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ABSTRACT. Three methodologies to estimate the natural interest rate, NIR, are imple-
mented for the Colombian economy. Two methods are statistical filters and the third
involves some economic theory. The first method is based on unobserved components
decomposition of the real interest rate and explores the statistical characteristics of the
data. The second is a multivariate version of the Hodrick-Prescott filter augmented by an
economic relationship, HPMV. The NIR in both cases is defined as the trend component of
the market real interest rate; then, the NIR may be considered as a long-run real interest
rate anchor for monetary policy. The third method consists in estimating a semi-structural
model for a small open economy. In this case the NIR is defined as the interest rate that
does not affect the output dynamics in the short run and assures output and inflation con-
vergence to their long run equilibriums. This implies that the NIR is a medium-run anchor
for monetary policy. Three features are observed in the dynamics of the NIR estimates for
the period 2000-2009. The first part of the sample (2000-2003) shows a downward trend,
followed by a period of stabilization and upward trend (2004-2008) and at the end of the
sample the NIR start decreasing again. The NIR in the last quarter of the sample, 2009Q2,
is around 3.1 in average.
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1. INTRODUCTION

In monetary policy regimes, where the nominal short run interest rate is used as the
policy instrument, as is the case of Colombia since 2001, the natural interest rate, NIR,
plays an important role in order to determine the stance of monetary policy. Thus, the gap
between the instrument rate of the Central Bank and the NIR can be a useful guideline
for the position of the monetary policy and can also be helpful to make policy decisions
(Laubach and Williams [2001]).

There are several definitions of the natural or neutral interest rate, however the standard
definition states that the natural interest rate is the short run interest rate which makes
the output to converge to its potential keeping inflation stable (Bomfim [1997]).

In the literature, different approaches have been used to estimate the NIR. From simple
statistical methodologies to structural economic models. Basdenvant et al. [2004] used
a multivariate Hodrick-Prescott filter, HPMV, to estimate the NIR in New Zealand; Cre-
spo Cuaresma et al. [2003] used an unobserved components models, UCM, to estimate
the NIR for the Euro area. More complex methodologies such as Stochastic Dynamic Gen-
eral Equilibrium models were used by Neiss and Nelson [2001] for the UK and Giammar-
ioli and Valla [2003] for the Euro area. Also, some semi-structural or more parsimonious
models have been used by Laubach and Williams [2001] for USA. They jointly estimate
the trend growth of the economy, the NIR and the potential output by the Kalman filter.

There are several estimations of the natural rate of interest for Latin American economies.
In particular, España [2008] used the methodology of Laubach and Williams [2001] for
the Uruguayan economy; in the case of Peru, Castillo et al. [2006] estimated the NIR by
Kalman filter using a semi-structural model for a small open economy. Calderon and
Gallego [2002] estimated the neutral interest rate using two approaches for the Chilean
economy; first, they considered theoretical rates that would prevail under equilibrium
conditions in a closed and open economy and second, they used rates derived from
expectations of the interest rate from the monetary authority and the financial market.
Finally, for Venezuela, Cartaya et al. [2007] estimated the NIR first, from the marginal
productivity of capital derived from a production function and second, by the Kalman
filter using a small system of equations that includes a relation between the output gap
and the interest rate gap and the dynamics of the potential output and the NIR.

In the Colombian case, Echavarrı́a et al. [2006] estimate the NIR based on the work of
Laubach and Williams [2001], using quarterly data for the period 1982 Q1 to 2005 Q4. It
is a closed economy model since it does not incorporate relationships of the interest rates
across countries. Although the model includes some external variables such as the terms
of trade and foreign growth.

Another study is the Transmission mechanism model which is the model currently used
by the central bank of Colombia for monetary policy simulation and long run forecasting
(Gómez et al. [2002]). It assumes that the NIR is constant at 4% for the last part of the
sample. Additionally, for this model a neutral real interest rate is estimated. This neutral
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rate is defined as the transition rate that converges to the long run or stationary state.
This path is used to obtain an estimation of the interest rate gap.

In this paper we obtain estimates of the time varying natural interest rate using three
methodologies. Two statistical methods, based on the dynamic properties of the data,
and a semi-structural model for a small open economy.

The statistical methods are based on UCM and HPMV models. For both methods, the
NIR is estimated as the trend component of the real interest rate. First, two UCM ver-
sions are estimated, univariate and multivariate models. Second, a Multivariate Hodrick-
Prescott filter, proposed by Laxton and Tetlow [1992], is estimated. This method adds an
economic relationship to the Hodrick-Prescott optimization problem in order to obtain
the trend component.

On the other hand, a semi-structural model for a small open economy is considered. This
methodology simultaneously estimate the output gap, potential output, core inflation
and the NIR using the Kalman Filter. The model is based on the work of Castillo et al.
[2006]; with the advantage that inflation expectations are estimated within the system
and the parameters estimates obtained by bayesian techniques. The parameters estima-
tion were carried out with the methodology described in Bonaldi et al. [2010] using their
FORTRAN95 procedures1.

