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Economic Links and Credit Spreads

Abstract. Counterparty risk is an important determinant of corporate credit spreads.
However, there are only a few techniques available to isolate it from other factors. In this
paper we describe a model of financial networks that is suitable for the construction of
proxies for counterparty risk. Using data on the U.S. supplier-customer network of public
companies, we find that, for each firm, its customers’ leverage and jump risk are important
determinants of corporate credit spreads. Our findings are robust after controlling for several
idiosyncratic, industry, and market factors.

Is counterparty risk an important determinant of corporate risk? In times of distress,

credit contagion is well documented; bankruptcy announcements are followed by a widening

in CDS spreads for creditors (Jorion and Zhang, 2009). At the same time, little is known

about its impact on corporate risk under general market conditions. We examine whether

counterparty risk in supplier-customer relationships matters in describing the cross-sectional

and time-series variation in corporate credit spreads. Along the supply chain, counterparty

risk arises from two primary mechanisms, trade credit exposure and future cash flow risk.

Trade credits are extended whenever payment is not made upon delivery. When payment is

delayed, the supplier acts as a lender, and vice-versa, when payment is anticipated, it is the

buyer that acts as a lender.1 In both circumstances, the lender takes on a risk exposure, whose

magnitude depends on the size of the trade and the credit standing of the borrower. In turn,

such exposure affects the credit standing of the lender. The second propagation mechanism,

cash flow risk, hinges on the strength of the economic link between buyer and seller. Strong

ties along the supply chain arise for several reasons. For example, a customer might share

his technical knowledge for the engineering of custom-built parts, while a supplier might

invest in customer-specific equipment. Such economic links are, indeed, a form of business

partnership in which customers and suppliers are co-invested and therefore exposed to the

uncertainties in each others’ businesses.

What emerges from these mechanisms is that the impact of these economic links rests

heavily on the degree of financial commitment they imply. Normally strong commitment is

1For a summary of the theoretical literature and a study of the determinants of credit terms, see Ng
et al. (1999).
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difficult to observe, but the dataset we use allows for its identification. Since 1998, Regulation

SFAS No. 131 requires firms to disclose those customers that account for more than 10% of

their total yearly sales.2 Clearly, these relationships point to strong ties and are potential

channels for the propagation of counterparty risk.

Our results establish counterparty risk, as identified by network factors, as an important

determinant of credit spreads for corporate bonds. The magnitude of network effects is

substantial: for a given firm, an increase of one standard deviation in the leverage of its

main customers leads to a widening of its credit spread of 25 basis points on average. This

figure is particularly compelling when compared to the effect of a firm’s own leverage: an

increase of a standard deviation in a firm’s own leverage widens its credit spread by 50 basis

points. Our result is consistent with the theoretical work of Merton (1974), in which leverage

plays a key role in the pricing of corporate debt. A customer with higher leverage has on

average wider spreads and, hence, a higher implied probability of default. This, in turn,

reflects negatively on the supplier’s prospects (trade credits are riskier and future demand

uncertain), and it eventually leads to a higher spread.

In this paper, we describe an econometric model of network effects that is appropriate

for the analysis of counterparty risk. In our context, nodes represent firms, while links

between them represent supplier-customer relations. The essence of our approach is best

described through an analogy. Just like in time series models the basic building blocks are

constructed with the help of the time lag operator, we use a network lag operator which

plays a similar role, only along a different dimension. The time lag operator shifts a variable

by one period and its powers refer to events more distant in the time. Instead, a network

lag of a variable is the average, possibly weighted, of values from neighboring nodes. Higher

powers of the network lag operator refer, intuitively, to more distant firms along the supply

chain. The network lag operator allows us to define processes that include moving averages

2Regulation SFAS 131 is established in FASB Statement No. 131, Disclosures about Segments of an En-
terprise and Related Information (FASB, 1997). SFAS 131 is designed to increase information disaggregation,
providing financial analysts with additional data about diversification strategies and exposures.
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and are autoregressive along the network directions. We refer to these processes as Network

Autoregressive Moving Average (NARMA).

Typically, each node in a financial network is observed through time and the data sample

is structured as a panel. Although this type of data is the natural domain of panel data

econometrics, modeling explicitly the network structure—when available—offers important

complementarities, as well as some distinct advantages, over standard panel data models.

First, the standard assumption of cross-sectional independence for the disturbances for panel

models often does not hold in practice. While several panel techniques are available to tackle

this issue,3 they do not exploit the rich information about the links between the units, when

available. In a network model, on the contrary, cross-sectional dependence is explicitly

described in terms of a parsimonious model. Second, network models provide the ability to

estimate the effects that neighboring units have on each other. While in principle allowing

for individual effects can mitigate the bias introduced when ignoring these dependencies, the

panel approach provides minimal information about their structural underpinnings.

The paper is organized as follows. Section I provides some background and reviews the

literature. Section II is an introduction to the NARMA model. We define several basic

notions from graph theory, describe the workings of the network lag operator and the general

specification of the model. Section III contains the main empirical result of the paper.

We describe application of our modeling framework to the analysis of counterparty risk

in supplier-customer networks. Section IV considers three robustness checks: we consider

the issue of bi-directionality of economic links, we discuss alternative specifications, and we

explore the hypothesis that network effects proxy for cross-industry covariates rather than

measuring counterparty risk. We reject this hypothesis. Section V concludes.

3A textbook example is the seemingly unrelated regressions method (SURE) introduced by Zellner (1962)
which can account for cross-sectional correlations in long, narrow panels; asymptotically correct inference
can be achieved using the method of Driscoll and Kraay (1998) to consistently estimate standard errors.
Driscoll-Kraay standard errors are robust to heteroskedasticity, cross-sectional and temporal dependence.
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I. Background and Literature Review

Recently, networks have risen to the foreground of empirical finance. Several studies

document the importance of social ties in portfolio choices of retail investors and mutual

fund managers, in contracting decisions and as drivers of return predictability.4 Other works

focus on the structural properties of financial networks and one of the most salient examples

is the analysis of interbank loan markets.5 By examining the dynamic properties of the

network structure and through the use of simulations, these studies try to assess how the

network topology determines market liquidity and systemic risk.

Our research combines the recent literature on the econometrics of networks and the

broad topic of credit risk. The origin of our modeling framework can be traced back to the

field of spatial econometrics and to the literature concerned with the identification of social

interactions. The monographs on spatial econometrics by Anselin (1988), LeSage and Pace

(2009) and Lee and Yu (2011), and the chapter on social interactions by Blume et al. (2010)

provide recent overviews of these areas. Despite many formal similarities, there are a few

differences that are worth noting.

