Monetary Policy and the Exchange Rate in Colombia

Por:
Hernando Vargas

Borradores de ECONOMÍA
Monetary Policy and the Exchange Rate in Colombia*

Hernando Vargas†

Abstract

The role of the exchange rate and the exchange rate regime in the monetary policy decision-making process in Colombia is described. The rationale for the intervention of the Central Bank in the FX market is explained and the experience in this regard is reviewed. Special attention is given to the seemingly varying effectiveness of different types of intervention and to the challenges posed by the sterilization of purchases of foreign currency. The exchange rate regime, FX regulation and FX policy determine the resilience of the economy in the face of external shocks and allow for the possibility of countercyclical monetary policy responses. A virtuous circle is created in which the volatility present in a flexible exchange rate regime improves the conditions for the functioning of a flexible exchange rate regime.

La política monetaria y la tasa de cambio en Colombia

Resumen

Esta nota describe el papel de la tasa de cambio y del régimen cambiario en la formulación de la política monetaria en Colombia. Asimismo explica la lógica de la intervención cambiaria del Banco de la República y repasa la experiencia de los últimos años en este aspecto. Se estudian las aparentes diferencias en la efectividad de distintos tipos de intervención cambiaria y los retos que implica la esterilización de dicha intervención. El régimen de tasa de cambio, la regulación y la política cambiaria determinan la reacción de la economía ante choques externos y posibilitan respuestas de política monetarias contra-cíclicas. En particular, se genera un círculo virtuoso en el cual la volatilidad cambiaria presente en un régimen flexible mejora las condiciones para el funcionamiento adecuado del propio régimen de tasa de cambio flexible.

JEL Code: E58; F31; F41

Keywords: Exchange rate regime, foreign exchange intervention and sterilization, exchange rate volatility

* Paper prepared for the BIS Deputy Governors Meeting, 17-18 February 2011. Comments and suggestions by Juan Pablo Zárate are gratefully acknowledged and included. This work represents the opinions of the author alone and not the Board members of the Banco de la República
† Deputy Governor, Banco de la República de Colombia Cra. 7 # 14-78, Bogotá, D.C. Email: hvargahe@banrep.gov.co
1. Introduction

The monetary policy framework in Colombia is based on an extended Inflation Targeting strategy that aims at maintaining a low and stable inflation rate, stabilizing output around its natural level and contributing to the preservation of financial stability. The latter objective is shared with other state agencies and implies a close monitoring of and occasional policy responses to the movements of financial variables. Since there is no explicit or implicit target on the nominal or real exchange rate and the instrumentation of monetary policy relies mostly on changes of the short term interest rate, a substantial degree of exchange rate flexibility is required and allowed. "Impossible Trinity" considerations in an economy with a relatively open capital account make any other setting unfeasible over the medium and long run.

In this context, the exchange rate embodies one of the most relevant channels of transmission of monetary policy in an open economy like Colombia’s. It is also a key asset price that is closely related to other local asset prices and weights on private agents’ decisions on the currency composition of their balance sheets. As such, the exchange rate greatly influences the implementation and the impact of monetary policy. This note describes the role of the exchange rate and the exchange rate regime in the monetary policy decision-making process and in the response of the economy and the Central Bank to external shocks.

Even under the extended IT framework with a flexible exchange rate regime, the Central Bank of Colombia has significantly intervened in the FX market. This note also explains the rationale for this intervention and describes the experience of Colombia in this regard. Special attention is given to the seemingly varying effectiveness of different types of intervention and to the challenges posed by the sterilization of purchases of foreign currency.

2. The Exchange Rate in the Implementation of Monetary Policy

The IT strategy posits that the path of monetary policy instruments must be determined by the forecast evolution of macro variables like inflation or output. To build such forecasts for an open economy, it is crucial to have an idea about the future behavior of the exchange rate. This in turn needs an assumption or model about the long run equilibrium exchange rate and their determinants. Usually models incorporate a version of the UIP condition, which relates the nominal exchange rate to current and future domestic and foreign monetary policy stance and to a long run equilibrium level of the exchange rate. Hence, the very functioning of the IT strategy in an open economy is based on a notion of an equilibrium real exchange rate. Different assumptions (or models) in this respect could imply different paths for the policy interest rate.

In practice, the Central Bank informs its models and its thinking in this regard through medium and long term balance of payments forecasts that capture the main fundamental factors behind the trends of the real exchange rate and the current account balance (terms of trade, external demand, FDI and other capital flows etc.) In the DSGE model the evolution of net foreign assets determines sovereign risk premium and affects the real exchange rate.

As previously mentioned, the exchange rate represents one of the most important channels of transmission of monetary policy in an open economy. As such, the Central Bank’s models, diagnostics and forecasts emphasize the effect of shocks and policy responses on the exchange rate and, through it, on inflation and output. Considerable effort is devoted to
understand the behavior of the FX market in order to extract information on the size and duration of shocks. This is routinely integrated in the inflation forecast rounds to generate scenarios and derive monetary policy implications.

A key issue regarding the exchange rate in the monetary policy framework in Colombia is the set of conditions that allow the exchange rate to work as a shock absorber. As in other open emerging economies, in Colombia the bulk of shocks are real, not nominal. Thus, a flexible exchange rate regime is appropriate to stabilize the economy in the face of those shocks, especially in the context of rigid formal labor markets. Importantly, a flexible exchange rate regime is necessary for a countercyclical monetary policy response to the shocks. Therefore, ensuring the conditions for a flexible exchange rate is crucial.

Among those conditions, two deserve special attention. One is the absence of sizable currency and FX liquidity mismatches. This is important because it implies that large exchange rate adjustments are possible without the risk of bankruptcies, pronounced drops in aggregate demand or strong pressures on the currency and the international reserves. Otherwise, a shock, say to the sovereign risk premium, would require a pro-cyclical monetary policy response (an increase in local interest rates) to prevent a sharp depreciation. The financial fragility of the economy is therefore exacerbated in the presence of currency mismatches and this not only increases the risk of financial instability, but also constrains the set of policy options available to deal with the shock.

The second condition is the absence of a large pass-through from the exchange rate to domestic prices. This is important again because it allows a large adjustment of the exchange rate after an external shock without the risk of a substantial spike in inflation. Hence, it also avoids a pro-cyclical monetary policy response.

In contrast to the past and particularly to the nineties, throughout the last decade the abovementioned conditions were attained in Colombia, allowing for a countercyclical monetary policy and a less disruptive adjustment of the economy after the global financial crisis. At the root of this achievement lie three factors. First, the permanent reduction of inflation after 1999 and the meeting of low and declining inflation targets since then prompted a fall in the pass-through coefficient (Graph 1)\(^1\). According to Taylor (2000), in a high inflation regime, movements of the nominal exchange rate signal permanent nominal shifts that influence future marginal costs expected by firms that have market power and are subject to price rigidities. In this environment, the transmission of movements of the exchange rate to domestic prices is large. On the other hand, when inflation is low and credible, the response of local prices to the exchange rate is more subdued, because the changes to the latter do not signal significant effects on expected future marginal costs.

