RER Models in the Chilean Central Bank

Rodrigo Caputo, Central Bank of Chile

Banco de la República, Bogotá. August 18th 2010

- Overview of RER Models
- **3** FEERs Models
- BEERs Models
- 5 BEER Empirical Results for Chile
- 6 BEER Empirical Results for Colombia
- Equilibrium Concepts

Introduction

Introduction

- A key relative price in an open economy is the exchange rate
- The CCB does not have any target for this variable, however
 - It is an input for forecasting exercises
 - The main macro models of the bank need a "long run value" of the exchange rate
- The relevant relative price is the real exchange rate (RER)
- This variable is computed by the CCB

Introduction

Introduction

- Also the CCB may intervene the foreing exchange rate market if
 - The foreign exchange rate does not accurately reflect its fundamentals
 - This misalignmet has negative consequences for the macroeconomy
 - In this case, central bank's actions should help eliminate asymmetries
 -andor counteract the speculation encouraged by certain economic agents

Overview of RER Models

Introduction

- We have three types of models
 - PPP. In this case, the RER is assumed to be mean reverting. Hence the RER equilibrium level is given by the RER mean over a period of time (1986-2006)
 - Fundamental Exchange Rate Equilibrium (FEER) Models. In this case, equilibrium RER is consistne with both internal and external equilibrium
 - Behaviuoral Equilibrium Exchange Rate (BEER) Models. The evolution of the RER is coherent with its fundamental determinants

FEERs Models

- Equilibrium RER is characterized by internal and external balance. Which means that
 - Current Account is in a sustainable level
 - The output gap is zero
 - Terms of trade are in their long-run level
- Simply stated, at any point in time the equilibrium RER should solve the following equation

$$CA_{t} = P_{x,t}X_{t}(RER_{t}, ygap_{t}^{*}) - P_{m,t}M_{t}(RER_{t}, ygap_{t}) + NFT_{t}$$
(1)

• And, in the long-run, the RER should solve

$$\overline{CA} = \overline{P_x}X(RER, ygap^*) - P_mM(RER, ygap) + NFT$$
(2)

FEERs Models

For FEERs models need to know

- Exports and Imports elasticities to RER
- Exports and Imports elasticities to ygap domestic and foreign
- CA and NFT in the long-run
- Long-run terms of trade

FEERs Models: X and M elasticities

• We estimate X and M dynamic equations

$$dln\left(\frac{X}{Y}\right)_{t} = 0,09ln(RER_{t}) + 0,18ln\left(\frac{X}{Y}\right)_{t-1} + \dots$$
(3)

$$dln\left(\frac{M}{Y}\right)_{t} = -0,15ln(RER_{t}) - 0,35ygap_{t}^{*} - 0,12ln\left(\frac{M}{Y}\right)_{t-1} + .$$
(4)

• So, in the long run (when dln(..)=0)

$$ln\left(\frac{X}{Y}\right) = 0,5 ln(RER) \tag{5}$$

$$ln\left(\frac{M}{Y}\right) = -1,27ln(RER) - 2,94ygap^*$$
(6)

FEERs Models: Equilibrium RER

• In the long run, the RER should solve

$$\frac{CB}{Y} = \frac{Px}{Py} \frac{X}{Y} - \frac{Pm}{Py} \frac{M}{Y}$$
$$= \frac{Px}{Py} exp^{0.5(RER)} - \frac{Pm}{Py} exp^{-1.27(RER)}$$

(7)

• Where $ygap^* = 0$ and we set $\frac{CB}{Y} = 0, 1\%$

BEERs Models

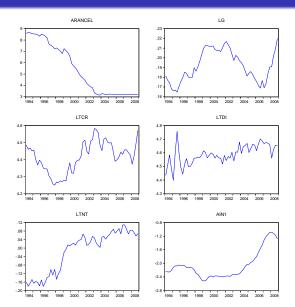
- Equilibrium RER is coherent with its fundamental variables
- In particular, RER evolves according to
 - The evolution of relative productivity between tradable and non tradable sectors (*TNT*)
 - The Net Foreign Asset Position of the Economy (NFA/Y)
 - Terms of trade (ToT)
 - Government expenditure (G/Y)
 - Tariffs (T)

In particular,

$$RER_{t} = \alpha_{0} + \alpha_{1} TNT_{t} + \alpha_{1} \left(\frac{NFA}{Y}\right)_{t} + \alpha_{2} ToT_{t} + \alpha_{3} \left(\frac{G}{Y}\right)_{t} + \alpha_{4} T_{t}$$
(8)

BEERs Models: Estimation Methodology

• Use Dynamic OLS (DOLS) to estimate long run relationship


$$ln(RER_t) = \beta X_t + \sum_{k=-p1}^{p2} \gamma_k \Delta X_{t-k} + \varepsilon_t$$