An essential ingredient in spatial models is the weight matrix, an analogue of the network

lag operator that encodes information about the relative locations and distances of the

spatial units. Two common critiques directed at spatial models involve the arbitrariness in

the determination of the spatial units and the, sometimes, tenuous economic relevance of

the weights. In contrast, nodes in a network model are identified with specific entities and

4Hong et al. (2004) document that socially engaged households are more likely to participate in the stock
market, and Cohen et al. (2008) find that portfolio managers place larger bets on firms to which they have
social ties. Kuhnen (2009) shows that the contracting decisions made by mutual funds, such as selecting
the board of directors and fund advisors, are influenced by past business relationships. Cohen and Frazzini
(2008) suggest that investors fail to promptly take into account supplier-customer links and construct a
customer momentum strategy that yield abnormal returns.

5Boss et al. (2004) and Soramaki et al. (2007) analyze the Austrian interbank market and the Fedwire
Funds Service, respectively, and they both find these networks have a low average path length and low
connectivity. Applying methods of network theory, Müller (2006) uses simulations to assess the risk of
contagion in the Swiss interbank market.
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the normalization of the network lag operator follows either an equal weighting scheme or is

suggested by the economic setting.6

Our work expands on a long series of studies of corporate credit spreads by analyzing their

network determinants. At the firm level, the most important factors are leverage, volatility,

and jump risk (see, among others, Cremers et al., 2008). Campbell and Taksler (2003) find

that equity volatility accounts for as much variation in corporate spreads as do credit ratings.

Cremers et al. (2008) calibrate a jump-diffusion firm value process from equity and option

data and confirm the importance of including jump risk with an out-of-sample test. Besides

risk determinants, market frictions are priced in the spreads. An example is the liquidity

premium that investors demand for their inability to trade large quantities over a short

horizon without incurring into negative price effects. Chen et al. (2007) find that liquidity

is priced in both levels and changes in the yield spread, while Bao et al. (2011) quantify

implicit illiquidity costs as the (negative) autocorrelation of price reversals in high frequency

transaction data and reach similar conclusions.

Another area related to our paper is the literature exploring the nature of default correla-

tions. Several authors document the clustering of corporate default in time.7 The practical

repercussions are significant both from both asset pricing and risk management perspec-

tive. For example, Das et al. (2007) show that default correlations cannot be explained by

the widely used doubly stochastic model of defaults.8 A possible explanation for default

clustering is the dependence of default intensities on a dynamic common factor. From this

viewpoint, default clustering is puzzling only to the extent that such factor is unobserved.

Duffie et al. (2009) discuss a model in which the posterior distribution of the latent fac-

tor is updated at the occurrence of defaults arriving with an anomalous timing (i.e. overly

clustered). A second, independent explanation for default clustering is counterparty risk.

6For example, in the supplier-customer network that we consider, the sales associated to each edge (each
supplier-customer pair) provide relevant economic weights.

7See Lucas (1995), and more recently Akhavein et al. (2005), Das et al. (2006), and de Servigny and
Renault (2002).

8According to the doubly stochastic model, defaults are independent Poisson arrivals, conditional on
past determinants of default intensities.
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A common limitation of many studies is the abstraction from the economic links that con-

nect the firms under consideration. In the absence of a suitable empirical framework and

readily available data, such a limitation is both technical and practical. As a by-product,

counterparty risk cannot be identified.

One of the few papers that is successful in isolating counterparty risk from generic credit

contagion is the work of Jorion and Zhang (2009). In their study, they consider a sample

of 250 bankruptcies between 1999 and 2005 and collect information about counterparty

exposures as detailed in bankruptcy filings. Within this sample, equity value decreases

and credit default swap spreads widen for those firms whose debtors undergo bankruptcy.

Our analysis corroborates these findings but differs in that our approach not only provides

evidence of counterparty risk, but it also includes a study of its determinants and of their

impacts on credit spreads. Moreover, we are not restricted to events of particular gravity,

such as bankruptcies, but instead examine interactions under general market conditions.

II. The NARMA Model

A. Networks and graphs

Networks can be represented by graphs. A graph g is a pair of sets (V,E) containing the

vertices and the edges of the graph. These correspond to nodes and links in the network. In

what follows, the terms network and graph are used interchangeably.

Edges can be uni-directional or bi-directional. Accordingly, the graph is called directed or

undirected, respectively. A precise mathematical definition can be given as follows. An edge

is identified by an ordered pair of vertices, its source and its target. Thus, the set E of all

edges is a subset of V × V and, consequently, any edge e in E can be thought of as a pair

(i, j), meaning that there is a edge between the node i and the node j. Therefore specifying

E is the same as specifying a map

G : V × V → {0, 1} ,
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such that G(i, j) = 1 if and only if there is an edge between (i, j). A graph is undirected

(all edges are bi-directional) is the map G is symmetric, that is if G(i, j) = G(j, i), for all

the pairs of vertices (i, j). We assume that there are no selfloops, which is equivalent to

condition G(i, i) = 0 for all i.

In some applications, it is useful to introduce the concept of strength of a link. A simple

way of doing this is to attach a number to every edge, its weight. In practice this corresponds

to extending the edge map G to the real numbers:

G : V × V → R .

Given that the number of vertices V is finite, the map G can be interpreted as a square

matrix with dimension the number of vertices, the adjacency matrix. More explicitly:

(G)ij = G(i, j) .

When the graph is undirected, the matrix G is symmetric. In particular the sum of the

entries of the i-th row is equal to the sum of the entries of the i-th column. Intuitively,

this means that the vertex i influences the same number of nodes by which it is influenced.

A typical weighting scheme is a simple uniform normalization where each non-zero row is

divided by the sum of its entries.

The successive powers of the adjacency matrix capture the topology of the graph. A walk

from node i to node j of length k is a succession of k edges starting at i and ending at j.9

More precisely, the matrix entry (Gk)ij is equal to the number of walks from node i to node

j of length k. 10

9Generally, a walk is is not path. A path on a graph is to a succession of edges that does not visit the
same vertex more than once, i.e. a path is a walk in which all vertices are different.

10See Van Mieghem (2010, pag. 26, Lemma 3).
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B . Basic properties of NARMA models

The next step is to recognize that the adjacency matrix is a linear operator on vectors

of vertex characteristics. We refer to this operator as the Network Lag Operator (NLO).

