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Abstract 

A new methodology for testing and dating economic bubbles based on a sign test with 
recursive median adjustment is presented. The methodology, originally proposed by Soo 
and Shin (2001) to detect random walks, is well-suited, theoretically, to deal with the many 
features of high-frequency financial time series such as leptokurtosis, conditional 
heteroskedasticity and heavy tails. The approach is very pragmatic and relies upon an 
analysis of the integration order of the analyzed series.  This paper presents an application 
of the method to the North American stock market and the findings concerning the 
origination and collapsing of dates for the bubbles are consistent with those identified 
through the application of the previous theoretical literature.  
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Introduction 

Identifying explosive bubbles that are characterized by having periodic collapses over time 
is an important concern in the current academic economic literature and it is also of great 
importance for practitioners. As argued by financial historians, financial crises are 
frequently preceded by an asset bubble or by dramatic credit booms (Ahamed, 2009; 
Fergunson, 2008; Marichall, 2010). 

For that reason, in the aftermath of the period of the global financial crisis (2007-2009), and 
with the ongoing European crisis, central banks are focusing much of their efforts in 
developing methodologies to identify “excessive credit creation” or “excessive growth in 
assets prices”; however, clarification of the meaning of “excessive”  in this context is not an 
easy task to accomplish. It is rooted in the very depths of economic theory that asks: when 
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do prices (if ever) incorporate non-fundamental components in their dynamics? And, how 
can these periods of over- or under-reaction be detected?  

Based on the postulates of the Efficient Market Hypothesis (EMH), many economists have 
declared the task to be impossible and that it is even imprudent to seek to combat price 
bubbles. However, modern econometric techniques can offer alternative ways to access the 
phenomenon and can produce explicit quantitative measures concerning bubble formation 
periods. These measures go beyond ex post detection techniques and can become a 
forward-looking dating algorithm that is capable of assisting regulators in market 
monitoring by the means of early warning diagnostic tests (Phillips, et al., 2011). 

This paper offers a contribution to the empirical debate over dating bubbles. It is not 
intended to address theoretical problems related to the EMH or the impossibility of 
incorporating bubbles into the great majority of General Equilibrium models under Rational 
Expectations (Tirole, 1982). The intention of the author is to develop a recursive statistic 
that is able to detect explosive behavior in stock prices, and, in this sense, to contribute to 
the design of practical tools for central banks or practitioners for dealing with this 
phenomenon. 

The document is divided into eight sections that follow this introduction. In the first, a 
quick theoretical background on bubbles is offered for the purpose of providing context to 
the reader. The second section reviews the empirical literature related to the topic of bubble 
detection.  The third section presents the econometric models used to identify bubbles. The 
fourth section constructs a “bubble index” that is used to date origination and collapsing 
dates for the detected bubbles. The fifth section explores Evans´ (1991) model in search of 
a plausible alternative hypothesis for the random walk. The sixth section explores size and 
power considerations for the proposed test. The seventh section reports the results from 
applying the proposed technique to the North American stock market and the final section 
offers concluding comments.  

1. Bubbles: a quick theoretical background 

Although highly interesting, bubbles are a rare topic in the academic world. Bubbles have 
proved to be extremely difficult to incorporate into traditional equilibrium models with 
agents governed by the Rational Expectations hypothesis -RE (Tirole, 1982). 

In the current debate concerning the existence of bubble episodes, the main explanations 
may be classified into two categories: on the one hand, there is the “macro” view in which 
bubbles are explained as helping to fix the market problem of a shortage of value storage. 
On the other hand, there is a more “micro” orientation that deals with agents that 
misbehave, due either to an agency problem or a behavioral problem. There is also a third 
branch of the explanatory literature which develops an “irrational exuberance paradigm” 
that takes refuge in a sunspots-style explanation that avoids the problem. 

