▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Optimal Monetary Policy Instrument, Inflation versus Asset Price Targeting, and Financial Stability

C.A.E. Goodhart, C. Osorio and D.P. Tsomocos

Bogota-Colombia

Banco de la Republica

19 August 2009

Introduction	The Model	MEBCSD	Numerical Example	Conclusions
0000	000000000000000000000000000000000000000	0000000	0000000	000
Motivation				

Features of the current crisis:

- Increased default in the U.S. mortgage market
- Contagion to securitized products and credit markets
- Interbank markets fail to act as a conduit for monetary policy
- Collapse of systemically important financial institutions

DSGE models are inappropriate for financial stability analysis.

- Representative agent models: no trade, no default
- Money is a veil
- No financial frictions: default risk, banks, contagion
- Limited scope for welfare improving economic policy: markets are complete

Introduction	The Model	MEBCSD	Numerical Example	Conclusions
00000				

DSGE's vs Goodhart et.al.

DSGE's	Goodhart et. al.
1. Representative Agent \rightarrow Forced Trade	Trade: Equilibrium result
2. Generally non-monetary or MIU	Fiat Money and Liquidity
No demand or role for Money	demand and role for money
3. No Liquidity \rightarrow no Default	Endougenous Default
4. No Banking Sector or Representative	Heterogenous Risk Averse (Active)
Risk Neutral (Inactive) Bank	Banking Sector and Interbank Market
5. Interest rate not determined	Nominal interest rate results
in Money Market (does it clear?)	from money market
Interest rate set 'exogenously'	clearing condition
6. Monetary Policy non-neutrality	Monetary Policy has
in Cashless Economy	real and nominal effects
Classical Dicothomy	Non-trivial QTM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Introduction	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000
Our Model				

Monetary General Equilibrium Model with Commercial Banks, Collateral, Securitisation and Default (**MEBCSD**)

- Non-trivial quantity theory of money
- Term structure of interest rates depends on aggregate liquidity and default risk
- Fisher effect
- Financial fragility is an equilibrium outcome
- Constrained inefficient equilibrium allocations
- Assessment of various policies for crisis management and prevention

Introduction	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000
Our Model				

Extend the Goodhart, Sunirand and Tsomocos and Goodhart (2006), Tsomocos and Vardoulakis (2008) model to:

- Introduce an investment bank and a hedge fund, and allow for mortgage debt securitisation
- Separate the interbank from the repo market
- Model two types of default
 - Discontinuous default in mortgages (Geanakoplos, 2003)
 - Continuous default in credit markets (Shubik and Wilson, 1977 and Dubey et al.,2005)

Introduction	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000
Results				

- Interest rate instrument is preferable to the monetary base instrument in times of financial distress
- CPI should include an appropriate measure of housing prices
- Central Banks' Financial Stability objective is primarily achieved by regulating systemic financial agents

	The Model	MEBCSD	Numerical Example	Conclusions
	• 00 00000000000000000			
The Econor	mv			

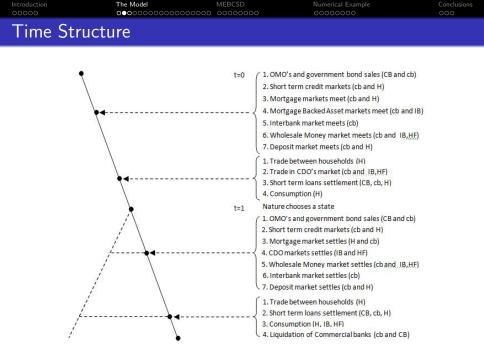
Endowment economy

- 2 periods ($t \in T = \{0, 1\}$)
 - First period: a single state
 - Second period: S possible states

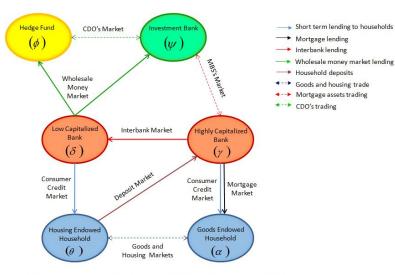
•
$$S^* = \{0\} \cup S = \{0, 1, 2\}$$

2 goods:

- Consumption goods basket (1)
- Housing (2): a durable good, but infinitely divisible
- Agents
 - Housholds: $h \in H = \{\alpha, \theta\}$, CRRA preferences
 - Commercial Banks: $j \in J = \{\gamma, \delta\}$, quadratic preferences
 - Investment Banks: ψ , risk neutral
 - Hedge Fund: ϕ , risk neutral
 - The Central Bank/Government/FSA: strategic dummies
- 10 Markets: goods, housing, mortgage, short term loans, consumer deposit, repo, interbank, MBS's, CDO's and wholesale money markets



Nominal Flows of the Economy



The straight lines and their direction represent lending flows. The dashed lines indicate trade.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Money and Collateral

Money

- Introduced by a cash-in-advance (liquidity) transaction technology
- Enters the system as *outside* or *inside* money

Collateral

- \bullet Houshold α pledges purchased housing as collateral when he takes out the mortgage
- If α defaults on the mortgage, the bank seizes the collateral and offers it for sale in the next period (US's 'walk away' option)

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000
Default				

Two types of Default:

 \bullet Discontinuous mortgage default. Houshold α defaults on his mortgage if

 $(p_{22}b^{lpha}_{02}/p_{02}) \leq (ar{\mu}^{lpha})$

```
(collateral's worth) \leq (mortgage debt)
```

 Continuous default in the interbank and wholesale money markets: agents choose a repayment rate satisfying the On the Verge Condition (for k = {δ, ψ, φ}):

$$\left(\frac{\partial \Pi^k}{\partial \bar{\mathbf{v}}_s^k}\right) = \bar{\tau}_s^k$$

(marginal utility of default) = (bankruptcy penalty)

Introduction 00000	The Model	Numerical Example 00000000	Conclusions 000
Securitisation	ו		

Scarcity of collateral incentivizes agents to strech it by using it many times.