\(^1\) See Appendix 1 for a description of the variables.
A second factor behind the emergence of favorable conditions for a floating exchange rate and countercyclical monetary policy is the increased volatility of the exchange rate after the abandonment of the target zone in 1999. This has reduced the pass-through from the exchange rate to local prices, again, as movements in the exchange rate are often temporary and do not signal persistent changes in future marginal costs (Graph 2)\(^2\). Similarly, the response of net exports to shifts in the real exchange rate may be more muted under higher exchange rate volatility, since movements in the value of the currency rarely signal persistent variations in external competitiveness (Graph 3)\(^3\). This means lower demand pressures on domestic inflation stemming from a real depreciation of the currency.

\(^2\) See Appendix 1 for a description of the variables.
\(^3\) See Appendix 1 for a description of the variables.
Graph 2
Exchange Rate Volatility and Pass-Through

Graph 3
Exchange Rate Volatility and the Response of Output to the Real Exchange Rate
Moreover, a larger volatility of the exchange rate forces residents to internalize currency risk in their financing decisions and may have contributed to a decrease in currency mismatches (Graph 4). Also, it has induced the development of the markets for hedging instruments, like the FX forward market in Colombia (Graph 5). Overall, exchange rate volatility has strengthened financial stability and has allowed a substantial degree of exchange rate flexibility.

Graph 4
Private External Debt and Exchange Rate Volatility

Ize and Levy Yeyati (2003) show that financial dollarization of an economy depends on the relation between the volatility of inflation and the volatility of the real exchange rate. When inflation is volatile relative to the real exchange rate, both risk-averse creditors and debtors will increase the share of dollar-denominated assets and liabilities in their portfolios. Hence, financial intermediaries may be matched, but borrowers may incur in large currency mismatches.
FX regulation and FX policy measures are the third factor explaining the achievement of the conditions for exchange rate flexibility and countercyclical monetary policy. The maintenance of an adequate level of international reserves has reinforced the ability of the country to cope with external shocks and has prevented depreciation pressures derived from the perception of an insufficient cushion of international liquidity. Prudential regulation limiting financial intermediaries’ currency and external liquidity mismatches has also improved the resilience of the financial system in the presence of large external shocks. Temporary capital controls (e.g. the deposit requirement on foreign indebtedness) have played a role too in supporting financial stability, so long as they increase the cost of external short term debt with respect to other types of capital inflows with better risk characteristics (FDI, long term debt or movements of residents’ assets abroad).

The best example of the benefits of the new regime is the behavior of the economy during the global financial crisis (October 2008-March 2009). Despite a large nominal depreciation of the Colombian peso (comparable to the fall of other currencies in Latin America), policy interest rates were rapidly reduced since December 2008 (countercyclical policy response) and intervention of the Central Bank in the FX or foreign currency interbank markets was negligible relative to other inflation targeters in the region (Table 1).

Table 1
Foreign Exchange Market Intervention October 2008 - March 2009 (+Purchases-Sales)

<table>
<thead>
<tr>
<th>USD Mill.</th>
<th>Total Intervention (A+B+C+D)</th>
<th>Spot (A)</th>
<th>Options (B)</th>
<th>Reverse Repo Agreements</th>
<th>Foreign Currency Denominated Loans</th>
<th>Depreciation July 31/08 -March 31/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colombia</td>
<td>-109</td>
<td>0</td>
<td>-109*</td>
<td>0</td>
<td>0</td>
<td>41.30%</td>
</tr>
<tr>
<td>Peru</td>
<td>-4602</td>
<td>-4837</td>
<td>0</td>
<td>235</td>
<td>0</td>
<td>12.16%</td>
</tr>
<tr>
<td>Chile</td>
<td>-1372</td>
<td>0</td>
<td>0</td>
<td>-1372</td>
<td>0</td>
<td>15.46%</td>
</tr>
<tr>
<td>Brazil**</td>
<td>-2490</td>
<td>-3440</td>
<td>0</td>
<td>3483</td>
<td>-2532</td>
<td>48.38%</td>
</tr>
<tr>
<td>Mexico***</td>
<td>-21193</td>
<td>-21193</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>41.20%</td>
</tr>
</tbody>
</table>

Source: Central Banks’ official web sites
* Volatility Options: Put Options - Call Options
** Includes data from January to March only
*** Amounts don’t include purchases of USD 2152 Mill. made by CBM to Pemex
A corollary of the foregoing argumentation is that low inflation and the flexibility of the exchange rate favor the emergence of the conditions that help maintain low inflation, exchange rate flexibility, countercyclical policy and stable output after shocks hit the economy. Keeping inflation low and allowing the exchange rate to fluctuate generate low pass-through coefficients and small, manageable currency mismatches that permit an adjustment of the exchange rate and the adoption of countercyclical monetary policy, i.e. a virtuous circle. A simple model is presented in the Appendix 2 that illustrates this idea.

4. FX Intervention: Rationale and Experience

In Colombia the Central Bank has intervened in the FX market with three objectives: (i) to build up or sustain an adequate level of international reserves, (ii) to curb excessive volatility or to fix disorderly behavior of the market and (iii) to correct a misalignment of the exchange rate.

As mentioned above, one of the reasons for the favorable adjustment of the economy to external shocks in recent years is the existence of sufficient buffers of international liquidity. Hence, the Central Bank continuously monitors international liquidity indicators to assess the need for additional purchases of international reserves. Traditional ratios of reserves to GDP, monetary aggregates and imports, and variations of the Guidotti-Greenspan rule are examined through time and in relation to a group of emerging economies. Occasionally, measures of optimal reserves are calculated and discussed.

Since the adoption of a floating regime in 1999, the Central Bank has used an automatic mechanism to sell or purchase FX in order to control excessive volatility episodes. It consists of auctions of put (call) options to buy (sell) US Dollars to (from) the Central Bank. The auctions are triggered whenever the nominal exchange rate deviates from its 20-day average by more than a specified percentage. In recent years this mechanism was suspended when the Central Bank adopted measures to correct an overvaluation of the currency. It has been inactive since October 2009.

Exchange rate misalignments are considered harmful because they cause adverse, unsustainable effects on inflation (in the case of a depreciation) or on tradable output and employment (in the case of an appreciation). In addition, currency misalignments are sometimes related to speculative behavior in other asset markets (e.g. public bond and stock markets) and, therefore, may feed into risks on financial stability.