In the “micro” style, the seminal work of Allen and Gale (2000) provides a model of 
bubbles that are an agency problem. Banks do not have full control over the actions carried 
out by the investors in the economy.  Given that these investors do not have to face the full 
consequences of their actions, these investors have a large incentive to get involved in 
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excessively risky projects. Whenever negative payoffs occur, they can simply declare 
themselves bankrupt and leave the bank to face the losses. 

The work by Abreu and Brunnermeier (2003) is categorized as being within the same micro 
style. Here, behavioral biases are said to lead to the occurrence of bubble episodes. The 
authors show how rational arbitrageurs can ride a bubble, even if they know that the market 
will eventually collapse. For this explanation to hold, market timing is crucial: it is the 
dispersion in exit strategies among rational arbitrageurs which make bubbles possible. 
Another crucial aspect for generating bubbles in this framework are “noisy traders” 
(irrational agents), which despite their small numbers,  are still responsible for  initial 
bubble inflation.  

Since Samuelson (1958), it is known on the “macro” side that bubbles can exist in an OLG 
structure, and they can be good, in the sense than they solve a dynamic inefficiency in the 
economy. In recent attempts to deal with the issue, Farmer (2012) incorporates the notion 
of market sentiment into the analysis and introduces the notion of a confidence crash, as 
earlier noted by Shiller (2000), within a general equilibrium framework. Negative 
consequences of bubbles are explored over allocations of real factors in the economy. It is 
also found the work by Branch and Evans (2011), which explain the bubble formation 
process in the context of an endogenous learning mechanism.2 

2. Review of the Empirical Literature 

Over several decades, the literature reflects numerous attempts to provide econometric tests 
to date bubbles. Gurkaynak (2008) provides a comprehensive treatment of rational bubbles 
as an empirical subject. . This author divides the tests for detecting bubbles into five 
categories: variance bounds tests, West´s two-steps test, intrinsic bubbles, 
integration/cointegration-based tests, and tests of bubbles as an unobserved variable.  

The variance bounds tests exploit the fact that under rational expectations the difference 
between actual and expected dividends is not forecastable and has a zero mean. The 
variance of the observed prices is naturally bounded because the expected increments in the 
prices are uncorrelated with all current information, including the price itself. Therefore, 
the ex post rational price (without bubble episodes) should vary at least as much as the 
observed prices. Observed prices are based on expected dividends and do not have the 
variation introduced by future forecasted errors, which are included in the ex post price. If 
the variance bound is violated by the data, this will be evidence that equity prices do not 
follow the fundamental pricing equation without bubbles.  

Given that such a difference is unobservable and a terminal value for the price series must 
be assumed in practice, complications arise in the implementation of this idea.  These 
complications can invalidate the results of the test which opens the door to the possibility of 
rejecting the fundamental pricing equation without having to accept the hypothesis of 
bubbles. The seminal work in this category has been done by Shiller (1981), Grossman and 
Shiller (1981), and LeRoy and Porter (1981). Nevertheless, the original methodologies 
were not intended to detect bubbles. This was a subsequent application by differing authors, 
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such as Tirole (1985) or Blanchard and Watson (1982).  Additional criticism of the 
methodology of variance bounds from that previously discussed is provided by Flavin 
(1983), Kelidon (1986) and more recently by Akdeniz et al. (2006).  

The second category of West’s two-steps test, concerns a two-step algorithm that explicitly 
considers the bubble possibility under the alternative hypothesis (West, 1987). In the first 
step, a model specification test is developed to detect bubbles, provided that 
misspecification is ruled out.  

Along general lines, with the absence of bubbles, the Euler equation can be estimated in 
such a way that feasibly recovers the discount rate.  Then, if dividends can be represented 
as an autoregressive process (AR), knowing the discount rate and the parameters of the AR 
process provides enough information to pin down the relationship between dividends and 
the fundamental market stock price. On the other hand, the actual relationship between 
stock prices and dividends can also be directly estimated by using a regression of stock 
prices on dividends. Under the null hypothesis of a non-bubble situation, the actual 
relationship should not differ from the constructed one. 