Indeed, let x be an n-dimensional vector of vertex characteristics (i.e. xi is some property of

node i). Since the matrix G is an n× n matrix, x can be right multiplied by G. A NARMA

process of order (p, q) is a stochastic process y on a network g (i.e. indexed by the nodes of

the network g) that follows the data generating process

(1) y =

p∑
i=1

αiG
iy +

q∑
j=0

βjG
jx+ ε ,

where x is an (n × 1)-dimensional vector, {αi} and {βj} are families of real parameters, G

is the adjacency matrix (weighted or unweighted) of the network g, and ε is an (n × 1)-

dimensional vector of disturbances. More generally x can be an n × k matrix of exogenous

characteristics and each βj is a 1× k vector.

To further understand the action of the network lag operator, consider the following three

alternative uses of the adjacency matrix. First, G can taken to be the (unweighted) adjacency

matrix of a given graph g. Then the entries of Gx are the sums of neighbors’ characteristics.

More specifically,11

(Gx)i =
∑
j∈V

Gijxj =
∑
j|i→j

xj ,

where the notation j|i→ j means “(node) j such that i connects to j”. A second option is

for G be a row normalized adjacency matrix. Then

(Gx)i =
∑
j∈V

Gijxj =
∑
j|i→j

1

ni

xj =
1

ni

∑
j|i→j

xj ,

11The sums are written as sums over all the vertices in V . This is equivalent to summing over j that
ranges from 1 to n.
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Figure 1. A simple example of a directed network.

where ni is the number of neighbors of i, that is the number of nodes j such that i connects

to j. Thirdly, G can be an stochastic weighted adjacency matrix.12 Then

(Gx)i =
∑
j∈V

Gijxj =
∑
j|i→j

Gijxj

is the weighted average of the neighbors of nodes i.

First- and second-order network effects can be easily interpreted in a simple network

and the arguments that follow can be easily extended to higher-order effects. Consider the

directed network g depicted in Figure 1. For this network the adjacency matrix G and the

matrix G2 of walks of length 2 are

G =


0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0


, G2 =


0 0 0 2

0 0 0 0

0 0 0 0

0 0 0 0


In a NARMA model, v2 and v3 affect v1 and these are first order effects.13 The effect of v4

on v1 is a second order effect. According to the matrix G2, shocks from v4 have weight 2

because there are two walks from v4 to v1. Walks accounting becomes important when there

12A square matrix of nonnegative real numbers is stochastic if the sum of the elements of each row is
equal to one. This concept of stochasticity is not related to the concept of random networks.

13Note that it is the target vertex influencing the source vertex and not vice versa. This convention,
which might seem counterintuitive, stems from the way the adjacency matrix is constructed and from the
fact that it acts from the left. One could transpose the adjacency matrix and gain a more intuitive picture,
but this would mean breaking away from the common practice adopted in graph theory.
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is a need to discriminate between the relative impacts of different nodes, as it is the case for

the second order effects of the network depicted Figure 2.

Figure 2. In this network, the second order effect of v4 on v1 has weight 2,
while the second order effect of v5 on v1 has weight 1.

A similar line of reasoning can be applied to weighted adjacency matrices. In a NARMA

model, when the adjacency matrix G is weighted, the product Gx is the local weighted sum

of vertex characteristics, where local refers to the fact that, at each node, the sum is taken

over neighboring nodes. To understand higher powers of the network lag operator, define

the weight of a walk as the product of the weights of its segments. Then, the entry (i, j) of

the k-th power of the adjacency matrix is the sum of the weights of the paths from i to j of

length k.

III. The Network Determinants of Credit Spreads

A. The model: network spillovers

We focus our analysis on a model of network spillovers. Network spillovers occur when the

characteristics of a node’s neighbors have a direct impact on its outcomes. The NARMA(0,1)

model is a simple approach that accounts for neighbors’ characteristics by way of the network

lags of the covariates:

(2) CS i,t = α + β Firm i,t + γ Customers i,t + δ1 S&P t + δ2 YieldCurvet + εi,t ,

where,
10



1. CS i,t is the credit spread for of firm i at time t.

2. Firm i,t is a vector of the firm’s characteristics: leverage, volatility, and a measure of

jump-to-default risk.

Firm i,t = { lev i,t, ivol i,t, jumpi,t } .

Alongside their theoretical underpinnings (Merton, 1974), leverage (lev), idiosyncratic

volatility (ivol), and jump-to-default risk (jump) have been documented as determi-

nants of credit spreads in several studies (for example Campbell and Taksler, 2003;

Cremers et al., 2008).

3. Customers i,t is a vector of the characteristics of the firm’s customers constructed using

the supplier-customer network G:

Customers i,t = { (Gt · lev t)i, (Gt · ivol t)i, (Gt · jumpt)i } .

4. S&P t is a vector of the market’s characteristics:

S&P t = { retS&P,t, ivolS&P,t, jumpS&P,t } .

5. YieldCurvet is a vector with two components,

YieldCurvet = {r10
t , slope

(2,10)
t } ,

the 10-year Benchmark Treasury rate r10
t and the slope of the yield curve, defined as the

difference between the 10-year and the 2-year Benchmark Treasury rates, slope
(2,10)
t =

r10
t − r2

t .

6. εi,t is a vector of white noise disturbances.
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B . Sources

The data in this study is combined from several sources. In this section, we describe in

detail how each variable is constructed. The analysis is carried out on weekly data for the

2004-2009 period.

1. Credit Spreads. Corporate bonds transactions come from the Trade Reporting and

Compliance Engine (TRACE), a platform operated by the Financial Industry Reg-

ulatory Authority (FINRA) that covers the majority of US corporate bonds. The

TRACE facility has been operating since 2002 and, by February 2005, its coverage

reached approximately 99% of all public transactions. Our sample covers the years

from 2004 to 2009. For each Friday in the sample and for each bond issue, we compute

the volume weighted average yield from transaction data.14 We obtain detailed infor-

mation on corporate bond issues from Thompson Reuters DataStream and only select

issues with fixed rate coupons and no embedded optionality. From Thompson Reuters

DataStream we also obtain benchmark treasury interest rates and compute maturity

matched credit spreads from a linear interpolation of the yield curve.15 Finally, for

each firm in the sample we select the most traded issue as measured by the average

number of trades over the number of days the issue was traded.16

2. Firm leverage. Following Collin-Dufresne et al. (2001), for each firm i, we define firm

leverage lev i,t as

Book Value of Debt

Market Value of Equity + Book Value of Debt
.17

14In our calculations we consider only regular trades (trades executed between 8:00 a.m. to 6:29:59 p.m.,
Eastern Time, and reported within 15 minutes of trade execution) which are not flagged as having a “special
price”. Moreover, we impute large trades to their minimum possible size. Indeed, for investment grade bonds
(junk bonds) when the par value of a transaction is greater than $5 million ($1 million), the quantity field
in the TRACE dataset contains the value “5MM+” (“1MM+”).

