási, 2003).    

Furthermore, evidence confirms that with adaptive agents a system self-organizes in such a 

way that frequent small changes yield frequent small consequences for the system, and 

exceptional critical consequences, as in a power-law distribution of events. In this way, as 

highlighted by Miller and Page (2007), due to adaptive agents’ risk aversion, the system 

configures itself in a way that mitigates the overall risk by inhibiting criticality from 

emerging.46 This phenomenon, commonly referred as self-organizing criticality (Bak, 1996), is 

consistent with one of the key elements of complex adaptive systems stated by Anderson 

(1999): coevolution to the edge of chaos.47 

Self-organizing criticality is convenient from an evolutionary perspective. As changes have 

power-law distributed impacts, systems tend to be robust to everyday behavior, a condition 

that agrees with agents’ search for a stable environment; but, at the same time, the system is 

exposed to rare massive transformations. Thus, the system adapts to a precipice, a state that 

                                                      
45 The fitness of niches and schemata may explain the rise and fall business lines and strategies. For instance, in the 
financial sector case, it may explain the rising importance of the e-trading niche, and of algorithmic trading as a 
widespread schema (i.e. a cognitive structure that determines institutions’ actions).      
46 Adaptive systems tend to be inherently risk averse because, despite the potential gains to be made by taking 
even a favorable risk, it takes only a single loss to kill of an agent and eliminate it from the system forever (Miller 
and Page, 2007).  
47 Coevolution to the edge of chaos is a dynamic equilibrium in which small changes in behavior can have small, 
medium or large impacts on the system as a whole, according to a power-law, where occasional large evolutionary 
cascades associated with small changes in behavior allows the system to leap to higher fitness peaks than it would 
likely locate thorough evolutionary refinement (Anderson, 1999). On the other hand, chaotic systems are those in 
which small changes tend to yield large impacts, whereas static systems are those in which small changes always 
lead to small impact; therefore, chaotic systems can reach extraordinary fitness peaks but cannot remain on them, 
whilst static systems can never improve much; loosely speaking, complexity lies somewhere between order and 
chaos (Miller and Page, 2007). 



48 

 

is optimal and fragile, rich in performance yet rather exposed (Miller and Page, 2007), a state 

that matches the well-known scale-free networks’ property of being robust to random 

failures, yet fragile to targeted attacks.  

From a biological perspective, given that mutations occur at random, natural selection favors 

designs that can tolerate haphazard insults (Strogatz, 2003). And social and biological 

networks suggest that modularity offers that kind of robust design. 

According to Simon (1962), the existence of clusters of dense interaction in social systems 

identifies well-defined hierarchical structures that may be defined as nearly decomposable 

systems. In such type of systems each cluster may be regarded as a subsystem composed of 

subordinates led by a boss, in whom the interactions among subsystems are weak, but not 

negligible, where intra-component linkages are generally stronger than inter-component 

linkages.  

Hierarchical modularity and the resulting near decomposability of real-world systems are by 

no means accidental.48 Hierarchical modularity has significant design advantages, such as 

making multitasking possible: while the dense connections within each module help the 

efficient accomplishment of specific tasks, the hubs coordinate the communication between 

the many parallel functions (Barabási, 2003). Moreover, as highlighted by Anderson (1999), 

since most components or subsystems receive inputs from only a few of the system’s other 

components, change can be isolated to local neighborhoods; hence, by limiting the potential 

cascades, modularity protects the systemic resilience of both natural and constructed 

networks (Haldane and May, 2011).  

In the financial systems case, hierarchical modularity and near decomposability may be 

advantageous for the aforementioned reasons. For instance, different financial industry’s 

niches (e.g. securities trading, derivatives, corporate banking, and asset management) may 

profit from each niche operating in a specialized subsystem, with fit financial institutions 

providing the main linkages among subsystems. Additionally, financial institutions may prefer 

to connect to fit institutions in search of firewalls against risks posed from other less fit ones 

to prevent criticality; in this sense, as stressed by Schweitzer et al. (2009) and Haldane 

(2009), heterogeneities of agents can turn out to become a source of stability for financial 

systems.  