- The investment bank (ψ) buys the mortgage from bank γ at a price p^{α} in the MBS's market
- The investment bank (ψ) structures a CDO by attaching a Credit Default Swap (CDS) to the MBS
- The hedge fund (ϕ) purchases the CDO at a price $ilde{q}^{lpha}$
- CDO's gross returns:

$${{{\cal R}}^{CDO}}=\left[egin{pmatrix} {(1+ar{r}^{\gammalpha})\,/ ilde{q}^lpha}\ 1 \end{array}
ight]$$

• The investment bank bears the mortgage and CDS risk

	The Model	MEBCSD	Numerical Example	Conclusion
00000	000000000000000000000000000000000000000	0000000	0000000	000

Houshold α 's Optimisation Problem

$$\max_{\substack{q_{s^*1}^{\alpha}, b_{s^*2}^{\alpha}, \mu_{s^*}^{\alpha}, \bar{\mu}^{\alpha} \\ + \sum_{s \in S_1^{\alpha}} \omega_s u \left(\frac{b_{02}^{\alpha}}{p_{02}} + \frac{b_{s2}^{\alpha}}{p_{s2}} \right) + \sum_{s \notin S_1^{\alpha}} \omega_s u \left(\frac{b_{s2}^{\alpha}}{p_{s2}} - q_{s1}^{\alpha} \right)$$

s.t.

$$b^{lpha}_{02} \leq rac{ar{\mu}^{lpha}}{(1+ar{r}^{\gammalpha})} + rac{\mu^{lpha}_0}{(1+r^{\gamma}_0)} + e^{lpha}_{m,0}$$

i.e. housing expenditure at t=0 \leq mortgage loan + short-term borrowing + private monetary endowments at t=0

 $\mu_0^{lpha} \leq p_{01} q_{01}^{lpha}$

i.e. short term loan repayment at t=0 \leq goods sales revenues at t=0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The Model	MEBCSD	Numerical Example	Conclusions
000000000000000000000000000000000000000			

Houshold α 's Optimisation Problem

$$b_{s2}^lpha+ar\mu^lpha\leq rac{\mu_s^lpha}{(1+r_s^\gamma)}+e_{m,s}^lpha$$
 for $s\in S_1^lpha$

i.e. housing expenditure at $s \in S_1^{\alpha}$ + mortgage repayment \leq short-term borrowing+private monetary endowments at $s \in S_1^{\alpha}$

$$b_{s2}^lpha \ \le rac{\mu_s^lpha}{(1+r_s^\gamma)} + e_{m,s}^lpha \qquad ext{ for } s
otin S_1^lpha$$

i.e. housing expenditure at $s\notin S_1^\alpha\leq$ short-term borrowing+private monetary endowments at $s\notin S_1^\alpha$

 $\mu_{\rm s}^\alpha \le p_{\rm s1} q_{\rm s1}^\alpha$ i.e. short term loan repayment \le goods sales revenues at t=0

 $q_{s^*1}^* \leq e_{s^*1}^*$ i.e. quantity of goods sold at $s \in S^* \leq$ goods endowments at $s \in S^*$

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

Houshold θ 's Optimisation Problem

$$\max_{\substack{q_{s^*2}^{\theta}, b_{s^*1}^{\theta}, \mu_{s^*}^{\theta}, \bar{d}^{\theta}}} U^{\theta} = u\left(\frac{b_{01}^{\theta}}{p_{01}}\right) + u\left(e_{02}^{\theta} - q_{02}^{\theta}\right) + \sum_{s \in S} \omega_s u\left(\frac{b_{02}^{\theta}}{p_{02}}\right) + \sum_{s \in S} \omega_s u\left(e_{02}^{\theta} - q_{s0}^{\theta} - q_{s2}^{\theta}\right)$$

s.t.

$$b^{ heta}_{01}+ar{d}^{ heta}\leq rac{\mu^{ heta}_0}{1+r^{\delta}_0}+e^{ heta}_{m,0}$$

i.e. goods expenditure at t=0 + inter-period deposits \leq short-term borrowing + private monetary endowments at t=0

(日) (日) (日) (日) (日) (日) (日) (日)

 $\mu_0^\theta \leq \textit{p}_{02}\textit{q}_{02}^\theta$

(i.e. short term loan repayment at t=0 \leq housing sales revenues at t=0)

The Model	MEBCSD	Numerical Example	Conclusi
000000000000000000000000000000000000000			

Houshold θ 's Optimisation Problem

$$b_{s1}^{ heta} \leq rac{\mu_s^{ heta}}{1+r_s^{\delta}} + ar{d}^{ heta} \left(1+ar{r}_d^{\gamma}
ight) + e_{m,s}^{ heta} \qquad ext{for } s \in S$$

i.e. goods expenditure at $s\in S\leq$ short-term borrowing + deposits and interest payment+private monetary endowments at $s\in S$

$$\mu_s^{ heta} \leq p_{s2} q_{s2}^{ heta}$$

i.e. short term loan repayment at $s \in S \leq$ housing sales revenues at $s \in S$

$$q_{s^*2}^{\theta} \leq e_{s2}^{\theta} - q_{02}^{\theta}$$

i.e. number of housing units sold at $s \in S$ ≤endowment of housing at t=0 units of housing sold at $s \in S$

うせん 聞い ふぼう ふぼう ふしゃ

	The Model	MEBCSD	Numerical Example	Conclusion
00000	000000000000000000000000000000000000000	0000000	0000000	000

Bank γ 's Optimisation Problem

$$\max_{\substack{m_{s+2}^{\gamma}, \bar{m}^{\alpha}, d_{s}^{G\gamma}, \bar{d}^{\gamma}, \pi_{s}^{\gamma}}} \Pi^{\gamma} = \sum_{s \in S} \omega_{s} \left(\pi_{s}^{\gamma} - c^{\gamma} \left(\pi_{s}^{\gamma} \right)^{2} \right)$$

s.t.