15The yield curve is linearly interpolated using maturities of 1, 3, 6 months and of 2, 3, 5, 7, 10, 30 years.
16There is no substantial difference when we select issues based on the average quantity traded.
17Book Value of Debt is the the sum of long term debt (Compustat item DLTTQ) and debt in liabilities

(Compustat item DLCQ), while Market Value of Equity is the product of the number of share outstanding
(CRSP item SHROUT) and the price or bid/ask average (CRSP item PRC).
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3. Implied Volatility. Weekly implied volatilities are constructed using the OptionMetrics

dataset. OptionMetrics contains quotes and analytics for US equity option markets

and, in particular, it reports the volatility surface constructed via kernel smoothing

on a fixed grid of maturities and deltas.18 We estimate future volatility as the average

of the implied volatilities of near-the-money call and put options:

ivol = 0.5
(
σimp
i,put(−0.5) + σimp

i,call(0.5)
)
,

where σimp
i,put is the implied volatility of the call option with 60 days to expiry on the

underlying stock of firm i as a function of delta.

4. Jump Measure. To quantify the probability of negative jumps we use a formula de-

veloped by Yan (2010) as a formalization of the intuitive measure defined by Collin-

Dufresne et al. (2001). The basic idea is to exploit the stylized fact, known as the

volatility smile, that, as the strike value of an option varies, implied volatility follows

approximately a concave parabola — volatility smiles. This pattern is attributed to

the probability of extreme moves in firm value, with such probability being higher the

more the smile is accentuated. Practically, one can use near- and out-of-the money

puts and near and in-the-money calls to interpolate the implied volatility σ(K) as a

quadratic polynomial in the strike K and quantify jump risk as σ(0.9 S)−σ(S), where

S is the stock closing price. This is the approach of Collin-Dufresne et al. (2001). In-

stead, we use the formula by Yan (2010), who provides a formal argument in support

of the following estimate of the slope of the volatility smile:

(3) jump = σimp
i,put(−0.5)− σimp

i,call(0.5) ,

where σimp
i,call is defined as above.

18The OptionMetrics volatility surface contains information on standardized options, both calls and puts,
with expirations of 30, 60, 91, 122, 152, 182, 273, 365, 547, and 730 calendar days, at deltas from 0.20 to 0.80
in steps of 0.05 units for calls and at negative deltas for puts. For European options, the implied volatility
is calculated inverting numerically the Black-Scholes model. For American options, the implied volatility
is estimated by evaluating iteratively a binomial tree model until the model price converges to the market
price.
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5. Market returns. Weekly S&P index returns, S&P i,t, are obtained by aggregating daily

data from the Center for Research on Security Prices (CRSP).

C . Supplier-customer network

According to Regulation SFAS no.131, suppliers are required to report those customers

that account for at least 10% of their total yearly sales. This information is contained in

the Compustat Customer Segment files. For each supplier, the key items in each entry of

the customers segments are the customer’s name and the customer’s total amount of sales.

As major customers are self-reported and, in particular, names are manually entered, the

matching of a reported customer’s name with a standard identifier is not a straightforward

matter. For example, the same company can be reported with different names (IBM vs.

International Business Machines), acronyms are sometimes included and sometimes omitted

(ADR, LLC, INC, etc.), or the company’s name can be outright misspelled. We take a very

conservative approach. After filtering common acronyms, we only consider those links for

which there is an exact match between a word in the reported name and an entry in the

Compustat datafile of names. In the case of multiple matches, a link is manually identified by

inspecting additional information, such as TIC symbols and CUSIP codes, and by querying

the online matching engine available through the WRDS servers.19

Following this procedure, we identify 4,462 companies and 21,400 links, between the years

2003 and 2009. For each supplier, links are weighted by the total amount of sales corre-

sponding to the target customer, normalized by the observed total amount of sales. With

such weighting, more importance is given to those customer that account for a larger shares

of trades. There are two aspects that dictate the network dynamics. First, when a link

is identified, it is considered active for one year prior to the reported date. In the case of

multiple links between two vertices for a given date, these are aggregated into one link and

the sales counts associated with different links summed. Second, as fiscal years vary between

19This procedure allows us to match a major customer firm to its unique identifier in Compustat (GVKEY
field). In turn, this allows us to merge data from Compustat with CRSP and TRACE data.
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businesses, new links are established and existing links are dropped throughout the year.

Overwhelmingly, links are updated in the month of December (2887 links reported, on aver-

age), followed by end-of-quarter-months (March, June, and September; 279 links reported,

on average), and the rest (68 links, on average). Overall, the supplier-customer network so

constructed, although dynamic, is slowly varying.

Of the 4,462 companies in the supplies-customer network, 3,521 are covered in CRSP,

2,133 are reported in the OptionMetrics dataset, and only 564 firms are active in the credit

markets. For each time unit t, let lev t, ivol t, and jumpt be the vectors of vertex (firms)

characteristics, and let Gt be the adjacency matrix of the supplier-customer network. Using

the formalism of the network lag operator, we compute the weighted average of customers’

characteristics as Gt · lev t, Gt · ivol t and Gt · jumpt.

Table 1 contains the summary statistics for the final sample. The time period is January

2004 to December 2009 and the sample frequency is weekly. The sample includes bonds that

have a spread of less than 30% and more than 0.1%, maturities that are between 5 and 35

years, and with a minimum of 20 observations. After matching the firms in the supplier-

customer network with the corporate bond trades in TRACE, with the bond characteristics

from DataStream, and dropping incomplete observations, our final sample consists of 154

firms,20 and 12,128 weekly observations. Our panel is unbalanced: the number of observations

for each firm varies between 20 to 294, with a median value of 74. The median maturity of

the sample is December 2016.

[Insert Table 1 about here.]

D . Results

The regression estimates in Table 2 indicate that network lags are economically and sta-

tistically significant determinants of corporate credit spreads. Moreover, the signs of the

coefficients, when significant, are consistent with theoretical predictions. Standard errors

20The total market capitalization of our sample is approximately $2.8 trillion (median value between 2004
and 2009). For comparison, the S&P 500 has a median market capitalization over the same period of $11.3
trillion.
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are estimated following the procedure of Driscoll and Kraay (1998), which is robust to het-

eroskedasticity, cross-sectional and temporal dependence. Our most important findings are

reported in Table 2 below.21

We find that an increase in the average of the customers’ leverage increases the credit

spread. Its economic impact is sizable: an increase of one standard deviation (0.23) in the

average leverage of the customers leads to a widening of the credit spread of up to 25 basis

points (∼ 0.22×1.13×100 bp). In comparison, the credit spreads increase by 50 basis points

(∼ 0.22× 2.3× 100 bp) when own leverage increases by one standard deviation (0.22).