Use OLS to estimate the error correction model (ECM)

$$\Delta ln(RER_t) = -\theta \left(ln(RER_{t-1}) - \beta X_{t-1} \right) + \sum_{j=0}^{\tau} \left(\delta_j \Delta X_{t-j} + .. \right) + \epsilon_t$$

BEER Empirical Results for Chile

Data

BEER Empirical Results for Chile

Long-Run Elasticities

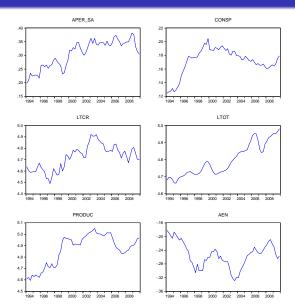
Coefficient	Eq.(4)	Eq.(4)
Constant	7.18^{***}	7.22^{***}
	(0.9)	(1.2)
LTNT	-0.27**	0.05
	(0.1)	(0.1)
LT oT X M	-0.57***	-0.47**
	(0.2)	(0.2)
$\left(\frac{G}{Y}\right)$	-2.15^{***}	-3.52^{***}
	(0.6)	(0.6)
$\left(\frac{NFA}{Y}\right)$	-0.16^{***}	-
	(0.0)	
$\left(\frac{NEP}{Y}\right)$	-	-0.11***
		(0.0)
TARIFF	-0.02^{***}	-0.02 ***
	(0.01)	(0.01)
$Adj.R^2$	0.815	0.754

Table 2: BEER Model Estimation Results (Estimation w/ Alternative Terms of Trade)

sample: 1977.I-2007.IV

s.e. in parenthesis

*** significance at 99 %


** significance at 95 %

* significance at 90 %

RER Models in the Chilean Central Bank

BEER Empirical Results for Colombia

Data

Long-Run Elasticities

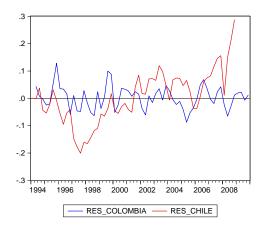
Coefficient	Colombia
С	3.25***
	(0.64)
TNT	-0.73***
	(0.12)
ТоТ	-0.43***
	(0.12)
G/Y	-3.62***
	(0.80)
AIN/Y	-0.52***
	(0.29)
ARAN	-1.45***
	(0.31)
Adjusted R2	0.826
Sample	1994.1-2009.III
*** significant at 99%	

** significant at 95%

* significant at 90%

Long-Run Elasticities

Coefficient	Colombia	Chile
С	3.25***	7.18***
	(0.64)	(0.85)
TNT	-0.73***	-0.27**
	(0.12)	(0.12)
ТоТ	-0.43***	-0.57***
	(0.12)	(0.16)
G/Y	-3.62***	-2.15***
	(0.80)	(0.56)
AIN/Y	-0.52***	-0.16***
	(0.29)	(0.03)
ARAN	-1.45***	-0.024***
	(0.31)	(0.01)
Adjusted R2	0.826	0.815
Sample	1994.1-2009.III	1977.I-2007.IV


significant at 99%

** significant at 95%

* significant at 90%

RER misalignment: More persistent in Chile

$$Res_{t} = RER_{t} - \left(\alpha_{0} + \alpha_{1}TNT_{t} + \alpha_{1}\left(\frac{NFA}{Y}\right)_{t} + \alpha_{2}ToT_{t} + \alpha_{3}\left(\frac{G}{Y}\right)_{t} + \alpha_{4}T_{t}\right)$$

ECM: Faster adjustment in Colombia

• We estimate an ECM for both, Colombia and Chile

$$\Delta ln(RER_t) = -\theta \left(ln(RER_{t-1}) - \beta X_{t-1} \right) + \sum_{j=0}^{\tau} \left(\delta_j \Delta X_{t-j} + .. \right) + \epsilon_t$$

- In the case of Colombia, $\theta = 0, 59$. In Chile, $\theta = 0, 14$
- Hence, in Colombia misalignment dissipates, on average, after 1,7 quarters. In Chile, it takes 7 quarters.

Long-Run Equilibrium in BEERs Models

 Again, in the long-run need to know the equilibrium value of fundamentals

$$\overline{RER} = \alpha_0 + \alpha_1 \overline{TNT} + \alpha_1 \left(\frac{\overline{NFA}}{Y}\right) + \alpha_2 \overline{ToT} + \alpha_3 \left(\frac{\overline{G}}{\overline{Y}}\right) + \alpha_4 \overline{T}$$
(9)

 Some long-run levels set according to historical trends (TNT, NFA/Y, G/Y). In the case of ToT set according to long-run price of copper and oil. Equilibrium Concepts

Equilibrium Concepts

- Models are used to assess the long-run level of the RER
- However, models can also be used to assess a counterfactual scenario
 - What would be the RER if fundamentals (in both FEER and BEER models) are to be in the long-run at the same level than today
 - This scenario can further inform as to whether a RER level is misaligned with respect to the short-run value of fundamentals