Financial institutions’ fitness may come in several forms. A preliminary list of sources of 

fitness may include the following: (i) solvency; (ii) liquidity; (iii) seniority; (iv) access to 

payment and settlement systems (e.g. formal and de facto tiered structures); (v) access to 

central bank’s accounts and ordinary liquidity facilities; (vi) access to last-resort lending; (vii) 

systemic importance49; (viii) fulfilling a holding or parent position within a conglomerate; (ix) 

privileged access as a counterparty of the central bank in its implementation of monetary 

policy (e.g. primary dealers); (x) privileged access as underwriter of sovereign securities (e.g. 

                                                      
48 Despite the dominance of hierarchical modularity in real-world networks, Ravasz and Barabási (2003) 
acknowledge that hierarchy is absent in networks with strong geographical constraints, as the limitation on the 
link length strongly constraints the network topology.  
49 As acknowledged by Haldane and May (2011), in financial ecosystems, evolutionary forces have often been 
survival of the fattest (i.e. too-big, too-connected, too-complex-to-fail) rather than the fittest. 
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market makers); (xi) geographical location; (xii) long-standing business commitment (e.g. 

tradition); and (xiii) standard barriers to entry (e.g. economies of scale, sunk costs).   

Consequently, as highlighted by Simon (1962), the search for fitness yields an evolutionary 

explanation of observed hierarchies based on selectivity; this is, direction to the system is 

provided by the stability of complex forms, but this is nothing more than the survival of the 

fittest (i.e. of the stable).  

In this sense, financial institutions adapt to the feedback information from their search for 

improving their own fitness, which includes selective trial and error and their previous 

experience.50 Financial systems’ selective evolution yields fit overall configurations in the 

form of stable path dependent hierarchies, with small (frequent) changes affecting them as in 

a power-law distribution of events (i.e. again, a self-organizing criticality); thus, complex 

adaptive systems tend to be particularly path dependent. Concurrently, as pinpointed by 

Inaoka et al. (2004), financial systems must be based upon a stable network of transactions in 

order to fulfill its role.  

Figure 25 makes a simple –yet informative- test for stable configurations for the three 

selected Colombian payment and settlement networks. The entire sample of each network 

was divided in four different subsamples, corresponding to a week, a month, a semester and 

the whole sample51; for legibility reasons, only  
 
 of the most contributing institutions by their 

strength are displayed. Since the position of vertices in the axis across subsamples is fixed for 

each system, if the configuration (i.e. hierarchy) of each network is stable there should be no 

significant differences among the four intensity plots for each network.   

 Figure 25 
Intensity plots (subsamples) 

CUD DCV CCDC 

   
Source: authors’ calculations. 

  

Subsamples appear to be self-referential, especially for CUD and DCV. There is a vivid 

characteristic pattern that not only resembles across subsamples but also resembles the 

                                                      
50 Thus, since selectivity drives from various rules of thumb, or heuristics, that suggest which paths should be tried 
first and which leads are promising (Simon, 1962), selectivity is intimately related to the existence of agents with 
schemata, one of the elements that characterize complex adaptive systems according to Anderson (1999).   
51 1-week corresponds to the first week of February; 1-month corresponds to February; 1-semester corresponds to 
February-July; 1-year corresponds to February-November. January and December were discarded in order to avoid 
end-of-the-year seasonality.    



50 

 

original sample (1-year). In the sense of Mandelbrot and Hudson (2004) and Peak and Frame 

(1994), intensity plots appear to be self-affine; that is, they appear to be made of shrunken, 

but distorted copies of the whole –a characteristic property of fractals.     

Yet, the observed similarity and the suggested stable configuration are by no means 

anticipated. For instance, as in León and Pérez (2013b), the DCV network is the sum of three 

different sovereign securities networks resulting from two anonymous trading platforms (i.e. 