The slope of the volatility smile, as captured by the variable jump, is statistically significant

and its economic significance is comparable to the firms’ own jump risk measure. The average

value of firm’s jump (0.009) is twice as much than the corresponding customer variable (0.004,

see Table 1), the factor loading on the latter (20.6) is almost twice as much as the former

(13.4, see Table 2). As a result, the economic impact of the customer jump risk is comparable

to that of the supplier specific jump risk.

S&P returns, volatility and jump risk are included in the model as control variables for

general economic conditions. Across all models S&P returns have a positive impact on credit

spreads and are statistically significant. Neither S&P implied volatility nor S&P jump risk

are significant when yield curve covariates are included in the regression.

[Insert Table 2 about here.]

IV. Robustness

A. Bi-directionality of Supplier-Customer Relationships

The customer-supplier relationship is clearly bi-directional and, potentially, so is the pos-

sibility of risk transfer. Our analysis so far has been concerned solely with the risks flowing

from customers to their suppliers and has disregarded the possibility that distressed sup-

pliers affect their customers’ financial standing. There are several counter-examples that

21All the numerical examples in this section refer to model 7 in Table 2. Since the estimated coefficients
are stable across various models, the differences in the interpretation of the results are immaterial.
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illustrate this possibility. For example, at the end of 2011, Western Digital had to shut

down its Thai factories as a consequence of severe floods, cutting its hard drive production

capacity by 60%. The incident influenced computer makers world-wide.22 Earlier in the

same year, the Japanese Earthquake similarly caused serious disruptions to the worldwide

supply chain.23 This section addresses two issues related to the bi-directionality of supplier-

customer relationships. First, we estimate the influence of suppliers’ characteristics on the

credit worthiness of customers. Second, our findings provide evidence that the risk channel

operating from customers to suppliers is distinct form the channel operating from suppliers

to customers.

In order to account for suppliers’ effects, consider again the supplier-customer network

g and its adjacency matrix G. To the transposed matrix GT , there corresponds another

network gT , whose links are reversed with respect to the original network g, that is, gT is

a network whose connections run from suppliers to customers. The initial specification (see

Equation 2) is augmented with the introduction of a term containing the characteristics of

the firm’s suppliers constructed using the the adjacency matrix GT

Customers i,t = { (GT
t · lev t)i, (GT

t · ivol t)i, (GT
t · jumpt)i } .

Table 3 reports estimates under various restrictions of the following model:

CS i,t = α + β Firm i,t + γc Customers i,t + γs Suppliers i,t + δ1 S&P t + δ2 YieldCurvet + εi,t .

Within our sample, the coefficients for suppliers’ leverage and jump risk are not signifi-

cantly different from zero. Instead, there is strong statistical evidence that suppliers’ implied

volatility has, perhaps counterintuitively, a negative impact on a firm’s credit spread. This

holds true across numerous different specifications (see also Tables 4 and 6). For our pur-

poses, there are two important lessons that emerge form Table 3. The first one is that

the economic and statistical significance of customer’s effects is robust to the introduction

22Counting the cost of calamities, The Economist, Jan 14th, 2012.
23Broken Links, The Economist, Mar 31st, 2011.
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of supplier’s covariates. Indeed, the statistical significance of the customers’ leverage and

jump coefficients (γc1 and γc3, respectively) is even stronger upon introducing suppliers into

the model. The second is that customers’ and suppliers’ effects seem to operate through

different channels, leverage and jump risk in the case of customers, implied volatility in the

case of suppliers.

B . Model Specification and Higher Network Lags

We focus on a model of network spillovers and ignore the autoregressive component because

the supplier-customer network resulting from our final sample does not contain many long

walks. Indeed, the non-zero observations for higher lags are only 354 at degree 2 and 4 at

degree 3. Under such circumstances, it is easy to show that the a network autoregressive

model is equivalent to a finite network moving average.

A NARMA process admits, under certain regularity conditions, a Wold-type represen-

tation as a network moving average (NMA) of infinite order. For example, consider the

following NARMA(1,1) process;

y = αGy + βx+ ε

Let In be the identity matrix of dimension given by the number of vertices in the graph g.

Then, when the matrix (I− αG) is invertible y admits a NMA(∞) representation,24 indeed

y − αGy = βx+ ε

(I− αG)y = βx+ ε

y = (I− αG)−1(βx+ ε) =
∞∑
k=0

αkGk(βx+ ε) .(4)

The general NARMA model can be represented as a NMA whenever the matrix (I−
∑
αkG

k)

is invertible.25

24The matrix (I − αG) is invertible if (1) G is row normalized and |α| ≤ 1, or more generally (2) α−1 ∈
(minσ(G),maxσ(G)), where σ(G) is the spectrum of G, i.e. the set of all eigenvalues of G.

25A condition for the invertibility of the matrix (I −
∑
αkG

k) is that limn→∞(
∑
αkG

k)n exists. A
sufficient condition is that

∑
|αk| · ||Gk|| < 1, where || · || is any matrix norm.
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For the sake of argument, consider the extreme example of a network in which there are

no walks of length greater than one. As an immediate consequence of Proposition ??, the

square of the adjacency matrix of such network is zero. Expanding (4)

y = (I + αG+ α2G2 + . . . )(βx+ ε)

y = βx+ αβGx+ ε̃ ,

for an appropriate error process ε̃.26 As a result there is little difference between local averages

and global effects, making the case for the need of an autoregressive component weak.27

C . Counterparty Risk and Cross-Industry Effects

Beside originating from counterparty risk, an alternative explanation for the presence of

network effects in our model of credit spreads is cross-industry spillover. Averaging over

customers’ characteristics, the argument goes, builds proxies for whole industrial sectors

that are connected along the supply-chain. Therefore, according to this hypothesis, network

effects should be interpreted as broad macroeconomic covariates and not as measures of

idiosyncratic counterparty shocks. To address these concerns, we introduce control variables

for both industry and cross-industry economic conditions.

We obtain value-weighted returns of industry portfolios from French’s website.28 These re-

turns are constructed by assigning each AMEX, NYSE and NASDAQ stock to a portfolio ac-

cording to its Standard Industrial Classification (SIC) code. For robustness, we consider var-

ious classifications, resulting in 12, 17, 30, 38 and 48 portfolios. For example the 12-industry

classification consists of the following 12 categories: 1. consumer non-durables; 2. consumer

durables; 3. manufacturing; 4. oil, gas, and goal extraction and products; 5. chemicals and

26In this case powers of the adjacency matrix of order two and higher are zero and the vector of distur-
bances ε̃ is equal to ε+Gε.