$$d_0^{G\gamma} + m_0^{\gamma} + \bar{m}^{\alpha} + \bar{d}^{\gamma} \leq e_0^{\gamma} + (\bar{\mu}_d^{\gamma}/1 + \bar{r}_d^{\gamma})$$

i.e. deposits in the repo market + short-term lending $+ {\sf mortgage}$ extension +

interbank lending \leq capital endowment at t=0 + consumer deposits

$$\begin{split} & d_s^{G\gamma} + m_s^{\gamma} + \bar{\mu}_d^{\gamma} + \leq e_s^{\gamma} + \pi_0^{\gamma} + \bar{R}_s^{\delta} \bar{d}^{\gamma} \ (1 + \bar{\rho}) \\ & \text{i.e. short-term lending + deposits in the repo market at } s \in S + \text{deposits repayment} \leq \\ & \text{capital endowment at } s \in S + \text{accumulated profits + interbank loan repayments at } s \in S \end{split}$$

$$\pi_{0}^{\gamma}=m_{0}^{\gamma}\left(1+r_{0}^{\gamma}
ight)+d_{0}^{G\gamma}\left(1+
ho_{0}^{CB}
ight)+p^{lpha}ar{m}^{lpha}$$

i.e. profits at (t=0) = short term loan repayment + repo deposits and interest payment at t=0 + MBS's sales revenues

$$\pi_{s}^{\gamma} = m_{s}^{\gamma} \left(1 + r_{s}^{\gamma}\right) + d_{s}^{G\gamma} \left(1 + \rho_{s}^{CB}\right)$$

i.e. profits at $s \in S =$ short term loan repayment + repo deposits and interest payment at $s \in S$

(日) (日) (日) (日) (日) (日) (日) (日)

	The Model
00000	000000000000000000000000000000000000000

Model MEBCSD

Numerical Example

repayment at t=0

Bank δ 's Optimisation Problem

$$\max_{\boldsymbol{m}_{s+2}^{\delta}, \bar{\boldsymbol{m}}, \boldsymbol{\mu}_{s}^{G\delta}, \boldsymbol{\mu}^{\delta}, \boldsymbol{\mu}_{s}^{\delta}, \boldsymbol{\bar{v}}_{s}^{\delta}, \boldsymbol{\pi}_{s}^{\gamma}} \boldsymbol{\Pi}^{\delta} = \sum_{s \in S} \omega_{s} \left(\boldsymbol{\pi}_{s}^{\delta} - \boldsymbol{c}^{\delta} \left(\boldsymbol{\pi}_{s}^{\delta} \right)^{2} \right) - \sum_{s \in S} \omega_{s} \bar{\boldsymbol{\tau}}_{s}^{\delta} \left[\bar{\boldsymbol{D}}_{s}^{\delta} \right]^{+}$$

s.t.

$$m_0^\delta + \bar{m} \leq \mathbf{e}_0^\delta + \frac{\mu_0^{G\delta}}{1+\rho_0^{CB}} + \frac{\bar{\mu}^\delta}{1+\bar{\rho}}$$

i.e. short-term lending at t=0 + wholesale money market credit extension \leq capital endowment + short-term borrowing in the repo market at t=0 + interbank borrowing

$$\begin{split} &\mu_0^{G\delta} \leq m_0^{\delta} \left(1+r_0^{\delta}\right) \\ \text{i.e. repo loan repayment at } t{=}0 \leq \text{short-term loan} \\ &m_s^{\delta} + \bar{v}_s^{\delta} \bar{\mu}^{\delta} \leq e_s^{\delta} + \frac{\mu_s^{G\delta}}{1+\rho_s^{CB}} + \bar{R}_s \bar{m} \left(1+\bar{r}\right) \end{split}$$

i.e. short-term lending + interbank loan repayment at $s \in S \leq$ capital endowment + wholesale money market loan repayment short-term loan repayment at $s \in S$

$$\pi_s^{\delta} = m_s^{\delta} \left(1 + r_s^{\delta}\right) - \mu_s^{G\delta}$$

i.e. profits at $s \in S$ = short term loan repayment - repo loan repayment at $s \in S$

Investment Bank (ψ) 's Optimisation Problem

$$\max_{\tilde{m}^{\tilde{\alpha}}, \tilde{\mu}^{\psi}, \tilde{v}^{\psi}_{s},} \Pi^{\psi} = \sum_{s \in S} \omega_{s} \pi^{\psi}_{s} - \sum_{s \in S} \omega_{s} \bar{\tau}^{\psi}_{s} \left[\bar{D}^{\psi}_{s} \right]^{+}$$

s.t.

$$ilde{m}^{lpha} \leq e_0^{\psi} + rac{ar{\mu}^{\psi}}{1+ar{r}}$$

i.e. expenditure in MBS's \leq capital endowments at t=0 + wholesale money market borrowing

$$ar{v}^\psi_sar{\mu}^\psi\leq rac{ ilde{m}^lpha}{p^lpha} ilde{q}^lpha \quad ext{ for } \quad s\in S^lpha_1$$

i.e. whole sale money market loan repayment at $s\in S_1^\alpha\leq$ CDO's sales revenues + capital endowments at $s\in S_1^\alpha$

$$\tilde{m}^{\alpha}\tilde{q}^{\alpha}+\bar{v}^{\psi}_{s}\bar{\mu}^{\psi}\leq e^{\psi}_{s}+\left(\tilde{q}^{\alpha}+\frac{b^{\alpha}_{02}p_{22}}{\bar{m}^{\alpha}p_{02}}\right)\frac{\tilde{m}^{\alpha}}{p^{\alpha}}\quad\text{for}\quad s\notin S^{\alpha}_{1}$$

i.e. CDS settlement payment + wholesale money market loan repayment at $s \notin S_1^{\alpha} \leq$ capital endowment at $s \notin S_1^{\alpha} +$ CDO's sales revenues + collateral sales revenues

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Hedge Fund (ϕ) 's Optimisation Problem

$$\max_{\bar{\mu}^{\phi}, \hat{m}^{\alpha}, \bar{v}_{S^*}^{\phi}} \Pi^{\phi} = \sum_{s \in S} \omega_s \pi_s^{\phi} - \sum_{s \in S} \omega_s \bar{\tau}_s^{\phi} \left[\bar{D}_s^{\phi} \right]^{+}$$

s.t.

$$\hat{m}^{lpha} \leq rac{ar{\mu}^{\phi}}{1+ar{r}}$$

i.e. expenditure in the CDO's market \leq wholesale money market borrowing

$$ar{v}^{\phi}_{s}ar{\mu}^{\psi} \leq rac{\hat{m}^{lpha}}{ ilde{q}^{lpha}}\left(1+ar{r}^{\gammalpha}
ight) \hspace{0.5cm} ext{for} \hspace{0.5cm} s\in S^{lpha}_{1}$$

i.e. wholesale money market loan repayment \leq CDO's payoffs at $s \in S_1^{\alpha}$

 $\bar{v}_s^{\phi} \bar{\mu}^{\psi} \leq \hat{m}^{\alpha}$ for $s \notin S_1^{\alpha}$ i.e. wholesale money market loan repayment \leq CDO's payoffs at $s \notin S_1^{\alpha}$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Market Clearing Conditions