While countering an over or undervaluation of the currency may be deemed as convenient, there are no implicit or explicit targets for the nominal or real exchange rate. Throughout the seventies and eighties FX policy aimed at stabilizing the real exchange rate (RER). In the end, this objective could not be accomplished and, instead, inflation rose and became highly persistent, as monetary policy was accommodative of various shocks and indexation spread. It took the independent Central Bank more than eight years to drive inflation to single digits. So, a lesson was learned about the risks of real exchange rate targeting. In its communication strategy the Central Bank repeatedly emphasizes the idea that to persistently affect the RER, real (not nominal) instruments must be used, especially movements in aggregate saving.
It is difficult to identify a misalignment of the exchange rate, as it is to detect any asset price bubble, while (sterilized) FX intervention is costly in fiscal and monetary terms. Hence, the decision to intervene to correct a presumed misalignment follows a careful examination of the costs and benefits involved. As explained previously, the Central Bank closely tracks the behavior of the FX market, monitoring the evolution of the flows and transactions in both its spot and forward components to form an idea about the short term exogenous developments affecting them. A weekly FX cash balance is analyzed in depth to identify changes in the size and nature of the flows. This is complemented with information coming from the derivative (forward) market to infer the movements of the FX exposure of residents and non-residents.

In addition, the behavior of the Colombian peso is frequently compared to that of other emerging market currencies to control for global common factors, and significant differences are studied in some detail. Furthermore, routinely the Central Bank produces estimates of long run or "equilibrium" exchange rates based on several methodologies: PPP, Tradable/Non-Tradable relative prices, BEER and FEER. Confidence intervals are calculated for each methodology. The probability of misalignment is assessed by examining the position of the current real or nominal exchange rate with respect to those confidence intervals. Most methodologies are computed for a PPI-based, trade-weighted RER index, but other RER indices are carefully examined (e.g. CPI-based indices and indices of competitiveness in third markets). Appendix 3 describes the methodologies applied. The information derived from all these sources is used to judge the existence of a misalignment, which is, in turn, a key input in the FX intervention decision.

All the FX intervention of the Central Bank is sterilized to the extent required to keep short term interest rates close to the policy interest rate. This means that not necessarily all the dollar purchases are sterilized, since part of them would be absorbed by the increases of money demand. The choice of sterilization mechanisms is not trivial and will be reviewed in the next section.

The form of the intervention is a key decision with important consequences on its effectiveness. For the purpose of accumulating reserves or curbing excessive volatility, rules-based mechanisms were used since the inception of the floating regime in 1999. This choice was justified by the explicit purpose of not affecting the the trend of the exchange rate. In the cases in which presumed misalignments were dealt with, the Colombian experience with different types of intervention is rich. Rules-based intervention, discretionary intervention, verbal intervention and daily purchases of fixed amounts of US Dollars have been used in the past six years with varying degrees of success.

The empirical evidence in this regard is far from conclusive. A review of the literature presented by Rincón and Toro (2010, p. 29) suggests in general a positive, small effect of the intervention on the return of the nominal exchange rate and an ambiguous impact on its volatility. However, many of those econometric estimations exhibit shortcomings. In an effort to comprehensively test for the effectiveness of intervention and capital controls, Rincón and Toro estimate more complete models of the return of the nominal exchange rate. They find no

5 BEER stands for Behavioral Equilibrium Exchange Rate. FEER stands for Fundamental Equilibrium Exchange Rate. See Appendix 2.
6 Specifically, with respect to the correct distribution of the residuals, the measures of the intervention, the treatment of endogeneity issues and the interpretation of some results.
significant effects of intervention in general, except when accompanied by capital controls. Both intervention and capital controls are found to increase exchange rate volatility.

A summary of the experience of the Central Bank with FX intervention since 2004 is presented in Graph 5. It is clear that the large discretionary purchases of reserves of 2004-2005 and, especially, 2007 seem to have been less effective than other forms of intervention. Indeed, throughout those years, the currency *appreciated* despite the intervention. In contrast, the sub-periods of verbal intervention and daily purchases of fixed amounts exhibit some depreciation, at least initially.

Graph 5

Central Bank Intervention and exchange rate (COP/USD)

On October 23, 2009 the Central Bank of Colombia announced that most of the monetary expansion for the end of the year would be met by buying dollars and local public debt bonds (TES) for a total of three billion pesos.

Of course, a rigorous analysis must control for shifts in other determinants of the exchange rate. However, the difference in the reaction of the currency to the various forms of intervention is suggestive. In particular, the episodes of June 2008 and the last quarter of 2009 are worth highlighting. In the first one, the value of the Dollar jumped on the announcement of the program of daily purchases of constant amounts of US Dollars. Afterwards, the Lehman crisis continued pushing down the currency.

In the second episode (October-December 2009), the Central Bank announced that it would satisfy the increased demand for base money of the last quarter of the year either through the purchase of US Dollars or public bonds (TES). Information about the FX intervention was not disclosed until January 2010. The ambiguity created by the Central Bank seems to have had
an impact on the exchange rate, as illustrated by the swift correction observed after the announcement. Interestingly, the Central Bank did not buy any US Dollars in that period.

Two hypotheses can be advanced to explain the observed difference of responses of the exchange rate to the different types of intervention. First, discretionary intervention, especially when done in large amounts, may signal a defense of a particular level of the exchange rate and may induce additional capital inflows, spurred by the expectation of an appreciation of the currency. This was the case of 2007, when the large, discretionary FX intervention occurred in a period of tightening monetary policy. Moreover, large interventions may indicate a reduced ability to intervene in the future (because of cost or monetary considerations) and could exacerbate the expectations of an appreciation in the short run, thus inducing additional capital inflows.

Second, the effectiveness of the intervention seems to be influenced by the level of the exchange rate at which it is implemented. The more effective interventions after 2008 have taken place at high values of the currency, in contrast to the intervention in 2004-2007, that was undertaken at more depreciated levels of the peso. This would support the aforementioned procedure by which a decision to intervene is based on some evidence of misalignment.

5. Sterilization of FX intervention

Over the last five years the stock of international reserves has grown faster than the base money demand (Table 2), thus the need for increased sterilization operations. Starting from a net creditor position with respect to the financial system, the Central Bank has sterilized the purchases of FX by adjusting its credit to financial institutions (Repos). It has also decreased its holdings of public debt bonds (TES) and mopped up liquidity through remunerated, non-reserve deposits offered to financial intermediaries (other non-monetary liabilities). Government deposits at the Central Bank have remained an important sterilization instrument as well (Table 2).

The choice of the sterilization mechanism is a complex one, since the alternatives available have different costs and risks that create trade-offs for the Central Bank. In Colombia this decision involves a regular benefit/cost analysis in which the sterilization mechanisms are judged according to the following criteria: (i) Impact on capital flows, (ii) fiscal or quasi-fiscal costs, (iii) effects on financial intermediation, (iv) implications on the stance of monetary policy and (v) degree of control by the Central Bank.