27This is confirmed empirically: coefficients pertaining to the second lag of firm’s characteristics are
insignificantly different from zero, while the main results are practically unchanged. These results are
available upon request.

28These data and definitions are available online at Ken French’s website:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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allied products; 6. business equipment; 7. telephone and television transmission; 8. utilities;

9. shops (wholesale, retail and some services); 10. healthcare, medical equipment, and drugs;

11. finance; 12. other. Detailed definitions for the 12-industry classification, as well as the

others, are available from French’s website.

Industry variables are constructed as follows. First, for each classification scheme and

each industry portfolio we compute weekly realized volatilities. Second, given a classifica-

tion scheme, each firm in our dataset is assigned to a portfolio using its Compustat SIC

codes. Third, each firm’s neighboring industries are identified by the industries of the firm’s

customers, and neighboring industries returns and volatilities are computed as weighted av-

erages of weekly returns.29 This extension fits naturally within the modeling framework

described thus far. Let indretk and indvolk denote the returns and volatility for industry

k, and denote with k(i) the industry of firm i. Define the 2× n matrix Ind of firm specific

industry characteristics as the vector

Ind i = (indretk(i), indvolk(i)) ,

where n is the number of firms. With this notation, the model with industry and cross-

industry effects is

y = βFirm + γ(G · Firm)︸ ︷︷ ︸
Firm and
Customers

effects

+ δ(S&P ,YieldCurve)︸ ︷︷ ︸
Market
effects

+ ηInd + φ(G · Ind)︸ ︷︷ ︸
Industry and

Cross-industry
effects

+ε ,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects,

respectively.

[Insert Table 4 about here.]

Our principal result remains unchanged. Cross-industry effects are generally insignificant

across the classification considered models, and moreover the economic significance of their

contribution to the corporate credit spreads is minimal. The estimates of the network effects

29As before, weights are normalized sales.
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are the same for all practical purposes. Tables 5 and 6 extend these robustness results to

include upstream (suppliers) industries.

V. Conclusions

The main objective of this paper is to evaluate the market assessment of counterparty

risk in supplier-customer relationships. To this end, we study the network determinants of

corporate credit spreads and use network effects as an instrument for counterparty risk. Using

an econometric framework that allows us to estimate network effects, we show that along

the supply chain, network effects are economically and statistically significant determinants

of credit spreads.

Besides the empirical analysis of counterparty risk, an important contribution of this

paper is the introduction of a powerful modeling framework for financial networks. Its

major strengths are the ability to model parsimoniously cross-sectional dependence and

the possibility to quantify the impact that neighboring units have on each other. In our

application of the NARMA model we showed the importance of network effects in asset

pricing. There are several possible directions for future research in this area. The interbank

loans market and fragmentation that characterizes equity trading are only two of many

interesting topics where we believe that the application of our modeling framework can lead

to new insights.
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Table 1
Summary Statistics

This table presents summary statistics for the regressors and regressand in our final sample. The
data covers the years 2004 to 2009 with weekly frequency. Credit spreads are computed using
transaction data as differences between volume weighted average yields and a linear interpolation
of benchmark treasury bond yields. Leverage is defined as the ratio between book value of debt and
total capital. Volatility is estimated as the average of the implied volatilites of near-the-money call
and put options with 60 days to expiry. The jump measure quantifies the risk of negative jumps
using an estimate of the slope of the volatility smile (see Equation (3)). The slope of the yield
curve is defined as the difference between the 10-year, r10, and the 2-year, r2, Benchmark Treasury
rates. Firm, Customers, Suppliers, and S&P refer to individual, downstream neighbors (customers),
upstream neighbors (suppliers), and market characteristics, respectively. In particular, for a each
firm, customers’ characteristics are averages of leverage, volatility and jump measure, weighted on
sales shares, of their customers. Suppliers’ characteristics are defined similarly. Several firms in
our supplier-customer network have no customers. In this case, customers’ characteristics are zero.
Summary statistics including these observation are also reported (under “Customers (all)”). The
same considerations apply to the definition of “Suppliers (all)”.

Mean SD Min Max Obs

All Maturities (154 Firms)

Credit Spread 2.927 3.117 .115 29.261 12133

Implied Volatility

Firm .3619 .2285 .085 2.363 12133
Customers .2555 .1288 .107 2.012 2695
Customers (all) .0606 .1255 0 2.012 11357
Suppliers .3999 .2010 .020 1.353 1296
Suppliers (all) .1006 .2007 0 1.353 5150
S&P .1860 .0959 .095 .607 12133

Implied Jump Measure

Firm .0089 .0419 -.602 .881 12133
Customers .0039 .0148 -.264 .281 2695
Customers (all) .0009 .0074 -.264 .281 11357
Suppliers .0103 .0951 -1.016 1.824 1295
Suppliers (all) .0025 .047 -1.016 1.824 5150
S&P .0016 .0090 -.039 .035 12133

Leverage
Firm .3387 .2158 .0123 .979 12133
Customers .2440 .2275 .0008 .9992 2668
Customers (all) .0570 .1508 0 .9992 11422
Suppliers .278 .2254 0 .9347 1923
Suppliers (all) .1217 .2032 0 .9347 4406

Weekly Returns S&P .0010 .026 -.195 .116 12133

Term Structure
r10 4.140 .6341 2.130 5.226 12133
slope 1.003 .9498 -.190 2.749 12133
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Table 2
Network Determinants of Credit Spreads

Regression estimates for various restrictions of the model

CS i,t = α+ β Firmi,t + γ Customers i,t + δ1 S&P t + δ2 YieldCurvet + εi,t ,

where Firmi,t, Customers i,t and S&P t are vectors of firm’s, customers’, and market’s characteris-
tics, including leverage lev (for firms and customers) and returns ret (for the S&P), option implied
volatilities ivol and an implied jump risk measure jump. The vector YieldCurvet has two compo-
nents, the 10-year Benchmark Treasury rate r10

t and the slope of the yield curve, defined as the

difference between the 10-year and the 2-year Benchmark Treasury rates, slope
(2,10)
t = r10

t − r2
t .

The index i refers to the i-th observation at time t. The observation frequency is weekly. The time
period is January 2004 to December 2009. The sample includes bonds with at least 20 observa-
tions which have a spread of less that 30% and higher that 0.1%, and maturities between 5 and
35 years. The numbers in parenthesis are Driscoll-Kraay p-values (robust to heteroskedasticity,
cross-sectional and temporal dependence).