SEN and MEC) and an Over the Counter (OTC) registering platform, where 77% of the volume 

corresponds to anonymous (i.e. blind) interactions among financial institutions. Therefore, 

since most of the transactions are anonymous, the evolution and emergence of hierarchy by 

means of selectivity is somewhat unexpected, but not unexplainable: as highlighted by León 

(2013), MEC is open to a broad base of financial firms (about 140), where each firm 

determines a quota or exposure limit for each other potential counterparty, where this limit 

follows active credit risk assessment, with such assessment resulting from financial 

institutions adapting to the feedback information from their search for improving their own 

fitness. Additionally, SEN, which contributes with 61% of the volume, is restricted to a select 

group of 15 financial institutions (i.e. market makers) chosen based on some set of fitness 

criteria, where trades between them are anonymous and counterparty limits or quotas do not 

exist.  

On the other hand, OTC transactions dominate the local foreign exchange market (i.e. 80% of 

the volume), where their bilateral nature may explain the emergence of a stable hierarchy in 

the CCDC network. In this case, it is likely that financial institutions choose their 

corresponding counterparties in the foreign exchange market by adapting to the feedback 

information from their search for improving their own fitness. Regarding CUD, which 

aggregates DCV, CCDC and other non-directly-observable networks, it displays a stable 

configuration as well, where most of the non-directly-observed transactions correspond to 

bilateral fund transfers (i.e. non collateralized lending and discretional debits/credits from/to 

depositary institutions). 

Besides, Simon (1962) stresses that the salient concentration of interactions within clusters 

results in nearly decomposable systems agreeing with the “empty world hypothesis”, where 

most things are only weakly connected with most other things; likewise, systems in which 

each vertex is connected with almost equal strength with almost all other vertices are rare. As 

stressed by Anderson (1999), order arises in complex adaptive systems because their 

components are partially, not fully, connected; on the other hand, full connectedness (e.g. 

   ) results in decay if feedback dampens out change, or chaos if feedback amplifies 

changes.52  

Interestingly enough, the “empty world hypothesis” agrees with the particular sparseness of 

real-world networks. Furthermore, this hypothesis also matches the sparseness of the 

                                                      
52 Empirical evidence of the non-linear effects of increasing connectedness in a financial network is provided by 
Battiston et al. (2012), Gai and Kapadia (2010) and Battiston et al. (2009), who find that financial fragility feedback 
(i.e. a financial accelerator mechanism) may amplify the effect of an initial shock and lead to a widespread systemic 
crisis; this is, the relation between connectivity and systemic risk is not monotonically decreasing. However, their 
approach is based on random (i.e. non-real-world) structures. 
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selected Colombian payment and settlement networks, either measured by density or average 

degree or by the visual inspection of the intensity plots (Figure 6).  

Assenza et al. (2011) propose a specific model of an adaptive network that generates modular 

scale-free architectures. Their model yields a modular scale-free architecture from two 

competing feedback mechanisms: homophily and homeostasis. Homophily is related to 

increasing the intensity of interactions with other similar institutions, whereas homeostasis 

consists of an intensity preservation mechanism that weakens prior interactions in favor of 

new ones; together, these two feedback mechanisms lead to the emergence of real-world (e.g. 

social an neural systems) features such as scale-free distributions of interaction weights, 

strong modularity, and local synchronization (Assenza et al., 2011). 

The competition between homophily and homeostasis may applied to financial systems with 

some adjustments. The selective trial and error process of Simon (1962) may be behind 

increasing the intensity of interactions with other institutions, where such process may be 

related to financial institutions’ fitness, and not similarity or corporate ownership, whereas 

the intensity preservation mechanism (i.e. homeostasis) may be related to financial 

institutions being forced to counter-balancing the intensity of their aggregated interactions 

due to finite resources (e.g. money, securities, risk limits). This new model would explain the 

main features of real-world adaptive networks, namely the intensity of intra-module edges at 

the expense of inter-module edges within a scale-free network, and the sparseness of 

networks. Based on the findings of this document, this model could provide some insights 

regarding the Colombian payment and settlement networks as well.    

 

6. Final remarks 

Evidence verifies that Colombian payment and settlement systems are modular scale-free 

networks. Furthermore, based on complex adaptive systems theory, evidence also strongly 

suggests that local payment and settlement systems have self-organized into the observed 

scale-free and hierarchical structure, a ubiquitous (i.e. isomorphic) structure in social 

networks that favors everyday robustness and performance in exchange for rare episodes of 

fragility but rapid evolution.  