Goods Market

$$p_{01} = \frac{b_{01}^{\theta}}{q_{01}^{\alpha}}$$

$$p_{s1} = \frac{b_{s1}^{\theta}}{q_{s1}^{\alpha}} \quad \text{for} \quad s \in S$$

Housing Market

$$p_{02} = \frac{b_{02}^{\alpha}}{q_{02}^{\theta}}$$

$$p_{s2} = \frac{b_{s2}^{\alpha}}{q_{s2}^{\theta}} \quad \text{for} \quad s \in S_1^{\alpha}$$

$$p_{s2} = \frac{b_{s2}^{\alpha}}{q_{s2}^{\theta} + b_{02}^{\alpha}/p_{02}} \quad \text{for} \quad s \notin S_1^{\alpha}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Introduction	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Market Clearing Conditions

Mortgage Market

$$(1+ar{r}^{\gammalpha})=rac{ar{\mu}^{lpha}}{ar{m}^{lpha}}$$

Clearing conditions for effective returns on mortgages

$$(1+\bar{r}_{s}^{\gamma\alpha}) = \begin{cases} (1+\bar{r}^{\gamma\alpha}) & \text{for} \quad s \in S_{1}^{\alpha} \\ \left(\frac{p_{22}b_{02}^{\alpha}}{p_{02}}\right) \left(\frac{\bar{\mu}^{\alpha}}{1+\bar{r}^{\gamma\alpha}}\right)^{-1} & \text{for} \quad s \notin S_{1}^{\alpha} \end{cases}$$

Short-term Consumer Markets

$$\begin{split} \left(1+r_{s^*}^{\gamma}\right) &= \frac{\mu_{s^*}^{\alpha}}{m_{s^*}^{\gamma}} \\ \left(1+r_{s^*}^{\delta}\right) &= \frac{\mu_{s^*}^{\theta}}{m_{s^*}^{\theta}} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Market Clearing Conditions

Consumer Deposit Market

$$(1+ar{r}_d^\gamma)=rac{ar{\mu}_d^\gamma}{ar{d}^ heta}$$

Wholesale Money Market

$$(1+ar{r})=rac{ar{\mu}^\psi+ar{\mu}^\phi}{ar{m}}$$

Repo Market

$$\left(1+\rho^{\textit{CB}}_{\textit{s}^*}\right)=\frac{\mu^{\textit{G}\delta}_{\textit{s}^*}}{M^{\textit{CB}}_{\textit{s}^*}+\textit{d}^{\textit{G}\gamma}_{\textit{s}^*}}$$

Interbank Market

$$(1+ar
ho)={ar\mu^\delta\overar d^\gamma}$$

MBS's Market

$$p^{lpha}=rac{ ilde{m}^{lpha}}{ar{m}^{lpha}}$$

CDO's Market

$$ilde{q}^lpha = rac{\hat{m}^lpha}{ ilde{m}^lpha}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Conditions on Expected Delivery Rates (Rational Expectations)

Wholesale Money Market

$$ar{R}_s = egin{cases} rac{ar{v}_s^\psi ar{\mu}^\psi + ar{v}_s^\phi ar{\mu}^\phi}{ar{\mu}^\psi + ar{\mu}^\phi} & ext{if} & ar{\mu}^\psi + ar{\mu}^\phi > 0 \ & ext{$\forall s \in S$} \ & ext{arbitrary} & ext{if} & ar{\mu}^\psi + ar{\mu}^\phi = 0 \end{cases}$$

Interbank Market

$$ar{R}^{\delta}_{s} = \left\{egin{array}{ccc} rac{ar{v}^{\delta}_{s}ar{\mu}^{\delta}}{ar{\mu}^{\delta}} = ar{v}^{\delta}_{s} & ext{if} & ar{\mu}^{\delta} > 0 \ & & orall s \in S \ & & ext{arbitrary} & ext{if} & ar{\mu}^{\delta} = 0 \end{array}
ight.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Definition of Equilibrium

Let

$$\begin{aligned} \sigma^{\alpha} &= (q_{s1}^{\alpha}, b_{s2}^{\alpha}, \mu_{s}^{\alpha}, \bar{\mu}^{\alpha}) \\ \sigma^{\theta} &= (q_{s2}^{\alpha}, b_{s1}^{\alpha}, \mu_{s}^{\theta}, \bar{d}^{\theta}) \\ \sigma^{\gamma} &= (\phi_{s}^{\gamma}, m_{s}^{\gamma}, d_{s}^{G\gamma}, \bar{m}^{\alpha}, \bar{\mu}_{d}^{\gamma}, \bar{d}^{\gamma}) \\ \sigma^{\delta} &= (\phi_{s}^{\delta}, m_{s}^{\delta}, \mu_{s}^{G\gamma}, \bar{v}_{s}^{\delta}, \bar{m}, \bar{\mu}^{\delta}) \\ \sigma^{\psi} &= (\bar{v}_{s}^{\psi}, \bar{\mu}^{\psi}, \tilde{m}^{\alpha}) \\ \sigma^{\phi} &= (\bar{v}_{s}^{\phi}, \bar{\mu}^{\phi}, \hat{m}^{\alpha}) \end{aligned}$$

$$\eta = \left(\boldsymbol{p_{s1}}, \boldsymbol{p_{s2}}, \boldsymbol{\rho_s^{CB}}, \boldsymbol{r_s^{\gamma}}, \boldsymbol{r_s^{\delta}}, \bar{\boldsymbol{r}}^{\gamma\alpha}, \bar{\boldsymbol{r}_d^{\gamma}}, \bar{\boldsymbol{r}}, \bar{\boldsymbol{\rho}}, \boldsymbol{p}^{\alpha}, \tilde{\boldsymbol{q}}^{\alpha} \right)$$

Then $(\sigma^{\alpha}, \sigma^{\theta}, \sigma^{\gamma}, \sigma^{\delta}, \sigma^{\psi}, \sigma^{\phi}, \eta)$ is a MEBCSD iff:

- All agents maximize given their budget sets
- All markets clear.
- Substitution and a stational static stati

	The Model	MEBCSD	Numerical Example	Conclusions
		0000000		
Credit Spread	ds			

(ロ)、(型)、(E)、(E)、 E) の(の)

Proposition 1

At any MEBCSD, $r_{s^*}^{\delta}, \rho_{s^*}^{CB} \geq 0$, $r_{s^*}^{\delta} = \rho_{s^*}^{CB} \quad \forall s^* \in S^*$.