Classical Models Customers Spillovers

(1) (2) (3) (4) (5) (6)

Firm

lev, β1 2.020∗∗∗ 2.243∗∗∗ 2.231∗∗∗ 2.131∗∗∗ 2.314∗∗∗ 2.282∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ivol, β2 9.298∗∗∗ 8.502∗∗∗ 8.536∗∗∗ 9.100∗∗∗ 8.374∗∗∗ 8.474∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
jump, β3 12.44∗∗∗ 12.97∗∗∗ 12.84∗∗∗ 13.02∗∗∗ 13.53∗∗∗ 13.35∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Customers

lev, γ1 0.802 1.196∗ 1.135∗

(0.104) (0.015) (0.030)
ivol, γ2 0.670 0.255 0.337

(0.142) (0.542) (0.458)
jump, γ3 22.54∗∗∗ 21.34∗∗∗ 20.63∗∗

(0.000) (0.001) (0.001)

S&P

ret, δ1,1 3.961∗∗∗ 3.660∗∗∗

(0.000) (0.000)
ivol, δ1,2 0.159 -0.300

(0.823) (0.686)
jump, δ1,3 -1.463 -0.880

(0.538) (0.727)

Yield Curve

r10, δ2,1 -0.680∗∗∗ -0.684∗∗∗ -0.639∗∗∗ -0.673∗∗∗

(0.000) (0.000) (0.000) (0.000)
slope, δ2,2 -0.128∗ -0.140∗∗ -0.126∗ -0.129∗∗

(0.012) (0.003) (0.014) (0.007)

Constant -1.233∗∗∗ 1.920∗∗∗ 1.906∗∗∗ -1.324∗∗∗ 1.645∗∗∗ 1.818∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

N 12133 12133 12133 11186 11186 11186
R2 0.684 0.694 0.695 0.691 0.699 0.700
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Table 3
Customers Spillovers versus Suppliers Spillovers

Regression estimates for various restrictions of the model

CS i,t = α+ β Firmi,t + γc Customers i,t + γs Suppliers i,t + δ1 S&P t + δ2 YieldCurvet + εi,t ,

where Firmi,t, Customers i,t, Suppliers i,t, and S&P t are vectors of firm’s, customers’, suppliers’, and
market’s characteristics, including leverage lev (for firms and customers) and returns ret (for the
S&P), option implied volatilities ivol and an implied jump risk measure jump. Notation, sample
selection, and further control variables are detailed in the caption of Table 2. The numbers in
parenthesis are Driscoll-Kraay p-values (robust to heteroskedasticity, cross-sectional and temporal
dependence).

Network Spillovers

Customers Suppliers Both

Firm

lev, β1 2.282∗∗∗ 2.057∗∗∗ 2.087∗∗∗

(0.000) (0.000) (0.000)
ivol, β2 8.474∗∗∗ 7.320∗∗∗ 7.328∗∗∗

(0.000) (0.000) (0.000)
jump, β3 13.35∗∗∗ 4.945∗∗ 5.014∗∗∗

(0.000) (0.001) (0.001)

Customers

lev, γc1 1.135∗ 2.011∗∗∗

(0.030) (0.001)
ivol, γc2 0.337 −0.817

(0.458) (0.129)
jump, γc3 20.63∗∗ 12.77∗∗∗

(0.001) (0.000)

Suppliers

lev, γs1 −1.260 −1.151
(0.101) (0.135)

ivol, γs2 −1.296∗∗∗ −1.166∗∗∗

(0.000) (0.000)
jump, γs3 0.283 −0.225

(0.655) (0.681)

S&P

ret, δ1,1 3.660∗∗∗ 6.011∗∗∗ 5.916∗∗∗

(0.000) (0.000) (0.000)
ivol, δ1,2 −0.300 1.442 1.712

(0.686) (0.250) (0.194)
jump, δ1,3 −0.880 −2.966 −2.851

(0.727) (0.482) (0.501)

Yield Curve

r10, δ2,1 −0.673∗∗∗ −0.874∗∗∗ −0.858∗∗∗

(0.000) (0.000) (0.000)
slope, δ2,2 −0.129∗∗ −0.160 −0.185

(0.007) (0.090) (0.063)

Constant 1.818∗∗∗ 3.275∗∗∗ 3.022∗∗∗

(0.000) (0.000) (0.000)

N 11186 3849 3530
R2 0.700 0.702 0.710
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Table 4
Industry Controls for Customers Spillovers

Regression estimates for various models with industry and cross-industry effects.

y = βFirm + γ(G · Firm) + δ(S&P ,YieldCurve) + ηInd + φ(G · Ind) + ε ,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let indretk and
indvolk denote the returns and volatility for industry k, and denote with k(i) the industry of firm i. Then Ind is the matrix of
firm specific industry characteristics

Ind i = (indretk(i), indvolk(i)) ,

and the vector G · Ind involves characteristics of downstream industries (customers’ industries). We use the same sample
selection and variable definitions as in Table 2. We consider various classifications, resulting in 12, 17, 30, 38 and 48 portfolios.
The numbers in parenthesis are Driscoll-Kraay p-values (robust to heteroskedasticity, cross-sectional and temporal
dependence).

No Industries Industry Portfolios

0 12 17 30 38 48

Firm

lev, β1 2.282∗∗∗ 2.222∗∗∗ 2.237∗∗∗ 2.240∗∗∗ 2.276∗∗∗ 2.252∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ivol, β2 8.474∗∗∗ 8.494∗∗∗ 8.521∗∗∗ 8.512∗∗∗ 8.479∗∗∗ 8.484∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

jump, β3 13.35∗∗∗ 13.48∗∗∗ 13.51∗∗∗ 13.49∗∗∗ 13.33∗∗∗ 13.38∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Customers

lev, γc1 1.135∗ 1.202∗ 1.161∗ 1.126∗ 1.204∗ 1.257∗

(0.030) (0.021) (0.030) (0.037) (0.022) (0.013)

(Continued)

2
8



ivol, γc2 0.337 0.0966 0.235 0.337 0.141 −0.0494

(0.458) (0.835) (0.647) (0.512) (0.787) (0.914)

jump, γc3 20.63∗∗ 20.90∗∗∗ 21.60∗∗∗ 21.33∗∗ 20.55∗∗∗ 19.53∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

S&P

ret, δ1,1 3.660∗∗∗ 3.491∗∗∗ 3.142∗∗∗ 2.681∗∗ 4.399∗∗∗ 4.201∗∗∗

(0.000) (0.000) (0.000) (0.009) (0.000) (0.000)

ivol, δ1,2 −0.300 0.642 0.863 0.740 −0.452 −0.285

(0.686) (0.376) (0.248) (0.287) (0.623) (0.690)

jump, δ1,3 −0.880 −2.157 −2.799 −1.397 −1.413 −1.101

(0.727) (0.363) (0.224) (0.577) (0.599) (0.658)