Therefore, evidence reported here supports three important preceding propositions: (i) the 

economy is a complex adaptive system (Holland, 1998); (ii) the economy is a self-organizing 

system (Krugman, 1996); and (iii) in the sense of Bak (1996), financial systems are complex 

adaptive systems that have self-organized in order to prevent criticality from arising. 

Several consequences, both theoretical and practical, arise from these findings. From a 

theoretical point of view evidence vindicates contemporary calls for a new fundamental 

understanding of the structure and dynamics of financial networks (e.g. Farmer et al., 2012; 

Haldane and May, 2011; Schweitzer et al., 2009; Haldane, 2009; Kambhu et al., 2007); this is 

precisely the type of understanding that was absent before and during the financial crisis that 

started around 2007. 
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Attaining such new fundamental understanding requires fundamental shifts in the way 

economic analysis approaches financial systems as well. Despite the urge for considering the 

economy as a complex system can be dated back several decades ago (e.g. Holland, 1988; 

Kauffman, 1988; Krugman, 1996; Bak, 1996)53, at present economics stands out as the branch 

of science where the study of complex systems has had the least impact (Farmer et al., 2012).  

In turn, the required fundamental shifts in economic analysis are by no means new, but 

correspond to persistent and idealistic assumptions about the functioning of the economy and 

financial markets. For instance, ignoring that financial time-series do not approximate a 

random-walk (i.e. Brownian motion) but a power-law (e.g. Taleb, 2007; Sornette, 2003; 

Stanley et al., 2002; Bak, 1996; Mandelbrot and Van Ness, 1968; Fama, 1965; Mandelbrot, 

1963), not only has misled risk management about the likelihood and impact of extreme 

events, but has also obscured the main evidence of financial markets’ self-organized criticality, 

and has favored self-correcting static equilibrium approaches to financial markets.  

Likewise, assumptions of linearity neglect the existence of feedback loops among agents and 

the resulting self-organization. Under such assumptions of linearity the system’s response is 

proportional to the size of the impact, as in static equilibrium systems, where large 

fluctuations can occur only if many random events accidentally pull in the same direction, which 

is prohibitively unlikely (Bak, 1996). This type of nonlinearity of financial systems’ has 

appeared recently in related literature, mainly after the crisis (e.g. Haldane, 2009; May et al., 

2008; Kambhu et al., 2007), where there is an explicit recognition that feedback mechanisms 

(e.g. margin calls, fire sales, herding), along with financial networks’ connective patterns, 

derive in the rise of catastrophic events from modest local changes.54      

Furthermore, the traditional assumption of homogeneity in financial systems (e.g. Allen and 

Gale, 2000; Freixas et al., 2000) and the resulting emphasis on average or representative 

behavior, ignores the true –inhomogeneous- nature of financial systems, potentially 

misleading the discussion about the effects of connectedness on financial contagion. Also, as 

stressed by Craig and von Peter (2010), in such homogeneous –flat- environments there is no 

role for financial intermediation, whereas homogeneity spells the inability of a system to 

adapt (Kambhu et al., 2007). Therefore, homogeneity is not a feature we often observe in the 

world but rather a necessity imposed on us by our modeling techniques (Miller and Page, 2007).  

The aforementioned theoretical implications of the quantitative results of this document are 

particularly challenging for traditional economic analysis. Practical implications are equally 

defiant.  

If the connective pattern and hierarchical structure of financial markets are the result of self-

organized criticality, where small changes yield frequent small consequences and exceptional 

                                                      
53 Interestingly, Adam Smith may be credited for the first view of the economy as a complex adaptive system, 
where the “invisible hand” is nothing but the self-organization emerging from independently acting economic 
agents. 
54 As documented in León et al. (2012), the crisis that begun about 2007 display the disproportionate effect of a 
shock in the overall properties of the system, where there is some degree of consensus about the lack of 
correspondence between the subprime crisis (i.e. the shock) and the global financial crisis (i.e. the catastrophe), 
where the former is rather modest when compared to the extent of the whole episode.  
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critical consequences (i.e. a power-law distribution of events), the traditional aim of financial 

authorities should be reexamined accordingly. For instance, as highlighted by Bak (1996), 

since price variations approximating a power-law are scale-free, with no typical size of the 

variations (as earthquakes, species’ extinctions, wars), large price changes have nothing 

special despite their potentially devastating consequences, and –thus- instability and 

catastrophes are inevitable in economics, as they are in geology, biology and history.55 This 

view certainly poses a major shift in economic thinking. 