Cradit Sprage				
00000	000000000000000000000000000000000000000	0000000	0000000	000
Introduction	The Model	MEBCSD	Numerical Example	Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Credit Spreads

Proposition 1

At any MEBCSD,
$$r_{s^*}^{\delta}, \rho_{s^*}^{CB} \geq 0$$
, $r_{s^*}^{\delta} = \rho_{s^*}^{CB} \quad \forall s^* \in S^*$.

Proposition 2

At any MEBCSD,
$$r_{s^*}^{\gamma}, \rho_{s^*}^{CB} \geq 0$$
, $r_{s^*}^{\gamma} = \rho_{s^*}^{CB} \quad \forall s^* \in S^*$.

C. I'L C.	1 -			
00000	000000000000000000000000000000000000000	000000	0000000	000
	The Model	MEBCSD	Numerical Example	Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Credit Spreads

Proposition 1

At any MEBCSD,
$$r_{s^*}^{\delta}, \rho_{s^*}^{CB} \ge 0$$
, $r_{s^*}^{\delta} = \rho_{s^*}^{CB} \quad \forall s^* \in S^*$.

Proposition 2

At any MEBCSD,
$$r_{s^*}^{\gamma}, \rho_{s^*}^{CB} \geq 0$$
, $r_{s^*}^{\gamma} = \rho_{s^*}^{CB} \quad \forall s^* \in S^*$.

Proposition 3

At any MEBCSD,
$$\bar{r}_d^{\gamma}, \rho_0^{CB} \ge 0$$
, $\bar{r}_d^{\gamma} = \rho_0^{CB}$.

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	000000	0000000	000
C 11. C				

Credit Spreads

Proposition 1

At any MEBCSD,
$$r_{s^*}^{\delta}, \rho_{s^*}^{CB} \ge 0$$
, $r_{s^*}^{\delta} = \rho_{s^*}^{CB} \quad \forall s^* \in S^*$.

Proposition 2

At any MEBCSD,
$$r_{s^*}^{\gamma}, \rho_{s^*}^{CB} \geq 0$$
, $r_{s^*}^{\gamma} = \rho_{s^*}^{CB} \quad \forall s^* \in S^*$.

Proposition 3

At any MEBCSD,
$$\bar{r}_d^{\gamma}, \rho_0^{CB} \ge 0$$
, $\bar{r}_d^{\gamma} = \rho_0^{CB}$.

Proposition 4

At any MEBCSD,
$$p^{lpha},
ho_0^{CB} \geq 0$$
 and $p^{lpha} = 1 +
ho_0^{CB}$.

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000
C 11. C				

Credit Spreads

Proposition 1

At any MEBCSD,
$$r_{s^*}^{\delta}, \rho_{s^*}^{CB} \geq 0$$
, $r_{s^*}^{\delta} = \rho_{s^*}^{CB} \quad \forall s^* \in S^*$.

Proposition 2

At any MEBCSD,
$$r_{s^*}^{\gamma}, \rho_{s^*}^{CB} \geq 0$$
, $r_{s^*}^{\gamma} = \rho_{s^*}^{CB} \quad \forall s^* \in S^*$.

Proposition 3

At any MEBCSD,
$$\bar{r}_d^{\gamma}, \rho_0^{CB} \ge 0$$
, $\bar{r}_d^{\gamma} = \rho_0^{CB}$.

Proposition 4

At any MEBCSD,
$$p^{lpha},
ho_0^{CB} \geq 0$$
 and $p^{lpha} = 1 +
ho_0^{CB}$.

Proposition 5

At any MEBCSD,
$$\bar{r}, \bar{\rho}, \bar{r}_d^{\gamma} \ge 0$$
 and $\bar{r} \ge \bar{\rho} \ge \bar{r}_d^{\gamma}$.

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Term Structure of Interest Rates Proposition

Proposition 6

At any MEBCSD for $s \in S_1^{lpha}$,

$$\begin{split} &\sum_{j \in J} \left(m_0^j r_0^j \right) + \rho_0^{CB} \bar{m}^{\alpha} + \sum_{j \in J} \left(\pi_s^j \right) + \rho_s^{CB} M_s^{CB} + \rho_0^{CB} \bar{r}^{\gamma \alpha} \bar{m}^{\alpha} = \\ &\sum_{h \in H} \left(e_{m,0}^h + e_{m,s}^h \right) + \sum_{\bar{k} = \{\gamma, \delta, \psi\}} \left(e_0^k + e_s^k \right) + \frac{r_0^{\gamma}}{1 + r_0^{\gamma}} \pi_0^{\gamma} \end{split}$$

For
$$s \notin S_1^{\alpha}$$
.

$$\begin{split} &\sum_{j \in J} \left(m_0^j r_0^j \right) + \rho_0^{CB} \bar{m}^{\alpha} + \sum_{j \in J} \left(\pi_s^j \right) + \rho_s^{CB} M_s^{CB} + \rho_0^{CB} \bar{m}^{\alpha} \left(\tilde{q}^{\alpha} - \left(1 + \bar{r}_s^{\gamma \alpha} \right) \right) \\ &= \sum_{h \in \mathcal{H}} \left(e_{m,0}^h + e_{m,s}^h \right) + \sum_{\tilde{k} = \{\gamma, \delta, \psi\}} \left(e_0^k + e_s^k \right) + \frac{r_0^{\gamma}}{1 + r_0^{\gamma}} \pi_0^{\gamma} \end{split}$$

Put formally, $\forall s \in S$ aggregate ex-post interest rate payments to commercial banks adjusted by default equal the economy's total amount of outside money plus interest payments of commercial banks' accumulated profits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Intro 000	duction 00	The Model 00000000	00000000000	MEBCSD ○OO●OOOO	Numerical Example 00000000	Conclusions 000
Te	erm Struct	ure of	Interest	: Rates	Proposition	
			L)			
	Proposition	6 (contini	ued)			
	For $t = 0$					

$$\sum_{j \in J} \left(m_o^j r_o^j \right) < \sum_{h \in H} \left(e_{m,0}^h \right) + \sum_{\tilde{k} = \{\gamma, \delta, \psi\}} \left(e_0^k \right)$$