Yield Curve

r10, δ2,1 −0.673∗∗∗ −0.632∗∗∗ −0.599∗∗∗ −0.634∗∗∗ −0.687∗∗∗ −0.673∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

slope, δ2,2 −0.129∗∗ −0.132∗∗ −0.127∗∗ −0.135∗∗ −0.133∗∗ −0.129∗∗

(0.007) (0.003) (0.003) (0.002) (0.004) (0.007)

Industry

ret, η1 0.00288 0.00186 0.00795 −0.0143∗ −0.00336

(0.671) (0.863) (0.248) (0.011) (0.553)

vol, η2 −0.00936∗∗∗ −0.0104∗∗∗ −0.00634∗∗∗ 0.000221 −0.000822

(0.000) (0.000) (0.000) (0.855) (0.432)

Cross-Industry

ret, φ1 −0.0481∗∗ −0.0385∗∗∗ −0.0343∗∗ −0.00939 −0.0220

(Continued)
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(0.004) (0.001) (0.001) (0.241) (0.077)

vol, φ2 0.0166∗∗∗ 0.00229 −0.00057 0.00174 0.00530∗

(0.000) (0.643) (0.799) (0.133) (0.032)

Constant 1.818∗∗∗ 1.540∗∗∗ 1.351∗∗∗ 1.521∗∗∗ 1.910∗∗∗ 1.834∗∗∗

(0.000) (0.000) (0.001) (0.000) (0.000) (0.000)

N 11186 11186 11186 11186 11186 11186

R2 0.700 0.702 0.702 0.702 0.700 0.701



Table 5
Industry Controls for Suppliers Spillovers

Regression estimates for various models with industry and cross-industry effects.

y = βFirm + γs(G · Firm) + δ(S&P ,YieldCurve) + ηInd + φs(GT · Ind) + ε ,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let indretk and indvolk denote
the returns and volatility for industry k, and denote with k(i) the industry of firm i. Then Ind is the matrix of firm specific industry
characteristics

Ind i = (indretk(i), indvolk(i)) ,

and the vector GT · Ind involves characteristics of upstream industries (suppliers’ industries). We use the same sample selection,
variable definitions and controls (omitted for the sake of space) as in Table 2. We consider various industry classifications, resulting in
12, 17, 30, 38 and 48 portfolios. The numbers in parenthesis are Driscoll-Kraay p-values (robust to heteroskedasticity, cross-sectional
and temporal dependence).

No Industries Industry Portfolios

0 12 17 30 38 48

Suppliers

lev, γs1 −1.26 −1.54∗ −1.37∗ −1.41∗ −1.18 −1.27
(0.101) (0.036) (0.047) (0.043) (0.097) (0.082)

ivol, γs2 −1.3∗∗∗ −1.39∗∗∗ −1.36∗∗∗ −1.37∗∗∗ −1.23∗∗∗ −1.32∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
jump, γs3 .283 .287 .206 .192 .31 .324

(0.655) (0.698) (0.791) (0.801) (0.628) (0.636)

Supplier Industries

ret, φs1 −.0225 −.0132 −.0206 −.0228 −.0192
(0.240) (0.652) (0.380) (0.204) (0.245)

vol, φs2 .0119∗∗∗ .00882 .00641 −.00211 .00106
(0.000) (0.310) (0.186) (0.436) (0.714)

N 3849 3791 3791 3791 3791 3791



Table 6
Industry Controls for Suppliers and Customers Spillovers

Regression estimates for various models with industry and cross-industry effects.

y = βFirm + γc(G · Firm) + γs(GT · Firm) + δ(S&P ,YieldCurve) + ηInd + φc(G · Ind) + φs(GT · Ind) + ε ,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let indretk and indvolk denote
the returns and volatility for industry k, and denote with k(i) the industry of firm i. The vectors Ind , G · Ind , and G · Ind are defined
as in Tables 4 and 5. We use the same sample selection and variable definitions as in Table 2. The numbers in parenthesis are
Driscoll-Kraay p-values (robust to heteroskedasticity, cross-sectional and temporal dependence).

No Industries Industry Portfolios

0 12 17 30 38 48

Customers

lev, γc1 2.01∗∗∗ 1.83∗∗ 2.01∗∗ 1.93∗∗ 2.04∗∗ 2.08∗∗

(0.001) (0.006) (0.002) (0.004) (0.002) (0.002)
ivol, γc2 −.817 −.772 −.817 −.687 −.74 −.81

(0.129) (0.189) (0.161) (0.258) (0.266) (0.188)
jump, γc3 12.8∗∗∗ 14.2∗∗∗ 13.9∗∗∗ 13.8∗∗∗ 13.4∗∗∗ 13.4∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Suppliers

lev, γs1 −1.15 −1.5∗ −1.33 −1.34 −1.12 −1.19
(0.135) (0.042) (0.054) (0.055) (0.119) (0.104)

ivol, γs2 −1.17∗∗∗ −1.26∗∗∗ −1.25∗∗∗ −1.24∗∗∗ −1.12∗∗∗ −1.19∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)
jump, γs3 −.225 −.539 −.444 −.261 −.0612 −.0621

(0.681) (0.431) (0.604) (0.735) (0.918) (0.918)

Customer Industries

ret, φc1 −.0337 −.0521 −.0385∗ −.00665 −.0264
(0.216) (0.057) (0.041) (0.577) (0.082)

vol, φc2 .0192∗∗∗ .0038 0 −.00162 −.00117
(0.000) (0.408) (1.000) (0.317) (0.504)

Supplier Industries

ret, φs1 −.0174 −.0157 −.0236 −.0174 −.0196
(0.371) (0.643) (0.343) (0.375) (0.224)

vol, φs2 .0141∗∗∗ .0121 .00703 −.00137 .00106
(0.000) (0.174) (0.179) (0.573) (0.686)

N 3530 3506 3506 3506 3506 3506


	I. Background and Literature Review
	II. The NARMA Model
	A. Networks and graphs
	B. Basic properties of NARMA models

	III. The Network Determinants of Credit Spreads
	A. The model: network spillovers
	B. Sources
	C. Supplier-customer network
	D. Results

	IV. Robustness
	A. Bi-directionality of Supplier-Customer Relationships
	B. Model Specification and Higher Network Lags
	C. Counterparty Risk and Cross-Industry Effects

	V. Conclusions
	Bibliography
	References