The sterilization instruments used or considered are the following: (i) Reductions of Repo and contraction through lower interest rate, “Lombard” facilities, (ii) remunerated, non-reserve deposits, (iii) Central Bank securities, (iv) Government deposits at the Central Bank, (v) Sales of Central Bank’s holdings of Government securities and (vi) reserve requirements.

Reductions in Repo operations have little impact on capital inflows because no new low risk peso liabilities are being issued. Their quasi-fiscal cost is given by the difference between the policy (short) interest rate and the return on international reserves. They are totally under the control of the Central Bank and, as long as the latter remain a net creditor of the financial system, do not change the stance of monetary policy. In this respect, a problem emerges when the sterilization of FX purchases forces the bank to become a net debtor of the financial
In this case, the excess liquidity must be absorbed through a “Lombard” facility at the Central Bank that has associated an interest rate 100 bps. lower than the policy rate.

Table 2

Balance Sheet - Banco de la República

<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSETS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International reserves (^2/)</td>
<td>24.479</td>
<td>29.001</td>
<td>36.189</td>
<td>40.101</td>
<td>43.508</td>
<td>49.078</td>
</tr>
<tr>
<td>Repos</td>
<td>19.010</td>
<td>20.932</td>
<td>30.775</td>
<td>36.470</td>
<td>39.439</td>
<td>44.283</td>
</tr>
<tr>
<td>Government securities - TES</td>
<td>2.271</td>
<td>5.557</td>
<td>3.839</td>
<td>3.070</td>
<td>3.255</td>
<td>2.896</td>
</tr>
<tr>
<td>LIABILITIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary Base</td>
<td>24.479</td>
<td>29.001</td>
<td>36.189</td>
<td>40.101</td>
<td>43.508</td>
<td>49.078</td>
</tr>
<tr>
<td>Other non-monetary liabilities (^3/)</td>
<td>18.062</td>
<td>22.374</td>
<td>26.674</td>
<td>30.227</td>
<td>33.865</td>
<td>37.781</td>
</tr>
<tr>
<td>Government deposits</td>
<td>5.760</td>
<td>5.939</td>
<td>6.830</td>
<td>7.818</td>
<td>7.000</td>
<td>7.821</td>
</tr>
<tr>
<td>Other net</td>
<td>658</td>
<td>689</td>
<td>1.730</td>
<td>1.211</td>
<td>1.130</td>
<td>2.378</td>
</tr>
<tr>
<td>ASSETS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International reserves (^2/)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Repos</td>
<td>78</td>
<td>72</td>
<td>85</td>
<td>91</td>
<td>91</td>
<td>90</td>
</tr>
<tr>
<td>Government securities - TES</td>
<td>9</td>
<td>19</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>LIABILITIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary Base</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Other non-monetary liabilities (^3/)</td>
<td>74</td>
<td>77</td>
<td>74</td>
<td>75</td>
<td>78</td>
<td>77</td>
</tr>
<tr>
<td>Government deposits</td>
<td>24</td>
<td>20</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Other net</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ASSETS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International reserves (^2/)</td>
<td>6.742</td>
<td>4.522</td>
<td>7.188</td>
<td>3.912</td>
<td>3.408</td>
<td>5.570</td>
</tr>
<tr>
<td>Repos</td>
<td>5.436</td>
<td>1.922</td>
<td>9.843</td>
<td>5.695</td>
<td>2.969</td>
<td>4.844</td>
</tr>
<tr>
<td>Government securities - TES</td>
<td>67</td>
<td>3.285</td>
<td>(1.717)</td>
<td>(770)</td>
<td>185</td>
<td>(359)</td>
</tr>
<tr>
<td>LIABILITIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary Base</td>
<td>6.742</td>
<td>4.522</td>
<td>7.188</td>
<td>3.912</td>
<td>3.408</td>
<td>5.570</td>
</tr>
<tr>
<td>Other non-monetary liabilities (^3/)</td>
<td>2.685</td>
<td>4.312</td>
<td>4.300</td>
<td>3.553</td>
<td>3.638</td>
<td>3.916</td>
</tr>
<tr>
<td>Government deposits</td>
<td>1.240</td>
<td>(685)</td>
<td>(938)</td>
<td>(1.014)</td>
<td>253</td>
<td>1.085</td>
</tr>
<tr>
<td>Other net</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>ASSETS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International reserves (^2/)</td>
<td>38,0</td>
<td>18,5</td>
<td>24,8</td>
<td>10,8</td>
<td>8,5</td>
<td>12,8</td>
</tr>
<tr>
<td>Repos</td>
<td>40,0</td>
<td>10,1</td>
<td>47,0</td>
<td>18,5</td>
<td>8,1</td>
<td>12,3</td>
</tr>
<tr>
<td>Government securities - TES</td>
<td>3,0</td>
<td>144,6</td>
<td>(30,9)</td>
<td>(20,0)</td>
<td>6,0</td>
<td>(11,0)</td>
</tr>
<tr>
<td>LIABILITIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary Base</td>
<td>38,0</td>
<td>18,5</td>
<td>24,8</td>
<td>10,8</td>
<td>8,5</td>
<td>12,8</td>
</tr>
<tr>
<td>Other non-monetary liabilities (^3/)</td>
<td>17,5</td>
<td>23,9</td>
<td>19,2</td>
<td>13,3</td>
<td>12,0</td>
<td>11,6</td>
</tr>
<tr>
<td>Government deposits</td>
<td>189,8</td>
<td>3,1</td>
<td>15,0</td>
<td>14,5</td>
<td>(10,5)</td>
<td>11,7</td>
</tr>
<tr>
<td>Other net</td>
<td>208,7</td>
<td>4,7</td>
<td>151,2</td>
<td>(30,0)</td>
<td>(6,7)</td>
<td>110,4</td>
</tr>
</tbody>
</table>

Source: Banco de la República

1/ Yearly average of monthly data

2/ It excludes the price effect (dollar-peso) of the international reserves

3/ It includes reverse repo and remunerated deposits of the financial system.
Hence, ceteris paribus, the transition from a net creditor to a net debtor position may affect the stance of monetary policy, as the short term market interest rates could deviate (downwards) from the policy interest rate. In fact, some periods of a Central Bank’s net debtor position coincide with such a deviation (Graph 6). Also, the transmission of monetary policy may be weakened by a reduction in the net creditor position. Vargas et al (2010) show that the pass-through from policy rates to deposit rates and to some lending rates (prime and treasury loans) falls if the Central Bank has a net debtor position, especially when the policy rate is raised.

Graph 6

Remunerated, non-reserve deposits are used precisely when the Central Bank becomes net debtor of the financial system. They pay an interest rate that is close to the policy rate, so that monetary policy stance is not affected by sterilized intervention and their quasi-fiscal cost is similar to the cost of reducing Repos. The term of the deposits is a crucial parameter. If they are overnight, then control on policy stance is almost perfect, but they could attract large capital inflows when local short term interest rates are higher than foreign ones. After all, they do not have credit risk (they are peso liabilities of the Central Bank) nor liquidity and market risk (if overnight). Furthermore, if overnight deposits coexist with Repos, the interbank market will be severely hindered, as the incentives for banks to lend to each other are diminished.