In the first period, uncertainty induces commercial banks to accumulate profits and/or make indirect investments in the derivatives markets; thus, aggregate interest payments will be less than or equal to aggregate initial monetary endowments.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Model	MEBCSD	Numerical Example	Conclusions
	00000000		

Monetary Policy Non-Neutrality

Lemma 7

Assume agent *h* borrows from bank *j* in the short term credit market. Furthermore, let $\left\{\chi_{s^*,l}^h, \chi_{s^*,m}^h\right\}$ denote traded quantities of two distinct goods $\{l, m\}$, and suppose that *h* purchases good *l*, and sells and has an endowment $(e_{s^*,m}^h)$ of good *m* at $s^* \in S^*$. If $r_{s^*}^j > 0$, then

$$\frac{p_{s^*l}\left(1+r_{s^*}^{j}\right)}{p_{s^*m}} = \frac{u'\left(\chi_{s^*l}^{h}\right)}{u'\left(e_{s^*m}^{h}-\chi_{s^*m}^{h}\right)}$$

i.e. there is a wedge between selling and purchasing prices.

The Model	MEBCSD	Numerical Example	Conclusions
	00000000		

Monetary Policy Non-Neutrality

Lemma 7

Assume agent *h* borrows from bank *j* in the short term credit market. Furthermore, let $\left\{\chi_{s^*,I}^h, \chi_{s^*,m}^h\right\}$ denote traded quantities of two distinct goods $\{I, m\}$, and suppose that *h* purchases good *I*, and sells and has an endowment $(e_{s^*,m}^h)$ of good *m* at $s^* \in S^*$. If $r_{s^*}^j > 0$, then

$$\frac{p_{s^*l}\left(1+r_{s^*}^{j}\right)}{p_{s^*m}} = \frac{u'\left(\chi_{s^*l}^{h}\right)}{u'\left(e_{s^*m}^{h}-\chi_{s^*m}^{h}\right)}$$

i.e. there is a wedge between selling and purchasing prices.

Proposition 8

If nominal interest rates are positive, then monetary policy is non-neutral.

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	00000000	0000000	000

Quantity Theory of Money Proposition

Proposition 9

In a MEBCSD, if $ho_{s^*}^{\textit{CB}} > 0$ for some $s^* \in S^*$, then at $s \in S_1^{lpha}$

$$\sum_{h \in \mathcal{H}, l} \left(p_{sl} q_{sl}^h \right) = \sum_{h \in \mathcal{H}} e_{m,s}^h + \sum_{j \in J} e_s^j + M_s^{CB} + \pi_0^{\gamma} + \bar{R}_s \bar{m} \left(1 + \bar{r} \right) - \bar{m}^{\alpha} \left(1 + \bar{r}^{\gamma \alpha} \right)$$

Aggregate income at $s \in S_1^{\alpha}$ is equal to the stock of money at that period, namely the total amount of outside and inside money, plus commercial banks' accumulated profits from the previous period, plus the banking financial sector's net payoffs from its indirect investments in the derivatives markets. When there is no default in the mortgage market, the mortgage's repayment is forgone income to commercial banks and is used by the hedge fund to repay its wholesale money market obligation. (In stark constrast with Lucas and Real Business Cycle models)

Introduction 00000	The Model 00000000000000		Numerical Example	Conclusions 000
Quanti	ty Theory of Mo	ney Proposi	tion	
Propo	osition 9 (continued)			
For <i>s</i> ∉	$f S_1^{\alpha}$			
	$\sum_{h\in \mathcal{H}, l=\{1,2\}} \left(p_{sl} q_{sl}^h \right) =$	$\sum_{h\in H} e^h_{m,s} + \sum_{j\in J} e^j_s + I$	$\mathcal{M}_{s}^{CB}+\pi_{0}^{\gamma}+ar{R}_{s}ar{m}\left(1+ar{r} ight)$	

When there is default in the mortgage market, the quantity theory of money holds as in the previous case but the banking financial sector's loss due to default on the mortgage and derivatives markets is embedded in the expected repayment rates of wholesale money market loans.

Proposition 9 (continued)

For s = 0

$$\sum_{h \in \mathcal{H}, l = \{1, 2\}} \left(p_{0l} q_{0l}^h \right) = \sum_{h \in \mathcal{H}} e_{m,0}^h + \sum_{j \in J} e_0^j + M_0^{CB} - \bar{m}$$

National income is equal to the stock of money in the economy less indirect expenditures by commercial banks in the derivatives markets.

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

The Fisher Effect Proposition

Proposition 10

Suppose agent α chooses $b^{\alpha}_{02}, b^{\alpha}_{12}>0$ and has money left over when the mortgage loan comes due, then at a MEBCSD the following equation must hold

$$\left(1+\bar{r}^{\gamma\alpha}\right) = \left(1+\frac{u'\left(\chi_{02}^{\alpha}\right)}{u'\left(\chi_{02}^{\alpha}+\chi_{12}^{\alpha}\right)}\right) \left(\frac{p_{12}}{p_{02}}\right) \quad \Leftrightarrow \bar{r}^{\gamma\alpha} \approx \frac{u'\left(\chi_{02}^{\alpha}\right)}{u'\left(\chi_{02}^{\alpha}+\chi_{12}^{\alpha}\right)} + \Pi_{12}$$

Similarly, assume agent θ chooses $b_{s^*2}^{\theta} > 0 \quad \forall s^* \in S^*$, and has money left over when the consumer deposit market meets, then at a MEBCSD

$$\left(1+\bar{r}_{d}^{\gamma}\right)=\frac{u'\left(\chi_{01}^{\theta}\right)/\rho_{01}}{E_{\mathrm{s}}\left\{u'\left(\chi_{\mathrm{s}1}^{\theta}\right)/\rho_{\mathrm{s}1}\right\}}\Leftrightarrow\ \bar{r}_{d}^{\gamma}\approx\frac{u'\left(\chi_{01}^{\theta}\right)}{u'\left(\chi_{\mathrm{s}1}^{\theta}\right)}+\mathsf{\Pi}_{\mathrm{s}1}+\mathsf{log}\left(\frac{\lambda_{\mathrm{s}}}{\omega_{\mathrm{s}}}\right)$$

Hence, nominal long term interest rates are approximately equal to real interest rates plus expected inflation and a risk premium.