The remainder of the paper is structured as follows. Section 2 describes the method-
ologies used to estimate the NIR. The description of the data used in this analysis is
presented in Section 3. Section 4 shows the estimates of the NIR. Finally, Section 5 con-
cludes.

2. METHODOLOGIES OF ESTIMATION OF THE NIR

This section briefly describes three methodologies that are used to estimate the Colom-
bian NIR. The first two are based on statistical methods while the last one uses a semi-
structural model for a small open economy. The statistical methods, unobserved compo-
nents model and an augmented Hodrick-Prescott filter, extract the long-run trend of the
real interest rate as a measure of the natural interest rate. On the other hand, the semi-
structural model considers the relations between the natural interest rate and different
macroeconomic variables according to the economic theory. In the latter approach, the
NIR is defined as the interest rate that does not affect the output dynamics in the short
run and ensures output and inflation convergence to their long run equilibriums.

2.1. Unobserved Components Models. Unobserved components models decompose a
time series into several components such as trend, season, cycle and irregular distur-
bance. These models have been intensively used in applied economic research and suc-
cessfully applied in business cycle analysis. They are also useful in short-term monitor-
ing of macroeconomic variables. Compared with other filtering procedures (Hodrick -

1We gratefully acknowledge the authors for providing us their full codes
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Prescott, X-11 and X-12), the unobserved components models offer some advantages. It
provides statistical tests, prediction algorithms, modeling of seasonality and introduc-
tion of additional features such as other explanatory variables, interventions and cyclical
components.

The unobserved components models have been used in different economic applications,
for estimating the natural level of the labor supply (Bull and Frydman [1983]), for mod-
eling credibility of the monetary authority (Weber [1991]), for analyzing the GDP (Lug-
inbuhl and Vos [1999], Morley et al. [2003]), the Purchasing Power Parity (PPP) (Kleijn
and van Dijk [2001]), consumption (Elwood [1998]), unemployment (Chung and Har-
vey [2000], Berger and Everaert [2009]), for modeling tax revenues (Koopman and Ooms
[2003]), cycles (Chambers and McGarry [2002]) and for analyzing financial series (Cowan
and Joutz [2006]), among others.

2.1.1. Univariate Model. In this section we introduce the unobserved component models
(UCM) developed by Harvey [1989]. Let yt be the observed time series which is decom-
posed into several components in the following way:

yt = µt + γt + ϕt + εt, εt ∼ NID(0, σ2
ε ), t = 1, . . . , N (2.1)

where µt, γt, ϕt and εt represent the trend, seasonal, cyclical and irregular components,
respectively.

The trend is modeled by a linear stochastic process that may include a slope term. The
seasonal components can be modeled by a linear stochastic process, trigonometric func-
tions or deterministic components. The cycle is based on stochastic trigonometric func-
tions.

The specification of the UCM depends on which components are included in the model
and how they are modeled. Thus, the simplest form of UCM, the “local level model”,
is obtained from equation (2.1), with no cyclical and no seasonal components and by
specifying the trend as a random walk process

yt = µt + εt, εt ∼ NID(0, σ2
ε ), t = 1, . . . , N (2.2)

µt+1 = µt + ηt+1, ηt ∼ NID(0, σ2
η) (2.3)

The “local linear trend model” is obtained from the previous model by adding a slope
term βt, which also follows a random walk process

yt = µt + εt, εt ∼ NID(0, σ2
ε ) (2.4)

µt+1 = µt + βt + ηt+1, ηt ∼ NID(0, σ2
η), t = 1, . . . , N (2.5)

βt+1 = βt + ζt+1, ζt ∼ NID(0, σ2
ζ ) (2.6)
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where the trend and slope disturbances, ηt and ζt, are mutually uncorrelated Gaussian
sequences with zero mean and variances σ2

η and σ2
ζ . If σ2

ζ is zero then the trend µt follows
a random walk process plus drift. Moreover, if σ2

η = σ2
ζ = 0 then µt is a deterministic

linear trend. A “smooth trend model” or an integrated random walk process is obtained
when σ2

η = 0.

To take into account the seasonal variation in yt, the seasonal component can be speci-
fied by a deterministic or stochastic component. The deterministic seasonal component
satisfies the property that the seasonal coefficients sum zero within a year. This ensures
that this component is not interpreted as a trend. In this case, the deterministic seasonal
component is given by

γt =
s−1∑
j=1

γ̃jzjt (2.7)

where s is the number of seasons and zjt is a dummy variable that indicates if observation
t belongs to the j−season and γ̃j for j = 1, . . . , s are the respective coefficients.

Finally, an alternative way of modeling seasonality is given by

γt =
[s/2]∑
j=1

(αj cosλjt+ βj sinλjt) (2.8)

where λj = 2πj/s, j = 1, . . . , [s/2], and [.] denotes rounding down to the nearest integer.