On the other hand, longer maturities may discourage capital inflows due to higher liquidity risk (deposits are not tradable), but control over liquidity is weakened. The Central Bank has offered deposits with 7, 14, 30 and 60 day maturity, but only the 7 and 14 day deposits have been demanded. Thus, nothing guarantees that all the excess liquidity is actually mopped up and the stance of monetary policy, the inflation target or financial stability are put at risk, particularly when this situation is allowed to persist for an extended period of time.

The issuance of (tradable) Central Bank securities could help fix the problem of illiquidity of remunerated deposits, but may attract more capital. To alleviate this situation, securities
would need to have relatively long maturities and, therefore, higher market risk. However, this would imply larger quasi-fiscal costs. Control on short term interest rates is not at risk in this case, but, depending on the amounts issued, the Central Bank operations could influence longer term rates. Further, Central Bank paper may compete with Government securities, leading to coordination problems, distortion of the sovereign yield curve and higher costs of financing for the Government. In Colombia, a 2009 law authorized the Central Bank to issue its own bonds, but none have been sold so far. The sale of Central Bank holdings of Government securities has similar implications. However, unlike the issuance of Central Bank paper, the use of this instrument is limited by the initial size of the holdings.

Government deposits at the Central Bank have allowed the latter to maintain a net creditor position with the financial system, thereby contributing to the sterilization of FX purchases by means of reductions in Repos. The Central Government is committed to manage all its liquidity through Central Bank deposits that are paid an interest rate close to the policy rate. Nevertheless, these deposits depend on the Government cash flow and are beyond the control of the Central Bank. As a result, when the level of international reserves is high, fluctuations of these deposits may shift the position of the Central Bank from net creditor to net debtor of the financial system, or significantly increase a net debtor position, with all the difficulties that this change entails.

Finally, increases in reserve requirements may be used to raise the demand for base money and absorb the monetary expansion resulting from FX intervention. In this case, quasi-fiscal costs are non-existent because they are passed to the financial system. The flipside is, of course, the distortion of financial intermediation and the rise in interest rate spreads, which, if long lasting, may be very costly or induce “innovations” to evade the reserve requirements. Those “innovations” may cause financial disintermediation and increase the risks on financial stability. In addition, the effects on the policy stance and the transmission of monetary policy are unclear (lending interest rates go up, but deposit rates may fall) and difficult to gauge. For the same reason, the impact of reserve requirements on capital inflows is also unclear. Higher lending rates may spur external borrowing by residents with access to foreign financing, but potentially lower deposit rates may discourage some inflows.

All these considerations are taken into account when deciding on the sterilization mechanism to be used. The alternatives are evaluated according to the aforesaid criteria and their relative merits in the macroeconomic context of the moment to determine the Central Bank's choice.

6. Conclusions

Exchange rate flexibility is a key feature of the extended IT monetary strategy in place in Colombia. In this setting, the exchange rate works as a shock absorber, a transmission channel of monetary policy and a critical asset price. This means that the implementation of monetary policy requires a view on the long run trend and determinants of the RER. Also, the exchange rate regime, FX regulation and FX policy determine the resilience of the economy in the face of external shocks and allow for the possibility of countercyclical monetary policy responses. A virtuous circle is created in which the volatility present in a flexible exchange rate regime improves the conditions for the functioning of a flexible exchange rate regime.

In spite of the flexible exchange rate, IT regime, the Central Bank has actively intervened in the FX market with the purpose of maintaining and adequate level of international reserves,
curbing excessive volatility or disorderly behavior of the FX market, and countering exchange rate misalignments. A close monitoring and analysis of the FX market in the short run, as well as a set of long run or “equilibrium” RER models are used to judge the probability of a misalignment. In this case, the type of intervention and the level of the exchange rate at which it is undertaken seem to be important determinants of its effectiveness.

In the past five years international reserves have grown faster than money base demand, making sterilization of FX intervention a relevant issue for the Central Bank. The choice of sterilization instrument is guided by criteria related to the effects of the available mechanisms on the stance of monetary policy and monetary transmission, capital inflows and financial intermediation, as well as by their quasi-fiscal costs and control by the Central Bank. In this context, the transition from a net creditor position to a net debtor position of the Central Bank with respect of the financial system seems to have important consequences on the stance and transmission of monetary policy.
Appendix 1

Changing Pass-Through and Output-RER Elasticity Coefficients and Exchange Rate Volatility

- **Pass-Through:**

A time-varying coefficient is estimated that measures the transmission from the exchange rate to local tradable-good prices. The estimation used quarterly data from 1989-III to 2010-III and was based on the state-space representation of a system of two equations:

\[\pi_t = \alpha_1 \pi_{t-1} + \gamma_t (\pi^n_{t-1} + \delta_{t-1} - \delta^Z_t) + (1 - \alpha_1 - \gamma_t) \pi^E_t + \sigma_\pi \varepsilon_{\pi,t} \]

\(\pi^E_t \) is the annualized quarterly tradable good inflation, \(\pi^n_t \) is a measure of external inflation, \(\delta_{t} \) is the nominal depreciation of the Colombian peso, \(\delta^Z_t \) is the long run real depreciation of the currency (measured as the annualized quarterly change of the RER index trend) and

\[\pi^E_t = 0.56 \pi^4_{t-1} + 0.44 \pi^4_{t+1} \]

is a measure of annual inflation expectations.

The time-varying parameter \(\gamma_t \) shows the evolution of the exchange rate pass-through in time. The dynamics of this parameter is given by:

\[\gamma_{t+1} = \mu + \gamma_t + \sigma_{\gamma} \varepsilon_{\gamma,t+1}, \]

Parameters \(\mu \) and \(\sigma_{\pi} \) were estimated. The corresponding estimates are -0.0003 and 0.0241324, respectively. The parameter \(\alpha_1 \) was taken from the Central Bank’s Model of Transmission Mechanisms. \(\sigma_{\gamma} \) was calibrated at 0.006738, substantially lower than \(\sigma_{\pi} \).

- **Output-RER Elasticity:**

A time-varying coefficient is estimated that measures the evolution of the sensitivity of the output gap to the RER gap. The sample is made up by quarterly data from 1990-I to 2010-III. The estimation is based on the state-space representation of a system of two equations The first one is:

\[y_t = \alpha_1 y_{t-1} + \gamma_t z_{t-1} + \alpha_2 r_{t-1} + \sigma_\pi \varepsilon_{\pi,t} \]

\(y_t \) is the output gap, \(z_t \) es is the RER gap and \(r_t \) is the real interest rate gap. All variables are obtained from the Central Bank’s Model of Transmission Mechanisms.