00000 00000000000000000 0000000 0000000		The Model	MEBCSD	Numerical Example	Conclusions
	00000	000000000000000000000000000000000000000	0000000	••••	000

Discussion of the Equilibrium

- Economy experiences an adverse productivity shock: moderate at s = 1 and severe at s = 2
- Central Bank reacts with expansionary monetary policy at *s* = 1 and contractionary monetary policy at *s* = 2
- α is poorer than θ in monetary endowments at t = 0
- $\bullet\,$ Bank γ is more capitlized than bank δ and the investment bank at all states
- The hedge fund has no capital
- Housing deflation and goods inflation
 - Negative productivity (supply) shock increases goods prices
 - House prices fall due to α 's lower demand for housing
- Fall in relative house prices leads to
 - Lower trade in the housing and goods markets at s = 2
 - Fall in the mortgage's effective return at s = 2

Introduction	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Discussion of the Equilibrium (continued)

- At s = 1 no mortgage default, hence there's no default in wholesale money market
- At s = 2, α defaults on his mortgage
 - Significant losses in non-banking financial sector
 - CDS contract executed: ϕ delivers collateral to ψ in exchange for intial investment value
 - ψ assumes write down loss
- Economy becomes *financial unstable* at s = 2:
 - Default increases in wholesale and interbank markets
 - Banks' profits fall
- Monetary policy
 - Partially offsets effects of adverse productivity shock at s=1
 - Exacerbates effects of adverse productivity shock at s = 2

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Initial Equilibrium

	ices		isholds		al Sector	D				Trade and	d Spending		
Pri	ices		nding		iding		ayment						
		Bor	rowing	Borr	owing	ŀ	Rates	G	ioods	Ho	using	Deri	vatives
P01	3.23	μ_0^{α}	53.43	$d_{0_{c}}^{G\gamma}$	14.62	\bar{v}_1^{α}	100%	q_{01}^{α}	16.53	q_{02}^{θ}	4.47	mα	14.10
P11	11.46	μ_1^{α}	106.46	$d_{i}^{G\gamma}$	8.18	\bar{v}_2^{α}	85.3%	q_{11}^{α}	9.29	q_{12}^{θ} q_{22}^{θ}	4.34	'nα	31.5
P21	53.59	μ_2^{α}	85.70	$d_2^{G\gamma}$	7.64	\bar{v}_1^{δ}	98.5%	q_{21}^{α}	1.60	q_{22}^{θ}	4.30		
P02	12.75	$\bar{\mu}^{\alpha}$	34.07	m_0^{γ}	37.16	\bar{v}_2^{δ}	58.6%	$b_{01}^{\overline{\theta}}$	53.43	b_{02}^{α}	56.96		
P12	11.53	μ_0^{θ}	56.96	$m_1^{\tilde{\gamma}}$	83.09	$\bar{v}_1^{\bar{\psi}}$	100%	$b_{11}^{\tilde{\theta}}$	106.46	b_{12}^{α}	50.02		
P22	6.50	μ_1^{θ}	50.02	m_2^{γ}	56.02	$\bar{v}_1^{\delta} \bar{v}_2^{\psi} \bar{v}_1^{\psi} \bar{v}_2^{\phi} \bar{v}_1^{\psi} \bar{v}_2^{\phi} \bar{v}_1^{\phi} \bar{v}_2^{\phi}$	88.8%	q_{21}^{α} b_{01}^{θ} b_{11}^{θ} b_{21}^{θ}	85.70	b22	57.02		
	0.44	$\mu_2^{\hat{\theta}}$	27.96	mα	9.81	\bar{v}_{1}^{ϕ}	100%						
r_1^{γ}	0.28	āĐ	46.19	$\bar{\mu}^{\gamma}_{d}$ \bar{a}^{γ}	66.42	\bar{v}_{2}^{ϕ}	64.3%						
ڔ ۵٩؉؈ڡڡڡڡڡ ۵۹	0.53			āγ	44.61	2							
ro	0.44			$\mu_0^{G\delta}$ $\mu_1^{G\delta}$ $\mu_2^{G\delta}$ $\mu_2^{G\delta}$	56.96								
r_1^{δ}	0.28			$\mu_1^{G\delta}$	46.36								
r ₂ ^ð	0.53			$\mu_2^{G\delta}$	11.84								
\bar{r}_d^{γ}	0.44			m0	39.62								
$\gamma \alpha$	2.47			m_1^{δ}	39.04								
ρ_0^{CB} ρ_0^{CB} ρ_1^{CB} ρ_2^{CB}	0.44			m_2^{δ}	18.28								
	0.28			m s	45.61								
	0.53			$\bar{\mu}^{\delta}$	69.17								
$\bar{\rho}$ \bar{r}	0.55 0.56			$\bar{\mu}^{\psi}$ $\bar{\mu}^{\phi}$	21.92								
p^{α}	0.56			μ^{ψ}	48.98								
\tilde{q}^{α}	2.23												

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Comparative Statics: Crisis Catalysts

	Increase Money Supply t = 0	Increase θ 's Housing Endowment t = 0		Increase Money Supply t = 0	Increase θ 's Housing Endowment t = 0
P02	+	-	$\bar{\mu}^{\psi}$	+	+
P22	-	-	\bar{v}_2^{ψ} $\bar{\mu}^{\phi}$	-	-
$\bar{r}\gamma\alpha$	-	+	$\bar{\mu}^{\phi}$	+	-
ī	-	+	\bar{v}^{ϕ}_{2} U^{α}	+	-
$\bar{\rho}$	-	+	υ ^ζ α	+	+
\bar{r}_{d}^{γ} \bar{d}^{γ}	-	+	U^{θ}	+	-
āγ	+	+	π_2^{γ}	-	-
\bar{v}_2^{δ}	\approx	-	π_2^{δ}	\approx	-

Expansionary monetary policy at t = 0

- Improves households' welfare
- α and ψ default more and $\downarrow \pi_2^{\gamma}$ as $\downarrow \left(\rho \overline{r}_d^{\gamma} \right)$
- Mortgage crisis exacerbated
- Leverage procyclicality
- ↑ Financial Fragility (FF)