This procedure makes it possible to trace a discrepancy which may arise to model 
misspecification or bubbles. Although it is theoretically appealing, its implementation is 
problematic (Gurkaynak, 2008). Specifically, the test is suited to detect only the kind of 
bubbles that show a non-zero correlation with dividends. The algorithm is poorly equipped 
to detect bubbles that are not correlated to the dividend process. Moreover, with the 
question about the interpretation of a non-bubble hypothesis, eventual rejection is still valid 
(Hamilton and Whiteman, 1985; Flood and Hodrick, 1986). Lastly, Flood et al. (1994) 
point out a different problem related to the estimation of the Euler equation. In theory, it 
should hold for any two periods, even for those infinitely apart, which seems to be a bad 
approximation of reality.  

The intrinsic bubbles category explores a different type of bubbles, which may or may not 
be correlated with fundamentals. In the context of this kind of process, Froot and Obstfeld 
(1991) show that the nature of intrinsic bubbles imposes some non-linearity’s on the 
price/dividend ratio, which otherwise would be linear.  If non-linearity is found in the data, 
they are supposed to be there as a consequence of the over-reaction in prices to changes in 
the dividends that are due to the bubble. However, other sources of non-linearity´s as 
regime switching fundamentals cannot be disregarded. This was highlighted by Driffill and 
Sola (1998), Van Norden and Schaller (1993, 1999) and Schaller and Van Norden (2002). 

The fourth group based on integration/co-integration approaches was developed mainly by 
Diba and Grossman (1987, 1988). The general idea is to impose more theoretical structure 
on the shape of bubbles. In this sense, the authors argue that non-arbitrage laws guarantee 
that if a bubble exists it should have existed from the beginning of trading operations; 
otherwise, the agents would not be fully rational. Thus, the absence of bubbles will imply 
specific degrees of stationarity in dividends and stock prices, and explicit co-integration 
relationships between them. The presence of bubbles breaks down this relationship and 
provides an intuitive way to test for their presence in the data. That is, to test if the prices 
and dividends series are stationary, differentiating the number of times required to make 
them I (0), and to search for co-integrating relationships between these series.  
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Diba and Grosmman’s approach suffers from the same problems as does every test for unit 
root or co-integration. On top of this, Evans (1991) has pointed out that a non-
monotonically increasing bubble which never collapses to zero, but collapses to a number 
slightly above the zero bound, cannot be detected by this kind of technique. This 
methodology heavily rests on the non-stationary behavior of the series involved, which is 
not appropriated to a model of periodically collapsing bubbles.  Some models of regime-
switching have been developed to overcome Evans’ criticism (Hall et al., 1999; Hall and 
Sola, 1993; Van Norde, 1996; Van Norden and Vigfusson, 1998). These models have 
emphasized how difficult is it to disentangle bubble’s behavior from switching 
fundamentals. Recently, Phillips et al. (2012) and Phillips and Yu (2011) have expanded 
this approach of testing for bubbles and they have developed forward recursive regressions 
with iterative unit root tests to date multiple bubbles that collapse periodically.  

Lastly, Wu (1997) models the bubble as an unobserved component by using a Kalman’s 
filter approach. The approach makes an issue very clear that is related to all methodologies 
generally employed to measure bubbles as a residual: bubbles will create a residual, but any 
other misspecification of the model will do so, too. . 

3. The Econometric Test 

The discussion above notes that the development of a technique to date periodically 
collapsing bubbles is very far from being a closed issue in the financial literature. This 
paper is  in line with many recent studies  focused on detecting bubbles with  given  
statistical conditions in terms of integration that financial series prices should present, 
provided that they are driven by their fundamentals. 

The methodology is based on a unit-root-sign-test developed by So and Shin (2001). This 
test is particularly suited to deal with daily financial time series, given some stylized facts 
that are well documented in this branch of the literature, such as conditional 
heteroskedasticity, non-linear behavior, and leptokurtosis.  