The time-varying parameter \(\gamma_t \) shows the evolution of the response of the output gap to the RER gap. The evolution of this parameter is given by:

7 Macro-Modeling Department, Banco de la República
\[\gamma_{t+1} = \gamma_t + \sigma_y \epsilon_{y,t+1}, \]

Parameters \(\sigma_y \) and \(\sigma_\pi \) were calibrated at 0.0025 and 0.0656, respectively. The value of parameter \(\alpha_1 \) was taken from the Central Bank’s Model of Transmission Mechanisms.

- **Exchange Rate Volatility:**

For the calculation of the Nominal Exchange rate volatility we use daily data for the spot exchange rate (TRM) for the period 1996q4 – 2010q3.

The formula of the quarterly volatility is:

\[
\sigma_t = \frac{1}{T} \sum_{i=1}^{T} (e_{t,i} - \bar{e}_t)^2
\]

where \(e_{t,i} \) is the spot exchange rate of the i-th day of the quarter \(t \), \(T \) is the number of daily observations in the \(t \) quarter and

\[
\bar{e}_t = \frac{1}{T} \sum_{i=1}^{T} e_{t,i}
\]
Appendix 2

Exchange Rate Flexibility Supports Exchange Rate Flexibility: A Simple Model

The following model illustrates the possibility that low (high) exchange rate volatility generates the conditions in which the central bank optimal responses to exogenous shocks produce and validate low (high) exchange rate volatility. Specifically, if low exchange rate volatility induces a high pass-through from the exchange rate to prices, then the central bank will optimally respond to exogenous shocks in a way that will involve low exchange rate volatility, thus supporting the persistence of a high pass-through. Hence, economies may end up being “trapped” in low exchange rate volatility/high pass-through equilibria. Conversely, high exchange rate volatility may imply low pass through coefficients and may induce the central bank to optimally preserve a high exchange rate volatility regime in equilibrium.

Suppose a simple open economy described by the following equations:

\[
\pi = \pi^E + \pi_y y + \pi_e e + \varepsilon \\
y = y_e (i - \pi^E - \bar{r}) + y_e (e - \pi^E - \bar{q}) + \mu \\
i = i^* + (e^E - e) + \rho
\]

Phillips Curve
IS Curve
UIP

Foreign inflation is assumed to be zero. \(\varepsilon\), \(\mu\), and \(\rho\) are uncorrelated supply, demand and external interest rate shocks, respectively. The output gap in the IS curve responds to a RER gap measured with respect to expected inflation. A rationale for this may be based on pre-determined nominal wages that are fixed for the period of analysis, so that a nominal depreciation increases the production of net exports. The standard assumptions are made with respect to the signs of the coefficients: \(\pi_y > 0, \pi_e > 0, \gamma_i < 0, y_e \geq 0\).

The key parameter of this model is the response of inflation to the nominal exchange rate, \(\pi_e\). According to the arguments presented in section 3, the less volatile the exchange rate, the larger this coefficient. This is so because movements in the exchange rate are likely to represent persistent shifts in nominal marginal costs (in the Phillips curve). In consequence, the pass-through coefficient is greater.

Formally, defining \(\sigma_e\) as the volatility of the exchange rate, the following relation is posited:

\[
\pi_e = f(\sigma_e) > 0, \quad f' < 0
\]

(1)

However, exchange rate volatility, \(\sigma_e\), is itself an endogenous variable, determined by the volatility of the exogenous shocks, \(\sigma_{\varepsilon}, \sigma_{\mu}\), and \(\sigma_{\rho}\), and the response of the central bank to them. Such response is found by assuming that the Central Bank discretionally chooses its instrument, \(i\), to minimize a standard loss function, \(\frac{\pi^2}{2} + \lambda \frac{y^2}{2}\).
In its optimization process, the central bank takes expectations of inflation and the exchange rate as given and is able to observe the exogenous supply, demand and foreign interest rate shocks. Private sector expectations are assumed to be formed before the shocks occur. Thus, the central bank complete optimization problem is as follows:

\[
\min_i \frac{\pi^2}{2} + \lambda \frac{y^2}{2} \\
\text{s.t.} \\
\pi = \pi^E + \pi_y y + \pi_e e + \varepsilon \\
y = y_i (i - \pi^E - \bar{r}) + y_e (e - \pi^E - \bar{q}) \\
i = i^* + (e^E - e) + \rho
\]

Or, in abbreviated terms:

\[
\min_i \pi(y(i,e(i)),e)^2 + \lambda \frac{y(i,e(i))^2}{2}
\]

Here \(e(i) \) is the UIP equation: \(e = i^* - i + e^E + \rho \)

The FONC for this problem is:

\[
\pi \left(\pi_y (y_i + y_e e_i) + \pi_e e_i \right) + \lambda y \left(y_i + y_e e_i \right) = 0
\]

Notice that \(e_i = -1 \) and define \(K \equiv (y_i - y_e) / (\pi_y (y_i - y_e) - \pi_e) > 0 \). The FONC may then be expressed as:

\[
\pi + \lambda K y = 0 \quad (2)
\]

The trade-off between inflation and output will depend on the pass-through coefficient, \(\pi_0 \). The greater the pass-through, the greater the marginal benefit of correcting an inflation deviation (from zero) through a movement in the interest rate, relative to the output marginal cost of such a move. As a result, the central bank is more willing to sacrifice output to correct the inflation deviation:

\[
\frac{\partial K}{\partial \pi_e} = \left(y_i - y_e \right) / (\pi_y (y_i - y_e) - \pi_e)^2 < 0 \quad (3)
\]

To obtain the optimal response of the central bank to exogenous shocks, totally differentiate first order condition (2):

\[
\pi_y [y_i di + y_e (d \rho - di) + d \mu] + \pi_e (d \rho - di) + d \varepsilon = -\lambda K [y_i di + y_e (d \rho - di) + d \mu]
\]

\[
\Rightarrow di \left[(\pi_y + \lambda K)(y_i - y_e) - \pi_e \right] = -d \varepsilon - d \mu (\pi_y + \lambda K) - d \rho [y_e (\pi_y + \lambda K) + \pi_e]
\]

(4)
Define $H \equiv (\pi_y + \lambda K)(y_i - y_e) - \pi_e < 0$. Then the interest rate response to the shocks derived from (4) is:

$$di = -\frac{d\varepsilon}{H} \left(\pi_y + \lambda K \right) - d\mu \left(y_e \left(\pi_y + \lambda K \right) + \pi_e \right)$$

(5)

The positive coefficients in equation (5) mean that the central bank will raise interest rate after a supply, demand or external interest rate shock. A supply shock ($d\varepsilon > 0$) increases inflation above zero and forces the central bank to accept a loss of output to stabilize inflation. A demand shock ($d\mu > 0$) produces a deviation of both inflation and the output gap from zero. The central bank then increases interest rates to stabilize inflation and output. An external interest rate shock ($d\rho > 0$) generates a depreciation of the currency that pushes inflation and the output gap away from zero, requiring a tightening response from the central bank.