Even if Bak’s (1996) argument is wrong and large economic swings are unique, different from 

all other observed catastrophes (e.g. earthquakes, species’ extinctions, wars), documented 

financial systems’ self-organization based on a modular scale-free architecture highlights the 

need for a major move towards reinforcing modularity. Since hierarchical modularity protects 

resilience of systems by means of limiting cascades (Haldane and May, 2011) and isolating 

feedbacks (Kambhu et al., 2007), financial authorities should enhance modularity (not fight 

against it) as a firewall against system-wide effects.  

In this sense, authorities should understand and embrace hierarchical modularity in order to 

be able to contribute to financial stability in an effective manner. The most obvious strategy is 

inherited from biology, more specifically from epidemic theory.56 As argued after the crisis 

(e.g. León and Pérez, 2013b; Markose, 2012; Haldane and May, 2011; May et al., 2008; 

Kambhu et al., 2007), preventive action should be on systemic important financial institutions 

(i.e. super-spreaders), where prudential regulation should enhance the fitness of financial 

institutions that have emerged as firewalls or circuit breakers against contagion.  

Accordingly, as suggested by Haldane and May (2009), protecting the financial system from 

future systemic events would require the key super-spreader nodes to run with higher buffers 

of capital and liquid assets, which are then proportional to the system-wide risk they 

contribute; this is, prudential regulation has to be system-calibrated rather than institution-

calibrated. In this sense, as in forest fire models, compartmentalization (i.e. modularity) by 

firebreaks or vaccination of super-spreaders allow for countering systemic risk (May et al., 

2008).  

Nevertheless, not only prudential regulation should adjust to financial markets’ hierarchical 

modularity. Financial authorities’ regulation, supervision and oversight efforts should be 

prioritized accordingly, during tranquil and adverse periods. Moreover, since financial 

networks are particularly dynamic in the sense of Inaoka et al. (2004), where connections 

between financial institutions may be reconfigured promptly57, authorities may decide how to 

face the failure of a systemically important institution: either the failing institution is bailed 

                                                      
55 Large fluctuations observed in economics indicate an economy operating at the self-organized critical state, in 
which minor shocks can lead to avalanches of all sizes, just like earthquakes. The fluctuations are unavoidable. There 
is no way that one can stabilize the economy and get rid of the fluctuations through regulations of interest rates or 
other measures. (Bak, 1996) 
56 Following Kambhu et al. (2007), since experimental stress testing is not feasible for financial system analysis, 
examining common structural properties with other systems should be of interest, and may help guide policy 
making. 
57 Unlike –for example- a physical network as the Internet or a power transmission grid, whose hardware may not 
be reconfigured rapidly or economically.  
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out, or the remaining institutions are effectively supported in order to allow for an effective 

reconfiguration (i.e. rewiring) of the system.    

Hence, practical implications for financial authorities are far from simple, but correspond to a 

better approximation to the true nature of financial systems. Interestingly enough, theoretical 

and practical implications involve a hard change in the prevailing cognitive structure of 

economics (i.e. the economic schema).  

As suggested by Gell-Mann (1992), the cognitive structure or schema consists of a twin 

process of compressing the regularities and discarding the randomness found in experience; 

thus a schema is approximate by construction, and may be wrong. Accordingly, the 

explanatory power of the prevailing economic models has been proven low to understand 

financial systems, which suggests that the dominating schema has misidentified regularities 

and exaggerated mere coincidences.  

The prevalence of the dominating economic schema of financial systems in spite of its poor 

explanatory power may be due to the absence of a clear fitness function for testing its viability 

(i.e. its ability to account for observed facts). This causes the feedback loop of selective trial 

and error of economic models to be sympathetic with the existing schema, where evident but 

potentially problematic regularities tend to be overlooked or denied (e.g. nonlinearities, 

inhomogeneity, power-laws), and elegant but flawed generalizations (i.e. static equilibrium, 

homogeneity, rationality, serial independence, normality) tend to be broadly accepted.58                  

The survival of the dominating economic schema may also be explained by frictions within the 

related community as well. As reported by Kambhu et al. (2007), an effort to model an entire 

system, with the aim of learning how to control it better, is a very large-scale project and one 

that academic economists will not readily take on because of the way the profession is organized 

and financed.  