Following Ljungqvist and Sargent´s (2000) assumption of risk-neutral agents, the solution 
to the optimization problem of rational agents in an exchange economy is given by: 

   (         )         [1] 

Where the constant discount rate of the agents is  ;     are the real payments for holding 
assent (dividends), and    are the (share) assets prices. Equation 1 states that, adjusted for 
dividends, the price follows a first-order Markov process and no other Granger variables 
cause the prices. The solution to the stochastic difference equation in [1], has the following 
class of solutions: 

      ∑          (
 

 
)
 

 
     ,   [2] 

Where    is any random process that obeys            (that is,     is a “martingale”). 
Equation 2 expresses the     price as the sum of discounted expected future dividends and a 
“bubble term” unrelated to any fundamentals. 



6 
 

Assuming a non-bubble situation leads to: 

                       [3] 

That is, adjusted for dividends, in a non-bubble situation the price follows a random walk. 
Otherwise, if explosive behavior is detected in the data it can be considered as a signal of 
bubbles.  Indeed, this is what EMH establishes: the markets will be efficient in the weak 
sense if the prices follow a random walk3.  

Nevertheless, to perform a test for random walk behavior with high frequency data is not a 
trivial task. Traditional tests such as Dickey-Fuller and Augmented-Dickey-Fuller do not 
seem appropriate in this context, given the assumptions about normality required to 
calculate the critical values in these cases. Leptokurtic and heavy-tailed series make the 
normality assumption not very appropriate for this environment.  

So and Shin (2001) propose a unit root test based on sign operators and recursive median 
adjustments. The test has been shown to be invariant to conditional heteroskedasticity, 
monotonically increasing transformations of the data, heavy tails and outliers.  

Set: 

 ̅   (  )     [4] 

    (           )    ,            [5] 

where { ̅ },        is a set of observations,  (  )  is an unknown monotonic 
transformation of   ,  (           ) is an unknown regression of interest,   is a positive 
interger, and {  } is a sequence of random errors with conditional median equal to zero. 

The main interest is in testing the null hypothesis of the random walk, which is given by: 

             ,         [6] 

Against linear and non-linear explosive alternatives, under assumptions A1 and A2: 

A1. {    (  )} is a martingale difference sequence with respect to an increasing 
sequence of  -fields {  } such that  [    (  )|    ]   ,        . 

A2.  [  |    ]    

So and Shin construct a sign test defined such that, if: 

  ( )  ∑      ( ̅   ̅   )     ( ̅     ̂   )       ( )
 
       [7] 

then the null hypothesis of random walk in [6] is rejected. 

Here,     ( ) is the sign of   , defined as     (  )    if     ,     ( )    and 
    (  )     if     ;  ̂    is the median of { ̅ }    ;   ( ) denotes the  -th lower 
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quantiles of the binomial distribution with parameters c(    ⁄ )      and it represents an 
autoregressive process of order 1.  

This random walks test form, against an alternative explosive hypothesis, follows the 
suggestion made by Diba and Grossman (1988) for conducing right-tailed unit root tests on 
the asset prices to detect the existence of bubbles.  

However, as before mentioned, Evans (1991) demonstrated that this conventional 
procedure is not able to detect explosive bubbles when they manifest periodically 
collapsing behavior in the sample. Phillips et al. (2012) emphasize one way to overcome 
these criticisms is by using subsamples of the data to perform the tests in a forward 
recursive fashion. This methodology has the additional advantage of being able to establish 
the origination and collapsing dates for the bubbles detected, if any.  

There are many ways to perform the sub sampling strategy, two of which are: rolling 
windows or recursive methods with fixed or flexible original sample lengths. The first one 
implies either the imposition of an optimal criterion for the size of the windows or the 
implementation of the test with several different window lengths to check robustness. The 
second procedure requires the determination of the starting sample size. 

It is apparent that recursive methods by construction will manifest a delay in the identified 
origination and collapsing dates as a consequence of the inertia necessarily associated with 
them. Consequently, the first route is followed here, while the second one is extensively 
studied in the context of the Generalized Supremum ADF test developed by Phillips et al. 
(2012). 