Integrating equation (5) and using the UIP equation ($e = i^* - i + \epsilon^E + \rho$), the following expression for the equilibrium nominal exchange rate is obtained:

$$e = \tilde{e} + \frac{\varepsilon}{H} + \mu \left(\pi_y + \lambda K \right) + \rho \left[1 + \left(y_e \left(\pi_y + \lambda K \right) + \pi_e \right) \right]$$

(6)

$
\tilde{e}$

is the component of the equilibrium exchange rate that does not depend on the shocks. In particular, because of the assumption about the timing of the formation of expectations, neither inflation expectations nor expected exchange rates are affected by current shocks. Those expectations are included in \tilde{e}.

Following the reaction of nominal interest rates, the currency will appreciate in the face of supply and demand shocks (coefficients of ε and μ in equation (6) – recall that $H<0$). An external interest rate shock, ρ, will cause a depreciation of the currency whose magnitude will be moderated by the response of the central bank (the coefficient of ρ in equation (6) is less than 1 because $H<0$).

Furthermore, assuming that future expectations of inflation or the exchange rate are not influenced by current shocks (e.g. if shocks are not persistent), the variance of the exchange rate over long periods of time will depend only on the volatility of the shocks. From equation (6):

$$\sigma_e = \frac{\sigma_\varepsilon}{H^2} + \sigma_\mu \left(\frac{\pi_y + \lambda K}{H} \right)^2 + \sigma_\rho \left[\frac{y_e (\pi_y + \lambda K)}{H} \right]^2$$

(7)

σ_e is the variance of the nominal exchange rate and σ_μ, σ_ε and σ_ρ are the variances of the exogenous shocks. In equation (7) the coefficient of σ_ρ has been simplified using the definition of $H \equiv (\pi_y + \lambda K)(y_i - y_e) - \pi_e$. The pass-through coefficient, π_e, has an impact on exchange rate volatility through its influence on the coefficients of the shock variances in equation (7):
Define those coefficients as follows:

\[w_e \equiv \frac{1}{H^2} \]

\[w_\mu \equiv \left[\frac{\pi_y + \lambda K}{H} \right]^2 \]

\[w_\rho \equiv \left[\frac{y_i (\pi_y + \lambda K)}{H} \right]^2 \]

so that:

\[\sigma_e = w_e \sigma_e + w_\mu \sigma_\mu + w_\rho \sigma_\rho \]

Therefore,

\[
\frac{\partial w_e}{\partial \pi_e} = -2 \frac{1}{H^3} \frac{\partial H}{\partial \pi_e}
\]

\[
\frac{\partial w_\mu}{\partial \pi_e} = 2 \left[\frac{\lambda y_i}{H} \frac{\partial K}{\partial \pi_e} - \frac{\lambda y_i}{H} \frac{\partial^2 K}{\partial \pi_e^2} \right] \left[\frac{\pi_y + \lambda K}{H} \right]
\]

\[
\frac{\partial w_\rho}{\partial \pi_e} = 2 \left[y_i \frac{\partial K}{\partial \pi_e} - y_i \frac{\partial^2 K}{\partial \pi_e^2} \right] \left[\frac{\pi_y + \lambda K}{H} \right]
\]

so that:

\[
\frac{\partial \sigma_e}{\partial \pi_e} = \frac{\partial w_e}{\partial \pi_e} \sigma_e + \frac{\partial w_\mu}{\partial \pi_e} \sigma_\mu + \frac{\partial w_\rho}{\partial \pi_e} \sigma_\rho
\]

Given that \(\frac{\partial K}{\partial \pi_e} < 0 \) (equation (3)) and \(H < 0 \), the sign of the derivatives \(\frac{\partial w_e}{\partial \pi_e}, \frac{\partial w_\mu}{\partial \pi_e} \) and \(\frac{\partial w_\rho}{\partial \pi_e} \) in (8) will depend crucially on the sign of \(\frac{\partial H}{\partial \pi_e} \). In particular, if \(\frac{\partial H}{\partial \pi_e} < 0 \), then inspection of the partial derivatives above (equation (8)) indicates that all the coefficients will respond negatively to an increase in the pass-through coefficient, \(\pi_e \). As a result, exchange rate volatility will decline with pass-through. From the definition of \(H = (\pi_y + \lambda K)(y_i - y_e) - \pi_e \), it follows that:

\[
\frac{\partial H}{\partial \pi_e} = (y_i - y_e) \lambda \frac{\partial K}{\partial \pi_e} - 1 = \lambda K^2 - 1
\]
Result #1:

\[\frac{\partial H}{\partial \pi_e} < 0 \text{ and } \frac{\partial \sigma_e}{\partial \pi_e} < 0 \text{ for low enough values of } \lambda K. \]

This follows from equations (8) and (9).

Intuitively, an increase in the pass-through coefficient, \(\pi_e \), has two effects on the monetary policy response to shocks. On the one hand, it requires a lower adjustment of the interest rate by the central bank in response to a shock that causes inflation to deviate from its optimal level. I.e. monetary policy is more powerful because of a larger pass-through and both the interest rate and the exchange rate (through the UIP) do not need to move much.

On the other hand, a larger pass-through, \(\pi_e \), reduces the importance of output gap in the inflation-output trade-off, \(K \), as the marginal benefit of correcting an inflation deviation is greater (due to a larger impact of an interest rate move on inflation) relative to the output marginal cost. In consequence, the central bank is more willing to allow the interest rate to respond strongly to shocks that move inflation and, through the UIP, produces more exchange rate volatility.

The second effect is more important, the greater the output weight, \(\lambda K \). Hence, according to equation (3) \(\left(\frac{\partial K}{\partial \pi_e} < 0 \right) \), when \(\lambda \) is large enough or the pass-through coefficient, \(\pi_e \), is very small, an increase in \(\pi_e \) could actually increase exchange rate volatility (equation (8)). Otherwise, there will be a negative relationship between exchange rate pass-through and exchange rate volatility because the first effect prevails.

Nevertheless, low values of the preference weight parameter, \(\lambda \), do not necessarily lead to a positive relationship between pass-through and volatility. Equation (8) shows that the coefficients of \(\sigma_\mu \) and \(\sigma_\rho \) may fall when the pass-through coefficient, \(\pi_e \), rises because \(\frac{\partial K}{\partial \pi_e} < 0 \). Intuitively, as mentioned above, an increase in pass-through reduces the importance of output in the central bank’s preferences (\(K \) falls). Since demand and external interest rate shocks shift output, the lower output weight means less incentives for the central bank to correct the shocks through interest rate (and exchange rate) movements. This effect is greater when \(\lambda \) is large. Hence, it is possible that high values of \(\lambda \) lead to a negative relationship between pass-through and exchange rate volatility. Figure A2-1 illustrates the different configurations of this relationship for set of parameter values\(^8\).