Time series are often subject to certain economic fluctuations that can be interpreted as
business cycles. This can be implemented in UCM by including a stochastic cycle (ϕt) of
the form

yt = µt + ϕt + εt, εt ∼ NID(0, σ2
ε ), t = 1, . . . , N (2.9)(

ϕt+1

ϕ∗t+1

)
= ρ

(
cosλ sinλ
− sinλ cosλ

)(
ϕt
ϕ∗t

)
+
(
κt+1

κ∗t+1

)
, 0 ≤ ρ < 1 (2.10)

where κt and κ∗t are white noise disturbances mutually uncorrelated with common vari-
ance σ2

κ, the trend µt can be specified by (2.3) or (2.5) and (2.6), ρ is a damping factor, λ is
the frequency in radians corresponding to a period 2π/λ such that 0 < λ < π. For more
details see Harvey [1981].

2.1.2. Multivariate Model. The multivariate version of unobserved components models
extends the results of section 2.1.1 for a vector of variables. Let yt be a vector of k observed
variables. Then, the model can be written as the following additive form
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yt = µµµt + γγγt +ϕϕϕt + εεεt, εεεt ∼ NID(000,Σε), t = 1, . . . , N (2.11)

whereµµµt, γγγt,ϕϕϕt and εεεt are k×1 vectors that correspond to the multivariate trend, seasonal,
cycle and irregular components, respectively. A simple model includes a multivariate
trend and cycle components and is given by

yt = µµµt +ϕϕϕt + εεεt, εεεt ∼ NID(000,Σε), t = 1, . . . , N (2.12)

where µµµt can be expressed either in a multivariate local level model or in a local linear
trend model. The former has the following form

µµµt+1 = µµµt + ηηηt+1, ηηηt ∼ NID(000,Ση), (2.13)

And the multivariate local linear trend is given by

µµµt+1 = µµµt + βββt + ηηηt+1, ηηηt ∼ NID(000,Ση), (2.14)

βββt+1 = βββt + ζζζt+1, ζζζt ∼ NID(000,Σζ), (2.15)

The equation of the cycle in both models is given by

(
ϕϕϕt+1

ϕϕϕ∗t+1

)
= ρ

[(
cosλ sinλ
− sinλ cosλ

)
⊗ Ik

](
ϕϕϕt
ϕϕϕ∗t

)
+
(
κκκt+1

κκκ∗t+1

)
, V

(
κκκt
κκκ∗t

)
= I2 ⊗ Σκ (2.16)

where the cyclical frequency λ and the cycle damping factor ρ, 0 < ρ < 1, are assumed
to be equal for all variables. The disturbances, κκκt and κκκ∗t are two orthogonal white noise
processes.

In a simple multivariate local level model, when the rank of the Ση is k∗ < k, the model
has k∗ common levels or common trends, µµµ∗t . Then, equations (2.12) and (2.13), with no
cycle component, becomes

yt = Θ∗µµµ∗t +µµµ0 + εεεt, εεεt ∼ NID(000,Σε), (2.17)

µµµ∗t+1 = µµµ∗t + ηηη∗t+1, ηηη∗t ∼ NID(000,Ση∗) (2.18)

where µµµ∗t is a k∗ × 1 vector of common trends, Θ∗ is an k × k∗ matrix of factor loadings,
µµµ0 is a k−dimensional vector which has zeros for the first k∗ elements and the remaining
elements are unconstrained (µ̄̄µ̄µ). The presence of common trends implies cointegration
(Harvey [1989]). In the local level model, there are r = k − k∗ cointegration vectors.
Equation (2.17) can also be expressed as
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y1,t = µµµ∗t + εεε1t (2.19)

y2,t = Θ∗µµµ∗t + µ̄̄µ̄µ+ εεε2t (2.20)

where yt is partitioned into a k∗ × 1 vector y1t and an r × 1 vector y2t, εεεt is partitioned in
a similar way. The first set contains the common trends and the second set of equations
consists of cointegrating relationships.

The model described in (2.17) and (2.18) can be written in the form of seemingly unre-
lated time series equations (SUTSE), this representation is a multivariate generalization
of standard structural time series models and common components restrictions, such as
common trends, common cycles and common seasonalities. For the previous model the
SUTSE representation is given by

yt = µµµt + εεεt, εεεt ∼ NID(000,Σε) (2.21)

µµµt+1 = µµµt + ηηηt+1, ηηηt ∼ NID(000,Ση) (2.22)

Where µµµt = Θ∗µµµ∗t +µµµ0, ηηηt = Θ∗ηηη∗t and Σηηη = Θ∗Σηηη∗Θ∗
′

is a singular matrix of rank k∗.