A final part of the methodology consists in applying the sign test not only to the series of 
prices, but also to the observable fundamentals (dividends). If explosive behavior is found 
in the prices and not in the fundamentals, it must be bubbles that are responsible for those 
findings.  

4. The Bubble Index 

In this section provides a simple index to date origination and collapsing times of multiple 
bubbles. A bubble index is defined such that: 

 

    {
                          
                                

                              [8] 

 

Where,     is the bubble index at period       is the sample size and   is the size of the 
rolling window. Quantity    [     ( )] is the lower  -th percentile of the binomial 
distribution with parameters of (     ).      is the test statistic defined in [7] at  , with 
   . Thus, origination and collapsing times of each bubble are given by:  

  
  {  |     }     [9] 
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and 

  
  {  |           }    [10] 

where     is the period    that marks the beginning of the bubble,     is the period    that 
marks the end of the bubble,    and    are natural numbers such  that        ; and i is a 
natural number that is used to identify the bubble. Note that depending on the size of the 
sample, the procedure can be used for dating multiple bubbles (if any). 

As a practical consideration for avoiding trivial bubble detections, in the empirical 
application of this paper: an “origination point” of a bubble is marked as such only if the 
subsequent 20 data points in the bubble index also are different from zero. Analogously, to 
be marked as a collapsing period, a candidate date must fulfill the requirement that the 
following 20 points of the bubble index are also equal to zero.  

5. The Evans’ Model 

As mentioned above, Evans (1991) highlighted a number of criticisms of traditional 
approaches for testing bubbles, such as those of Diba and Grossman (1988) and Hamilton  
and Whiteman (1985).  In general, he postulates that these traditional tests for rational 
bubbles that are based on the analysis of the integration order of the financial times series 
of prices and its observable fundamentals can lead to misleading conclusions. One side unit 
root statistics, autocorrelation patterns and co-integration relationships perform poorly 
when detecting rational bubbles that collapse periodically within the sample with a 
relatively high probability of collapsing (above 10%). 

Consequently, Phillips et al. (2012) propose a supremun ADF test that is repeatedly 
implemented on a forward expanding sampling sequence to detect Evans’ “semi-stationary” 
bubbles.  They compared their statistic against such an alternative hypothesis. This paper 
proposes a different response as it considers a recursively adjusted sign test implemented in 
rolling windows of optimal length in terms of size and power criteria. Regardless, the 
Evans’ model will be used as an alternative hypothesis for the calculation of the power. 

In the Evans’ world, simulated asset prices consists of a fundamental market component   
  

and a bubble component of   . The fundamental part combines a random walk dividend 
process [11] and a fundamental pricing equation in [12]: 

             ,      (     )    [11] 

  
 
 ∑ (   )    

 
   (    )     [12] 

One can solve [12] recursively to get the fundamental price component: 

  
 
 

  

(   ) 
 

 

(   )
       [13] 

Evans’ bubble component is given by: 

      
                                      [14] 
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     [  (  )
      (     )]                                  [15] 

This series has the submartingale property,   (  )       . Parameter   is the drift of the 
dividend property,     is the variance of the dividend,           , here    is the 
discount factor which is constant.           (      ⁄ ) with       (    ).   and   
are positive parameters with         ,    can be interpreted as the reinitializing 
parameter.      is a Bernoulli process (independent of       ) which takes the value 1 with 
probability   and   with probability (   ).  

Equations [14] and [15] state that as long as      the bubble grows at a mean rate of  
   . When eventually      the bubble “erupts” into a phase in which it grows at a faster 
rate(  )    as long as the eruption continues, but in which the bubble collapses with 
probability (   ).  

Finally the observed process of prices is defined as: 

     
 
          [16] 

Where     controls the relative magnitude of the fundamental and bubble components.  

5.1.  The Evans’ Model in the data 

The set of parameters required to perform the simulations in the next section is reported in 
Table 1. 