Either way, further understanding of financial systems is still needed. This document makes a 

contribution to the existing literature by identifying and analyzing the connective pattern and 

hierarchical structure of three Colombian payment and settlement networks, where the main 

novelties are related to characterizing the selected networks as modular scale-free without 

relying on a single snapshot of the systems or limiting the type of financial institutions 

considered.  

However, despite numerical results appear to be conclusive about the modular scale-free 

architecture of the three payments and settlement systems, the understanding of the 

generating process behind such architecture is still preliminary. As highlighted by Bak (1996), 

the problem of explaining the observed statistical features of complex systems can be phrased 

mathematically as the problem of explaining the underlying power laws, and more specifically 

the values of the exponents, whereas Strogatz (2003) stresses that despite years of intense 

effort, the origin of power-laws remains controversial. Therefore, this document suggests 

some rationale for the connective patterns and hierarchical architecture within complex 

adaptive systems’ theory, but they are by no means definite, complete or unique.    

                                                      
58 For instance, as documented by Bak (1996), economists have chosen largely to ignore Mandelbrot’s work (e.g. 
fractional Brownian motion), mostly because it doesn’t fit into the generally accepted picture.   
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Additional challenges are worth stating. First, the three selected networks are interconnected 

(as presented in Figure 4), where financial institutions may overlap across financial market 

infrastructures (i.e. systems) and –hence- create a transmission channel between different 

markets (e.g. securities, foreign exchange) and their participants, even in the absence of direct 

linkages between them; as stressed by CPSS (2008), financial institutions overlapping across 

systems may increase the interdependence of domestic systems, with such interdependence 

raising the potential for disruptions to spread widely and quickly across the financial system.  

The risk from the connections between systems and the overlapping across systems (i.e. cross 

system risk) has not been addressed in the literature. It demands a significant –yet realistic- 

increase in the complexity of the model, where financial institutions are not able to connect to 

each other directly as is customary assumed in financial networks literature, but require an 

intermediary in-between: a financial market infrastructure. In other words, existing literature 

has decided to simplify the network by means of neglecting the existence of what Bernanke 

(2009) calls the “financial plumbing”.59 In this sense, infrastructure-related systemic risk, the 

component of systemic risk that can be brought about the improper functioning of the financial 

infrastructure, or where the financial infrastructure acts as the conduit for shocks that have 

arisen elsewhere (Berndsen, 2011), has been overlooked.  

Merging financial institutions and financial market infrastructures into a single network will 

reveal additional levels of hierarchy in financial systems, concurring with Simon (1962) 

definition of a hierarchic system: a system that is composed of interrelated subsystems, each of 

the latter being in turn, hierarchic in structure until we reach some lowest level of elementary 

subsystem.  

In this sense Figure 26 presents the Colombian financial system as a simplified modular 

hierarchical subsystem of the economic system. The first layer of the financial system consists 

of a network comprising the three financial market infrastructures analyzed in this document 

(i.e. CUD, DCV and CCDC). Each financial market infrastructure nests a second layer or 

network of financial institutions, which in turns is divided into core (i.e. central) and 

peripheral financial institutions, the second and third layers of the financial system’s  

hierarchy, respectively. 

Three main simplifications in this conceptual figure are worth stating. First, the number of 

financial market infrastructures is limited to the three analyzed in this document, and their 

true connective structure (in Figure 4) is overlooked for illustrative purposes; second, since 

the financial institutions’ networks are depicted by their maximal spanning tree, connections 

between financial institutions not pertaining to the same core module are not presented; 

third, the figure does not consider financial institutions overlapping across financial market 

infrastructures, a salient feature of financial systems. However, such simplified architecture is 

able to enclose the entire hierarchy resulting from merging financial institutions and 

infrastructures, and from acknowledging the modular scale-free nature of financial 

                                                      
59 Neglecting the role of financial market infrastructures in financial networks is akin to excluding the role of 
airports, harbors and roads in the understanding of trade, or analyzing the food chain away from living organisms’ 
environment. 
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institutions’ networks, where the modular and self-affine (i.e. fractal) architecture at each 

layer is apparent.60   

Figure 26 
The Colombian financial system as a (simplified) modular hierarchy 

 

 
Source: authors’ design. 