The multivariate local linear trend model with cycles and common levels is given by

yt = Θ∗µµµ∗t +µµµ0 +ϕtϕtϕt + εεεt, εεεt ∼ NID(000,Σε), (2.23)

µµµ∗t+1 = µµµ∗t + βββ∗t + ηηη∗t+1, ηηη∗t ∼ NID(000,Ση∗), (2.24)

βββ∗t+1 = βββ∗t + ζζζ∗t+1, ζζζ∗t ∼ NID(000,Σζ
∗), (2.25)

The SUTSE representation of this model is given in the equations (2.12), (2.14), (2.15) and
(2.16) when µµµt = Θ∗µµµ∗t + µµµ0, βββt = Θ∗βββ∗t , ζζζt = Θ∗ζζζ∗t , Σζζζ = Θ∗Σζζζ∗Θ∗

′
, ηηηt = Θ∗ηηη∗t and

Σηηη = Θ∗Σηηη∗Θ∗
′
. Ση and Σζ are singular matrices with rank k∗.

Then, SUTSE models allow to identify common factors through covariance matrices of
the disturbances (Σε,Ση∗ ,Σζ∗ , . . .). An incomplete rank of any of these matrices implies
a common component restriction. For example, if the covariance matrix of the trend
disturbance has incomplete rank, then there are common trends. Since SUTSE models
may include cointegration relationships, they allow for economic interpretations and can
also provide more efficient forecasts (Mazzi et al. [2005]). Another advantage of these
models is that they provide a useful framework for temporal disaggregation (Moauro
and Savio [2005]).

As shown in Appendix C, both, univariate and multivariate unobserved component
models can be written in a state space form and estimated by Maximum Likelihood using
the Kalman filter.
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2.2. Multivariate Hodrick - Prescott Filter. This alternative of estimating unobserved
components, known as HPMV, was developed by Laxton and Tetlow [1992] to estimate
potential output in Canada, and has also been used for estimating potential output in
New Zealand (Conway and Hunt [1997]) and estimating the NAIRU for the OECD coun-
tries (OECD [1999]). This methodology is based on the Hodrick- Prescott filter, however,
an additional economic equation related to the unobserved trend component is consid-
ered in the optimization problem. In this way, the minimization problem also depends on
the fit of the economic relationship. The HPMV is obtain as the solution of the following
problem

min
∑ 1

σ2
0

(yt − y∗t )
2 +

1
σ2

1

(∆∆y∗t )
2 +

1
σ2

2

ξ2 (2.26)

where σ2
0, σ

2
1, σ

2
2 are the variances of the cyclical fluctuations (yt − y∗t ), the growth rate of

the trend (∆∆y∗t ) and the errors of the economic relationship (ξt), respectively. Then, the
smaller σ2

2 , the higher λ2, the more importance is given to the information added by the
economic relationship.

In this study, two economic equations are considered for the estimation of the NIR using
this methodology.

First, an IS curve, which relates interest rates and income is considered. This equation
represents the equilibrium of the market of goods and services. The relationship is given
by

ỹt = α0 + α1ỹt−1 + α2 (rt−1 − r̄t−1) + α3q̃t−1 + ξt (2.27)

where ỹt is the output gap, q̃t is the real exchange rate gap, rt is the real interest rate and
r̄t is the NIR.

Second, the following Taylor policy rule is also considered

iONt = ρiONt−1 + (1− ρ) [(r̄t + Etπt+s − γt) + α1(πt+s − π̄t+s) + α2ỹt] + ξt (2.28)

where iONt is the nominal overnight rate, r̄t is the NIR, Etπt+s is the inflation expectation
for s = 12 periods ahead, defined as the weighted average of past and future inflation, γt
is the gap between the unobserved nominal natural overnight rate and nominal natural
market rate (obtained from the 90-day deposit interest rate), γt = ī90TD

t − īONt , and π̄t is
the inflation target.

There are two alternative methods to estimate the HPMV filter. Using optimization meth-
ods to solve the minimization problem and using the Kalman filter to estimate the respec-
tive state-space representation.

2.2.1. The optimization. To start the minimization problem, a proxy of the unobserved
trend, usually obtained from the standard HP filter, is used to estimate the economic
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equation. Then, the residuals from this equation are plugged into the following mini-
mization problem (2.26), with λ1 = σ2

0

σ2
1

and λ2 = σ2
0

σ2
2

,

min
∑(

(rt − r̄t)2 + λ1 (r̄t+1 − 2r̄t +−r̄t−1)2 + λ2 (zt − f(r̄t))
2
)

(2.29)

Where zt is the dependant variable of the economic relationship and f (r̄t) is the linear
function of the economic model.