Table 1. Parameter Settings 

 

The parameters   and     are set to correspond to the sample mean and the sample variance 
of the first daily difference  in the S&P 500 stock price index dividend so that the settings 
are in accord with the empirical application presented in the next section.4 The discount 
value   equals 0.98 (  is allowed to vary from 0.98 to 0.995 in the size and power section). 
The parameter of the bubble weight   is set at 120 (again it is allowed to vary from 20 to 
240). Other parameters are set in accord with Evans’ original work and that by Phillips et 
al. (2012).  

A sample trial of the Evans’ model with the parameters in Table 1 is presented in Figure 1. 

 

 

 
                                                           
4
 To estimate   and   

 , the sample used was from Jan 3, 2000 to Oct 10, 2012, taking two considerations 

into account: first, data availability; and second, the fact that it is apparent from the visual inspection of the 
series that there is a break in the trend of the series around the beginning of the year 2000. 

µ δ 0 ρ α B 0 π ζ τ k
0.00032103 0.0006243 1 0.98 1 0.5 0.85 0.5 0.05 120
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Figure 1 

 Simulated Evans’ Model with daily parameters setting 

 

It is evident in this random trial that several collapsing bubbles are present, as expected 
from the Model.  

6. Size and Power Simulations 

This section discusses the size and power of the sign test, and therefore its ability to detect 
bubble behavior in the market. Several Monte Carlo simulations are conducted under 
different specifications of the model parameters.  

Table 2 reports on the empirical sizes of the test using different  -th percentiles of the 
binomial distribution. The null hypothesis of the random walk is tested using 1000 
simulations generated under the process described from [11] to [13] and by [16] with   
 . 

Table 2  
Empirical sizes and size distortions 
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Empirical Sizes

500 1000 1500 2000 2500 3000
1 1.30 1.00 0.90 1.70 1.40 1.60
5 5.80 5.10 6.40 7.00 7.40 8.40
10 9.00 11.20 12.80 13.60 12.00 13.70
Size Distortions

500 1000 1500 2000 2500 3000
1 0.30 0.00 -0.10 0.70 0.40 0.60
5 0.80 0.10 1.40 2.00 2.40 3.40
10 -1.00 1.20 2.80 3.60 2.00 3.70

α T

α T
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Note: The nominal sizes are reported in the first column. Empirical sizes for different sample lengths (T), 
from 500 to 3000 are reported in Columns from 2 to 7. 1000 simulations were used to construct the empirical 
sizes. The data generating process is given by equation [16] with    . 
 

As noticed in Table 2, size distortions are minimal in samples smaller than 1500 points. 
They become more pronounced in samples with larger amounts of data, which are located 
at the right side columns of the matrix.  

Power calculations are computed using the Evans’ Model in equations [11] to [16] as the 
alternative hypothesis, and they are reported in Table 3. 

Table 3 
 Power of the sign test under different parameters specifications 

 
Note: The power of the test under different parameter values is reported, as well as the power for different 
sample lengths (T), from 500 to 3000. 1000 simulations were used to construct the empirical sizes. The data 
generating process is given by equations [11] to [16] with     lowest percentile given by 5,        and 
      , unless it is specified in a different way.  
 

The power of the test lies between 60 and 85 percent under sensible specifications of the 
parameters of the model,   and  . The effect on the power of the quantity   is not very 
significant, even when the range is from 20 to 240. On the contrary, the effect of the 
parameter   on the power is considerable. Values of   very close to  unity reduce the power 
of the test notable for all the studied sample lengths.  