Greenspan Policy

Government Subsidies: The Transfer Paradox

- α 's welfare increases at the expense of and θ 's
- \uparrow Mortgage default, and $\downarrow \bar{v}_2^{\delta}$, $\downarrow \bar{v}_2^{\psi}$ and $\downarrow \bar{v}_2^{\phi}$
- $\downarrow \pi_2^{\gamma}$ due to $\downarrow \left(\rho \overline{r}_d^{\gamma} \right)$ and $\downarrow \overline{v}_2^{\delta}$
- Leverage procyclicality
- ↑ FF

Paulson Plan

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Comparative Statics: Optimal Monetary Policy Instrument

	Increase Money Supply s = 2	Decrease Repo Rate s = 2		Increase Money Supply s = 2	Decrease Repo Rate s = 2
P02	+	+	$\bar{\mu}^{\psi}$	-	-
P22	+	+	\bar{v}_2^{ψ}	+	+
$\bar{r}^{\gamma \alpha}$	-	-	$\bar{\mu}^{\phi}$	-	-
ī	\approx	-	\bar{v}^{ϕ}_{2} U^{α}	+	+
$\bar{\rho}$	\approx	-	υ ^{Γα}	\approx	\approx
\bar{r}_{d}^{γ} \bar{d}^{γ}	\approx	\approx	U^{θ}	-	+
āγ	-	+	π_2^{γ}	-	-
\bar{v}_2^{δ}	-	-	π_2^{δ}	-	-

Monetary Base Intrument

- \downarrow Households' welfare (θ credit constrained)
- \downarrow Default in mortgage, $\uparrow \bar{v}_2^{\delta}$, $\uparrow \bar{v}_2^{\psi}$ and $\uparrow \bar{v}_2^{\phi}$
- ↓ Banks profits
- 'Localized' liquidity trap
- FF improves partially

Interest Rate Intrument

- \downarrow Mortgage default, and $\uparrow \bar{v}_2^{\delta}$, $\uparrow \bar{v}_2^{\psi}$ and $\uparrow \bar{v}_2^{\phi}$
- ↓ Banks profits (insufficient ↑lending)
- Undistorted transmission mechanism of M.P.
- FF improves partially

Interest rate instrument is preferable to the monetary base instrument in times of financial distress

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

	The Model	MEBCSD	Numerical Example
00000	000000000000000000000000000000000000000	0000000	00000000

Comparative Statics: Regulatory Policies

	Tighter ψ 's Default Penalty s = 2	Increase γ's Risk Aversion Coefficient		Tighter ψ 's Default Penalty s = 2	Increase γ's Risk Aversion Coefficient
P02	+	+	$\bar{\mu}^{\psi}$	-	-
P22	+	+	\bar{v}_2^{ψ}	+	+
$\bar{r}\gamma\alpha$	~	-	$\bar{\mu}^{\phi}$	-	-
ī	-	+	\bar{v}^{ϕ}_{2} U^{α}	+	≈
$\bar{\rho}$	\approx	+	υ ^{ία}	\approx	+
\bar{r}_d^{γ} \bar{d}^{γ}	-	-	U^{θ}	≈	≈
āγ	-	-	π_2^{γ}	+	+
\bar{v}_2^{δ}	~	+	π_2^{δ}	~	-

Default Penalties for ψ

- Weak improvement of households' welfare
- \downarrow Default in mortgage, $\uparrow \bar{v}_2^{\delta}$, $\uparrow \bar{v}_2^{\psi}$ and $\uparrow \bar{v}_2^{\phi}$
- A Banks profits
- Countercyclical leverage
- ↑ FF

γ becomes more prudent

- Households' welfare (credit conditions ease)
- \downarrow Mortgage default, and $\uparrow \bar{v}_2^{\delta}$, $\uparrow \bar{v}_2^{\psi}$ and $\uparrow \bar{v}_2^{\phi}$
- \uparrow Banks profits as $\uparrow \left(
 ho ar{ extsf{r}}_{ extsf{d}}^{\gamma}
 ight)$
- Countercyclical leverage
- ↑ FF

Central Banks' Financial Stability objective should be primarly achieved by regulating systemic financial agents

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ④��

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	00000000	000

Implications for Inflation Targeting

Central Banks are responsible for Price and Financial Stability

Initial Equilibrium

- House and goods prices move in opposite directions
- Central Bank reacts to stabilize goods inflation only: when goods inflation and relative prices are higher monetary policy is tightened (at s = 2)
- Tighter monetary policy contributes to default rates increase at s = 2 (Greenspan/Trichet/King)

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Implications for Inflation Targeting

Comparative Statics

- Expansionary monetary policy at t = 0 increases default and reduces banks' profits (Greenspan 2005-2007)
- Expansionary monetary policy at s = 2 (*if effective*) reduces default but fails to increse banks' profits (Current Central Banks' policy)
- Regulatory policies are more efftive at reducing default and increasing banks' profits (Price and Financial Stability cannot be achieved with a single instrument)

Hence, the Price Index should include the behavior of housing prices

	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000
Concluding F	Remarks			

- Models to analyze Financial Stability should include
 - Heterogenous agents
 - Endougenous Default
 - An essential role for money
 - Incomplete financial markets
- Collateral and securitisation features introduced also important for current juncture analysis
- In our model
 - Changes to the money supply feed into prices and quantities
 - Monetary and regulatory policices are not neutral
 - Fisher effect is incorporated
 - Interest rates differentials respond to aggregate liquidity and default

Introduction	The Model	MEBCSD	Numerical Example	Conclusions
00000	000000000000000000000000000000000000000	0000000	0000000	000

Concluding Remarks

- In times of crisis, monetary policy conducted by means of the interest rate instrument is a more effective than using the monetary base instrument (See also Goodhart, Sunirand and Tsomocos, 2008)
- CPI should include an appropriate measure of housing prices
- Optimal regulatory policies should target systemic financial agents and induce them to behave more prudently before crises

Concluding P	Comparis Ext	analana		
00000	000000000000000000000000000000000000000	0000000	0000000	000
	The Model	MEBCSD	Numerical Example	Conclusions

- Concluding Remarks Extensions
 - Combine our rich institutional framework and rigourous economic modelling with the (infinite horizon or OLG) dynamic and stochastic structure of DSGE models, in order to track the dynamic effects of shocks and calibrate the model using actual data.
 - Model the production sector to capture the effects of crises and policy shocks on aggregate real income, not just on its redistribution.
 - Endogenize the Central Bank and/or Regulator's policy actions by microfounding a social welfare function for a heterogenous-agents economy.

THANK YOU