As shown in Razzak and Dennis [1999], the first order conditions with respect to r̄t for
t = 1, . . . , T , implies that

ccc = λ1Fr̄rr + λ2ξξξ
∗ (2.30)

where ccc is a T × 1 vector with ct = rt − r̄t, ξξξ∗ is a vector of derivatives of
∑

(zt − f(r̄t))
2

with respect to r̄t, F is a T × T matrix of the following form

F =



1 −2 1 0 · · · 0
−2 5 −4 1 0 · · · 0

1 −4 6 −4 1 0 · · · 0
0 1 −4 6 −4 1 0 · · · 0
...

...
0 · · · 0 1 −4 6 −4 1 0
0 · · · 0 1 −4 6 −4 1
0 · · · 0 1 −4 5 −2
0 · · · 0 1 −2 1


(2.31)

For the IS curve, ξξξ∗ = α2 [ξ2, ξ3, . . . , ξT ]′, in this case F is a T − 1 × T − 1 matrix. In the
monetary policy rule exercise, ξξξ∗ = −(1− ρ) [ξ1, ξ2, . . . , ξT−1, ξT ]′ .

Under this methodology the real interest rate is decomposed into the unobserved trend
and cyclical residual components, rrr = r̄rr+ ccc. Replacing ccc by (2.30) in the previous expres-
sion and solving for the trend component, r̄rr, the following result is obtained 2

r̄rr = (I + λ1F )−1 (rrr − λ2ξξξ
∗) (2.32)

Once the unobserved r̄rr is obtained, an optimization algorithm is used to estimate the λ′s.
Then, the economic relationship is estimated with the new estimate of r̄rr using NLS. Sev-
eral iterations of this three-step procedure are performed until convergence is reached.

2See Reeves et al. [1996] and Conway and Hunt [1997] for details.
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2.2.2. The Kalman filter. The HPMV filter can be rewritten as a state space model with
some restrictions imposed over the variances of the three components of the minimiza-
tion problem. These restrictions are implemented in order to produce a balance among
smoothness, bias and the fit of the economic relationship. Estimates of the trend com-
ponent and the parameters are obtained by maximum likelihood methodology using
Kalman filter.

The state space representation of the HPMV minimization problem for the first economic
relationship is given by:

Measurement equation

yyyt = dXXXt + zAAAt + ηηηt, ηηηt
iid∼ N

(
000, GG

′
)

(2.33)

Transition equation

AAAt = TAAAt−1 + νννt, νννt
iid∼ N

(
000, HH

′
)

(2.34)

where

yyyt =
[
rt
ỹt

]
; d =

[
0 0 0
α1 α2 α3

]
; XXXt =

 ỹt−1

rt−1

q̃t−1

; z =
[

1 0 0
0 0 −α2

]
;

AAAt =

 r̄t
gt
r̄t−1

; ηηηt =
[
et
ξt

]
; V(ηηηt) = GG

′
=
[
σ2

0 0
0 σ2

2

]
; T =

 1 1 0
0 1 0
1 0 0

;

νννt =

 ϑ1t

ϑ2t

0

; V(νννt) = HH
′

=

 0 0 0
0 σ2

1 0
0 0 0


The state space representation of the HPMV minimization problem for the second eco-
nomic relationship assuming that γt follows a random walk process is given by the equa-
tions (2.33) and (2.34) with the following matrices and vectors:

yyyt =
(
i90TD
t

iONt

)
; d =

[
0 1 0 0
ρ (1− ρ) (1− ρ)α1 (1− ρ)α2

]
; XXXt =


iONt−1

Etπt+s
πt+s − π̄t+s

ỹt

;

AAAt =

 r̄t
gt
γt

; z =
[

1 0 0
1− ρ 0 ρ− 1

]
; ηηηt =

[
et
εt

]
; V(ηηηt) = GG

′
=
[
σ2

0 0
0 σ2

2

]
;

T =

 1 1 0
0 1 0
0 0 1

; νννt =

 ϑ1t

ϑ2t

ϑ3t

; V(νννt) = HH
′

=

 0 0 0
0 σ2

1 0
0 0 σ2

3
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These state space representations assume, for both economic relationships, that the change
in the trend component of the real interest rate, ∆r̄t, is modeled as a random walk plus
drift

r̄t = r̄t−1 + gt−1 + ϑ1t

gt = gt−1 + ϑ2t

Empirical comparisons of the two estimation methods (optimization and Kalman filter)
have found different results in term of the unobserved trend component (Boone [2000]).
With respect to the optimization method, the state space approach has the advantage
that the estimates of the parameters and the unobserved variable are obtained simulta-
neously, including also standard errors for the unobserved variable. Another advantage
of the state space version is that it allows different representations for the unobserved
component, not only the random walk implied by the HPMV representation.

For most empirical applications λλλ is fixed by the user. The most common values for these
parameters are λ1 = 1600 for quarterly data and 14400 for monthly data and λ2 is such
that the ratio σ2

1

σ2
2

is between 0.1 and 0.5.

For this exercise we estimate the parameters of the economic relationships imposing
some economic restrictions. A grid of values is used for λ1 and λ2 (or σ0, σ1 y σ2). How-
ever, the estimated parameters are similar to the most common values.