6.1.Optimal length of the rolling windows 

A key step when working with rolling windows is determining the length of the window. 
There is no single criterion in the available literature for performing this task.  Here, size 
and power considerations will be explored.  For instance, from Table 2, in terms of power, 
it appears optimal to use windows as long as possible to estimate the sign statistic.  Of 
course, the most extreme case would be working with a single window that includes the 
whole sample. However, from the discussion related to periodically collapsing bubbles and 

500 1000 1500 2000 2500 3000
0.9800 68.1 73.2 79.3 79.6 81.2 84.1
0.9850 59.5 72.8 73.9 80.7 80.8 82.7
0.9900 45.1 58.6 67.4 71.1 71.9 76.9
0.9950 19.2 28.1 38.1 40.7 48.7 53.7

500 1000 1500 2000 2500 3000
20 55.9 67.0 70.7 74.8 78.2 80.3
60 66.6 71.5 75.8 74.4 80.4 79.6
90 68.1 74.9 78.8 80.2 80.9 82.6
120 68.1 73.2 79.3 79.6 81.2 84.1
240 68.4 79.7 85.1 85.8 86.9 85.3

ρ T

k T
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to the necessity of dating bubbles on a daily basis, a trade off arises. On the one hand, a 
window sensitive enough to new data to detect starting and collapsing times of bubbles as 
soon as possible is required. On the other hand, a long window associated with a lower 
probability of making type II statistical errors is desirable. 

In Table 4, “gains” in terms of power from increasing sample size (length of the window) 
by 500 points are presented. As can be noticed, the bigger gains in terms of power are 
reported following the increments from 500 to 1000 points, and to some extent from 1000 
to 1500.  This highlights the necessity of working with at least 1000 or 1500 points to make 
good use of the larger gains in power. The apparent results are that increasing the sample 
size from 2000 to 2500, or from 2500 to 2000, does not substantially increase the power of 
the test, unless the   parameter is very close to unity.  

 
Table 4 

 Power “gains” from increasing the sample by 500 points 

 
Note: Table 4 reports percentage increments in terms of power due to  increasing  the sample size. The largest 
increments in each case are highlighted with italics.  
 
The suggestion for working with a window of 500 to 1500 data points is confirmed after 
analyzing empirical sizes reported in Table 2. The size distortion is lower for the shorter 
windows.  

Following power considerations, the choice for the length of the window is 1000. 
Nevertheless, results that make use of 500 and 1500 data points are reported as a robustness 
exercise in the Appendix.  

7. Testing for bubbles 

The data is taken from Datastream International. Daily information was collected on the 
Standard and Poors 500 price index dividend yields. Optimally, this series should be 
deflected to make them real, but given the frequency of the data nominal series are used 
instead. The period of analysis is from January 1, 1990 to December 31, 2012, and 

500-1000 1000-1500 1500-2000 2000-2500 2500-3000
0.9800 7% 8% 0% 2% 4%
0.9850 22% 2% 9% 0% 2%
0.9900 30% 15% 5% 1% 7%
0.9950 46% 36% 7% 20% 10%

500-1000 1000-1500 1500-2000 2000-2500 2500-3000
20 20% 6% 6% 5% 3%
60 7% 6% -2% 8% -1%
90 10% 5% 2% 1% 2%
120 7% 8% 0% 2% 4%
240 17% 7% 1% 1% -2%

ρ

k
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therefore the working sample runs from March 3, 1986 to December 31, 2012.  It 
compromises 7001 observations. 

Figure 2 plots the time series trajectories of the S&P500 index. As can be seen, there are 
several periods that are candidates for being considered as bubbles. 

Figure 2 

 SP500 from Jan 01, 1990 to Dec 31, 2012 

 
Note: SP500, data taken from Datastream International 

The sign statistic using rolling windows of 1000 observations is presented in Figure 3. The 
critical value (cv) reported corresponds to the 5th percentile of the binomial distribution 
with parameters (1000, ½).  

Figure 3 

 Sign-statistic with windows of 1000 observations 
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Note: Own elaboration 

The Bubble Index is presented in Figure 4.  Table 5 reports the origination and collapsing 
dates that arise from observation of the bubbles index. 

Figure 4 

 Bubble Index 

 
Note: own elaboration. The Index takes the value of zero when no bubble is detected at the chosen 

significance level. 