\(^8\) \(y_i = -0.3, y_e = 0.05, \pi_e = 0.1, \sigma_e = \sigma_\rho = \sigma_\mu = 1. \)
Hitherto a relationship was posited in which the pass-through coefficient, π_0, depends on exchange rate volatility, σ_e (equation (1)). The smaller exchange rate volatility, the larger the response of local prices to movements in the exchange rate, for the latter would signal persistent shifts in marginal costs. At the same time, a relationship was established in which exchange rate volatility, σ_e, depends on the pass-through coefficient, π_0 (equation (7)). For high enough values of π_0 in combination with appropriate values of λ, increases in the pass-through coefficient will incentivize the central bank to deliver lower exchange rate volatility. This is so because greater pass-through coefficients make monetary policy more powerful and require smaller adjustments in the exchange rate in the face of exogenous shocks to inflation. Also, greater pass-through reduces the incentives for the central bank to correct output deviations caused by demand or external interest rate shocks.

An equilibrium in this economy occurs when the exchange rate volatility, σ_e, that produces the pass-through coefficient, π_0, in equation (1) coincides with the exchange rate volatility, σ_e, generated by the pass-through coefficient, π_0, in equation (7). This equation includes the fulfillment of the relationships that describe the economy (Phillips Curve, IS and UIP), as well as the optimizing behavior of the central bank. Formally then, the macroeconomic equilibrium is given by:

$$\pi_c = f(\sigma_c) > 0, \quad f' < 0 \quad (1)$$
\[\sigma_e = g(\pi_e) \equiv \frac{\sigma_e}{H^2} + \sigma \left[\frac{\left(\pi_y + \lambda K \right)}{H} \right]^2 + \sigma \rho \left[\frac{y_e \left(\pi_y + \lambda K \right)}{H} \right]^2 \] (7)

Result #2:
Depending on the shapes of \(\pi_e = f(\sigma_e) \) (equation (1)) and \(\sigma_e = g(\pi_e) \) (equation (7)), there may be multiple pairs \((\pi_e, \sigma_e)\) that are macroeconomic equilibrium points. Given the assumption of \(f'(\sigma_e) < 0 \), some equilibria will display higher pass-through and lower exchange rate volatility than others.

In other words, there may be multiple equilibria. In some of them, economies with low exchange rate volatility will persistently display high pass-through and, consequently, central banks will deliver low exchange rate volatility. These cases may co-exist with economies in which high exchange rate volatility induces low pass-through and, therefore, allows the central bank to tolerate high exchange rate volatility in equilibrium. Figure A2-2 illustrates these situations for a specification of \(\pi_e = f(\sigma_e) \) and a set of parameter values\(^9\). Points A and B correspond to equilibria with high exchange rate volatility and low pass-through. In contrast, an economy in point C has low exchange rate volatility and high pass-through in equilibrium.

Finally, it is worth emphasizing that multiple equilibria are a possibility in this model. This is not necessarily the only outcome. Depending on the shapes of \(\pi_e = f(\sigma_e) \) and \(\sigma_e = g(\pi_e) \), there may be situations with a unique equilibrium.

9 The pass-through function is as follows: \(\pi_e = 1 - 8.33 \sigma_e \). Other parameter values: \(\lambda = 0.25, y_t = -0.3, y_e = 0.05, \pi_y = 0.1, \sigma = \sigma = \sigma_y \).
Appendix 3

Methodologies Used to Estimate “Equilibrium” or Long Run Exchange Rates

PPP Methodologies:

• *Big Mac Indices*: Yearly frequency. Two estimates: One with respect to the US and the other with respect to a (trade-weighted) basket of countries. Confidence intervals are constructed on the basis of the standard deviations of the difference between the NER and the Big Mac index measures.

• *Historical Averages for RER*: Monthly frequency. We examine long run averages for the RER (since 1970) and allow for structural breaks (Perron and Yabu, 2009 test). Confidence intervals are constructed as explained above.

Tradable/Non-Tradable Relative Price Methodologies: We acknowledge the possibility of large swings in the relative prices of tradable and non-tradable goods that may emerge as equilibrium responses to policy or other exogenous shocks/trends affecting the economy. Long run trends and international comparisons are computed to evaluate possible misalignments of the currency.

• *Hodrick-Prescott Filters*: Monthly frequency. Estimated since 1970. Confidence intervals estimated as explained before.

• *“Penn Tables” Balassa-Samuelson effect*: Yearly frequency. The following relationship is exploited:

\[
\text{NER}_i / \text{PPP-NER}_i = f \left(\frac{\text{Per Capita GDP}_i}{\text{Per Capita GDP USA}} \right)
\]

for a cross-section of countries \(i\), where the PP-NER is obtained from the IMF. According to the Balassa-Samuelson effect, the richer the country, the more appreciated its currency should be in real terms. One could examine the misalignment of the currency after controlling for this effect. The confidence intervals in this case are obtained from the standard error of the regression.

BEER Methodologies: Again, allowing for fluctuations of the relative price of tradable and non-tradable goods, the behavior of the RER is modeled as a function of “fundamentals” obtained from conventional theory (net foreign assets, terms of trade, public consumption, productivity differentials, income of trading partners etc). Reduced forms are estimated and used to evaluate a possible misalignment of the RER, using confidence intervals:

• *SVEC*: Structural VEC. Yearly frequency (based on Echavarria et al., 2007)

• *VEC*: Quarterly frequency.

10 Based on Banco de la República – DPI (2010)
• “Smoothed” VEC: Quarterly frequency. The cointegration vector obtained in the previous methodology is applied to Hodrick-Prescott-filtered series of the fundamentals (Mac Donald and Ricci, 2003).

FEER Methodologies: The fundamental equilibrium exchange rate is defined as the one that results when the economy is in internal and external equilibrium. The latter occurs, in turn, when the current account deficit is at its long run level (Williamson, 1983). Following an IMF methodology, a “required RER adjustment” is calculated as:

\[(CC^* - CC_{trend}) / mtc\]

\(CC^*\) is the equilibrium level of the current account, \(CC_{trend}\) is the H-P trend of the current account and \(mtc\) is the elasticity of imports and exports with respect to the exchange rate. The definition of the equilibrium level of the current account may be arbitrary, but we use several measures: the average of the last \(X\) years, or the level that would leave the ratio net foreign assets / GDP unchanged, given some assumptions on domestic GDP long term growth and long run external inflation.
References

Banco de la República-DPI (2010) “Medidas de tasa de cambio real de equilibrio". Internal Document, Observatorio de tasa de cambio real, Departamento de Programación e Inflación,