2.3. A Semi-structural Model. This approach is based on a semi-structural model for a
small open economy, following the work of Castillo et al. [2006] who estimated the NIR
for Peru. We used the same system of equations, even though our version considers
inflation expectations as an endogenous variable.

In this context, the NIR is defined as the interest rate that does not affect the output
dynamics in the short run and assures output and inflation convergence to their long run
equilibriums. This definition differs from the ones mentioned in previous subsections
as it does not represent any trend component of the interest rate. In fact, as noted by
Laubach and Williams [2001], the interest rate could deviate for long periods of time
from the NIR as may happen during inflationary or disinflationary episodes.

The difference between the observed interest rate and the NIR is called the real interest
rate gap; this variable is used (see Laubach and Williams [2001], Mésonnier and Renne
[2007], Castillo et al. [2006]) as a measure for the stance of monetary policy. In this paper
however, the interest rate gap is not exactly a variable that represents this definition given
that we use a market interest rate instead of a policy interest rate. We do not include the
latter because it may not represent the relevant interest rate for the agents in the economy,
as the households and firms do not face it directly.

The model consists of an IS curve that represents aggregate demand, a Phillips curve
that represents aggregate supply and some other equations that explain the dynamics of
the real exchange rate. The remaining equations represent the determinants of the NIR.
The openness of the economy is described by the real exchange rate gap and the terms
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of trade in the IS curve, the price of imports in the Phillips curve and by considering
the uncovered interest rate parity as a determinant of the NIR. The system of equations
can be represented in a state space form (see Appendix D), the unobserved variables are
obtained by means of the Kalman filter and the hyperparameters calibrated or estimated
by bayesian techniques.

The system equations are given by

IS curve

ỹt = α1ỹt−1 + α2r̃t−1 + α3q̃t−1 + α4T̃t + ηỹt

where ỹt is the output gap, r̃t is the real interest rate gap, q̃t is the real exchange rate gap
and T̃t is the gap of the terms of trade.

Phillips curve

πct = β1π
c
t−1 + β2π

imp
t + β3ỹt−1 + (1− β1 − β2)Etπt+1 + ηπt

where πct is a measure of the core inflation, πimpt is the inflation of imported goods and
services, ỹt is the output gap and Etπt+1 representes the inflation expectations for the
period t+ 1 using information up to t.

Inflation expectations

Etπt+1 = π̄t+1 + λζt−1 + ηEt

where π̄t is the inflation target and ζt = (πt − π̄t).

Real exchange rate gap

q̃t = ρq q̃t−1 + ηq̃t

Potential real exchange growth rate dynamics

∆q̄t = ϕ0 + ϕ1∆ȳt + ϕ2∆B̄t + ϕ3∆ḡt + ϕ4∆T̄t + ηq̄t

where q̄t is the potential real exchange rate, ȳt potential output, B̄t potential foreign net
assets, ḡt potential public expenditure and T̄t is the potential of terms of trade.

Ciclycal component of Foreign net assets

B̃t = ρbỹt + ρabB̃t−1 + ηb̃t
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Potential Foreign net assets dynamics

∆B̄t = (1− ρb̄)b0 + ρb̄∆B̄t−1 + ηb̄t

Real interest rate gap
r̃t = ρr̃r̃t−1 + ηr̃t

Uncovered Interest Parity

r̄t = γ1r̄
∗
t + ∆q̄t + τt

τt = γτ + ρττt−1 + ητt

where r̄t is the NIR, r̄∗t is the foreign NIR and τt is an unobserved risk premium which is
assumed to follow an AR(1) model.

Potencial GDP
∆ȳt = φ∆ȳt−1 + (1− φ)∆y + η∆y

t

where ∆y is the long run productivity growth.

Finally, the observed variables are decomposed as follows

(1) GDP percentage change (∆yt)

∆yt = ỹt − ỹt−1 + ∆ȳt

(2) Total inflation (πt)
πt = πct + εt

(3) Percentage change of real exchange rate (∆qt)

∆qt = q̃t − q̃t−1 + ∆q̄t

(4) Percentage change in foreign net assets (4Bt)

∆Bt = B̃t − B̃t−1 + ∆B̄t

(5) Nominal interest rate (it)

it = r̃t + r̄t + Etπt+1

The model consists of 34 parameters, including the variances of the shocks, 17 of which
were estimated by bayesian techniques using the multiple-try MCMC described in Liu
et al. [2000] with the FORTRAN95 procedures developed by Bonaldi et al. [2010]. The
parameters estimated are those included in the equations of the real exchange rate gap,
the potential real exchange rate dynamics and the variances of the model. The others
parameters were calibrated from the parameters values of the internal semi-structural
model used in the central bank of Colombia (named MMT), see Gómez et al. [2002] for
details of the model. They also had to match the long run equilibrium of ∆B which is
calibrated at 10%, its historical average. The priors for the estimation of the variances
were obtained by the calibration of the relative variability between the trend and cycle
component of the variables considered in the model.
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3. DATA

This section describes the data used to estimate the NIR for the methodologies presented
in section 2. In all the exercises the 90-day deposit real interest rate is used to estimate the
NIR. The sample period employed for the estimations is different for each methodology
and depends on the availability of the required variables.