Table 5 Origination and Collapsing dates 

 
In order to discard explosive behavior in the observable fundamental dividend process that 
could potentially invalidate bubble detection, the sign test with recursive adjustments is 
applied to the series of dividends from the S&P500. The results are plotted in Figure 5.  
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Figure 5  

Sign-statistic of the dividends series 

 
Note: cv are the critical values at 5%, under the explosive (+) and stationary alternative (-) 

 

The random walk null hypothesis is rejected only from –Oct 4th, 1999 to Aug 24th, 2000. 
This behavior suggests that the bubble episode identified from Jan 5th 2000 to  Oct 9th 2000 
could be a fundamental reaction to the underlying fundamentals, making the rejection of the 
null theoretical hypothesis of non-bubble  ambiguous.  In this case, the following step 
would be to test for co-integration between the two explosive series; but this step will not 
be considered in this study. 

The above analysis indicates that during recent decades, bubbles have been a notorious 
component for explaining the dynamics of the Standard and Poors 500.  In particular, it is 
possible to identify three different periods that have been affected by bubbles: the middle of 
the 90s; the period from the immediate years preceding the financial crisis to the crisis 
itself; and the period at the end of the sample. 

One tentative explanation for the origination of bubbles is provided by Caballero et al. 
(2008). These authors claimed that in a world with a scarce and asymmetric supply of 
financial assets, the United States financial markets are perceived as uniquely positioned to 
provide these instruments and therefore have been affected by a continuous (but irregular) 
flow of funds.  In turn, these funds, together with low interest rates, have been responsible 
for the origination and collapse of periodic bubbles. The findings from this study are 
consistent with these theoretical claims.  
 

8. Conclusions and limitations 

The above results give new insight into a topic that is generally obscure in the financial 
literature by establishing a clear indication of bubbles in the dynamics of a stock price 
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index. These results can be seen as a small step in the process of building an analytical 
framework to prevent bubbles through the means of monetary or exchange rate policies. 
Perhaps, accepting the possibility of bubbles and using econometric techniques  to detect 
and  measure them will expand the horizon of the role of central banks in the economy. For 
example, inflation targeting schemes could be enriched by the inclusion of financial assets 
prices into the monitored core of prices that are accessed by central bankers when making 
decisions on interest rates.  

Nevertheless, the identification of bubbles with daily data is far from being a closed issue. 
In the implementation of the methodology described in this study, a set of assumptions 
have been made. These assumptions surely will (and should) be dispensed with in future 
research on the topic to gain a greater comprehension of the phenomenon. Particularly key 
assumptions are: i) the Evans’ Model generates the bubbles that have been studied under 
the alternative hypothesis in the test of power; ii) the sign test used  assumes that the 
process in equation 6 is of order 1, in case of a different order, the critical values in the test 
will suffer some modifications, some of which were  explored by So and Shi (2001); iii) 
given the frequency of the data, it is not possible to work with series in real terms. 

Six episodes of bubbles were identified in the data that were clustered in the middle of the 
nineties, during the turbulent period from 2004 to 2009 and at the end of the sample from 
the end of 2012 to the beginning of 2103.  
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APPENDICES 

 

Figure 6 

 Sign-statistic with windows of 1500 observations 

 

 

Figure 7 

Sign-statistic with windows of 500 observations 
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Table 6 
 Origination and Collapsing dates 500 and 1500 windows 

 

 

 

 

 

ORIGINATION COLLAPSING ORIGINATION COLLAPSING
5-Dec-1991 1-Jan-1990

31-Mar-1994 5-Oct-1994 29-May-1990 6-Dec-1990
11-Sep-1995 15-Aug-2001 25-Dec-1995 10-Dec-1997
6-Sep-2002 14-Oct-2002 30-Apr-1998 19-Aug-1998
4-Apr-2006 25-Jun-2006 27-Oct-1998 2-Feb-1999
29-Sep-2006 26-Aug-2009 25-Jun-2002 7-Aug-2002

30-Oct-2003 20-Feb-2004
25-Oct-2004 22-Mar-2005
23-Oct-2006 30-Apr-2008
2-Dec-2010 26-Jul-2011

500 POINTS WINDOW1500 POINTS WINDOW