 

Traditional economic models based on the homogeneity of financial institutions and their 

linkages (e.g. Allen and Gale, 2000; Freixas et al., 2000) have limited their scope to analyzing 

financial institutions within a flat environment, where the core and peripheral structure is 

ignored; this is, traditional models have studied financial institutions without distinguishing 

the existence of the second and third layers of Figure 26. A step ahead, financial networks’ 

literature has aimed at identifying the true connective patterns among financial institutions, 

which has allowed acknowledging inhomogeneity and –thus- the existence of the second and 

third layers; this is the approach of the present document, where three different networks 

from three different infrastructures have been analyzed.  

The existence and systemic role of the first layer, which allows financial markets and their two 

layers of institutions to link to each other, has not been considered in the literature to the best 

                                                      
60 Despite the elementary subsystem for analyzing financial systems is the financial institution, it is quite possible 
that additional levels of modular hierarchy could be found within the financial institutions corporate structure, 
which would yield another layer of subsystems, and so on. Successive sets of modular subsystems not only match 
Simon (1962) definition of complexity and near-decomposability, but agree with the fractal or scale-free nature of 
financial systems, where the different layers are self-affine. 
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knowledge of the authors. Aggregating these three levels of hierarchy is essential for an 

enhanced and comprehensive understanding of transmission channels within financial 

markets and for assessing systemic risk under a macro-prudential point of view. The authors 

of this document will tackle this challenge in a forthcoming research project.  

Additional challenges arise from the evidence of modular architecture within financial 

institutions. If core financial institutions are to be required with higher buffers of capital and 

liquid assets in order to enhance their firewall capabilities, sound quantitative methods are 

required. Centrality measures may be an interesting and objective approach to determining 

systemic-calibrated macro-prudential requirements, as in the eigenvector centrality-based 

“super-spreader tax” proposal by Markose (2012). An alternative is to regard the role of these 

super-spreaders institutions as proximate to that of a financial market infrastructure, an 

analogy that may provide some ideas for their prudential regulation under BIS-IOSCO (2012) 

“Principles for Financial market Infrastructures”. However, due to the originality of the 

problem of systemic-calibrated requirements, more research is still required.  

Furthermore, financial authorities should explore alternatives to requiring systemically 

important financial institutions higher capital and liquidity buffers. Accordingly, financial 

market infrastructures’ role as sources of stability for the financial system should be 

emphasized, where their proper design and safe functioning serve as an additional firewall 

against contagion.   

Finally, despite self-organization is often regarded as a good (i.e. desirable) thing, it may be 

the case that the resulting structure and hierarchy is inconvenient (e.g. inefficient, fragile). As 

highlighted by Krugman (1996), self-organization is something we observe and try to 

understand, not necessarily something we want. Thus, reinforcing financial systems’ 

modularity in order to profit from its inherent advantages follows the assumption of financial 

authorities not being able to design a “better” architecture for the financial system.  

However, modifying the architecture by means of regulation may not be discarded; a good 

example is the current interest in central clearing of OTC derivative contracts through central 

counterparties61. Yet, implementing large-scale changes to the existing architecture should be 

done under a macro-prudential framework, with financial authorities being able to 

understand the complexity of the system they are trying to redesign.   

   

                                                      
61 Forcing financial contracts (e.g. derivatives) through central counterparties may be creating an additional 
hierarchical layer to the financial system; it may be reinforcing modularity. Instead of bilateral clearing, the central 
counterparty would be in charge of the clearing, where the central counterparty would stand between the financial 
institutions and the other financial market infrastructures. Moreover, the imposition of stringent risk management 
requirements to central counterparties agrees with the “vaccination” of super-spreaders for countering systemic 
risk.    
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