3.1. Unobserved components models. Two exercises are considered for the UCM. In
both exercises the natural rate is defined as the trend component of the real interest rate.
The first exercise is a univariate model. The second exercise is a multivariate model for
the real interest rate, the logarithm of GDP and the CPI. The latter model simultane-
ously estimates the trend component of each variable assuming that the three series have
a common level component. The series are seasonally adjusted using TRAMO-SEATS
procedure (Gómez and Maravall [1996]).

The models are estimated for quarterly data using the sample period from 1982:1 to
2009:1. The inflation is measured as the annual variation of core CPI, which excludes
food and administrated goods. The real interest rate is measured as the 90-day deposit
nominal rate deflated by inflation expectations.

For the univariate model two measures of real interest rates are considered, RIR1 and
RIR2. The first one uses caused inflation, πt+s, as deflator of the nominal rate. The sec-
ond one uses imperfectly rational inflation expectations (forward and backward looking),
defined as Etπt+s = λπt+s + (1 − λ)πt−1, with λ = 0.56. The value of λ was selected ac-
cording to an updated version of Gómez et al. [2002]. The measure of the real interest
rate for the multivariate model is RIR1.

3.2. Hodrick - Presscott Multivariate filter. Two filtering exercises are performed to es-
timate the NIR using monthly data. Both filters are augmented by the economic rela-
tionships described in section 2.2, an IS curve and a policy rule. The IS curve exercise
includes the GDP gap3, the RIR2 real interest rate, the Real exchange rate gap defined as
the deviation of the Real exchange rate index from the trend component estimated with
a Hodrick-Prescott filter. The sample period is from 1980:05 to 2009:06.

On the other hand, for the policy rule, the following variables are used, 90-day deposit
and the overnight nominal interest rates, total CPI inflation, GDP gap and the inflation
target. Given that the inflation target is set on an annual basis, a monthly target series
was estimated, assuming that the inflation target follows the same dynamic as the total
CPI inflation monthly series 4. The sample period considered for the policy rule exercise
is from 1995:04 to 2009:06.

3The monthly GDP series is estimated applying the time series disaggregation algorithm suggested by
Santos Silva and Cardoso [2001], using the quarterly GDP series and the monthly Industrial Production
Index.

4An ARIMA model for total CPI inflation is estimated with information up to the end of each year (from
1994 to 2008) and forecasts for the following twelve months are restricted such that the target at the end of
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3.3. Semi-structural model. For this exercise, quarterly data from 2000:01 to 2009:04 is
used. The data includes the observed domestic GDP growth, total CPI inflation, real ex-
change rate growth, percentage change in foreign net assets and nominal 90-day deposit
interest rate.

The following exogenous variables are also included in the model: percentage change of
terms of trade, the terms of trade gap measured as the cyclical component obtained with
the Hodrick-Prescott filter, the growth of public expenditure, inflation target, inflation
of imports, the USA NIR as a proxy of foreign NIR. The latter is measured as the trend
component of the 3-month certificate of deposit rate deflated by non-seasonally adjusted
core inflation, where the trend component is estimated with the Hodrick-Prescott filter.

4. RESULTS

4.1. Univariate UCM. The results of NIR estimation based on a univariate unobserved
components model are presented in this section. This model is estimated using two defi-
nitions of the real interest rate, RIR1 and RIR2, as defined in 3.1.

The specification of the UCM for both definitions of the real interest rate is the local level
plus cycle model:

yt = µt + ϕt + εt (4.1)
µt+1 = µt + ηt+1 (4.2)(

ϕt+1

ϕ∗t+1

)
= ρ

(
cosλ sinλ
− sinλ cosλ

)(
ϕt
ϕ∗t

)
+
(
κt+1

κ∗t+1

)
(4.3)

where εt ∼ NID(0, σ2
ε ), ηt ∼ NID(0, σ2

η), 0 < ρ < 1 and t = 1, . . . , N .This model also
includes some dummy variables for interventions in the level and the irregular compo-
nents.

The estimation results and diagnostics are presented in Tables A.1, A.2, A.3 and A.4 in
Appendix A. These estimations consider a high persistence of the cyclical component
(ρ = 0.9) and a cycle period of five years, which correspond to a plausible business cycle
for the Colombian economy. For both exercises, the residuals show no misspecification
problems.

Figures 4.1 and 4.2 show the estimated natural interest rate using RIR1 and RIR2, respec-
tively. Both NIR estimates reflect the trend of actual real rate; however, there are periods
when they closely follow the observed series, such as the peak observed in 1998-1999,
and sharp decline at the end of 1991.

each year is achieved. Then, those restricted forecasts correspond to the estimated monthly inflation target
series.
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FIGURE 4.1. NIR estimation by UCM using RIR1. The real interest rate is
the wide line, the NIR estimation corresponds to the thin line.

In the first half of the eighties the NIR was 13% on average, then is reduced to an average
rate of 9% between 1985 and 2000 and after 2001 the NIR has been 3% in average. At the
end of the sample a small increase in the NIR is observed which is reverted in the last
observed quarters.
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FIGURE 4.2. NIR estimation by UCM using RIR2. The real interest rate is
the wide line, the NIR estimation corresponds to the thin line.
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4.2. Multivariate UCM. The specification of multivariate UCM model that best fit the
three-variable vector is the local trend plus cycle model, which is given in equations
(2.23), (2.24), (2.25) and (2.16). The estimation results and diagnostics are presented in
Tables A.5 and A.6 in Appendix A.

The estimated NIR and real interest rate, RIR1, are presented in Figure 4.3. The NIR
dynamics is almost identical to the NIR estimation obtained in the univariate case except
for the behavior around 1985, which is smoother for the univariate model. 5

1980 1985 1990 1995 2000 2005 2010
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5

FIGURE 4.3. NIR estimation by multivariate UCM using GDP, CPI and
RIR1. The real interest rate is the wide line, the NIR estimation

corresponds to the thin line.

4.3. HPMV Filter. This section shows the estimation results based on the methodology
described in section 2.2. Those estimations include two economic relationships, an IS
curve and a policy rule, presented in equations (2.27) and (2.28).

4.3.1. HPMV filter augmented by an IS curve. For this exercise the estimated parameters
obtained from the two estimation methods, optimization and Kalman filter, are very sim-
ilar (Tables B.1, B.2 in Appendix B). However, the estimated NIR generated by the op-
timization methodology is smoother (Figure 4.4). That might be due to the difference in
weight assigned to the economic relationship (parameter λ2 in (2.26)).

With respect to the estimation of the IS curve, both the optimization and Kalman filter
results show high persistence in the output gap and the exchange rate gap is not signifi-
cant.

5An alternative exercise using RIR2 is not presented in the document since there was no specification that
satisfies the residuals assumptions.
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FIGURE 4.4. NIR estimation by HPMV-NLS (left panel) and HPMV-Kalman Filter
(right panel) using a IS curve. The real interest rate (RIR2) is the wide line, the NIR
estimation and its 90% confidence intervals correspond to the thin and dotted lines,

respectively.

4.3.2. HPMV filter augmented by a policy rule. The estimation results for the policy rule
exercise are shown in Tables B.3, B.4 in Appendix B and Figure 4.5. Although most pa-
rameter estimates are similar for both methods, optimization and Kalman Filter, there
are important differences in some parameters. In the Kalman estimation the interest rate
gap, the inflation gap and the overnight rate persistence are significant meanwhile in the
NLS estimation (optimization method) only the overnight rate persistence is significant.
As in the IS exercise, the NIR estimation by NLS is smoother than the one obtained by
Kalman filter.
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FIGURE 4.5. NIR estimation by HPMV-NLS (left panel) and HPMV-Kalman Filter
(right panel) using a policy rule. The real interest rate (RIR2) is the wide line, the NIR
estimation and its 90% confidence intervals correspond to the thin and dotted lines,

respectively.

The dynamic of the NIR estimations with both economic relationships is similar. How-
ever, there are different trends at the end of sample, three of the four estimations show a
decreasing trend, starting at different periods.
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4.4. Semi-structural model. This section presents the results of the estimated model de-
scribed in section 2.3. Here we focus our attention in the NIR estimated with the model,
the details on parameters values and the estimation diagnostic is presented in Appendix
D. Figure 4.6 plots the path of the real interest rate (constructed as the nominal interest
rate minus the inflation expectations obtained within the model) and the natural interest
rate estimated with the Kalman smoother.
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FIGURE 4.6. NIR estimation by a semi-structural model. The 90-day real interest rate
is the wide line, the NIR smoothed estimation correspond to the thin line.

For the horizon considered the NIR fluctuates between 1 percent and 5 percent. It presents
a positive trend since 2003Q1 to the 2007Q2, a period of sustained growth of the Colom-
bian economy. The maximum reached is 4.4 percent in the middle of 2007. Then since
2008, as the world economy started to slowed its GDP growth, the NIR starts a decreasing
trend.

The difference between the real interest rate and the NIR (interest rate gap) is a measure
of the effect of the interest rate over the GDP, the IS curve of the model presents explicitly
this relationship. If the real interest rate is above the NIR the interest rate have a negative
effect over GDP or can be defined as a contractive interest rate. In the other case the
interest rate have a positive effect over GDP and is an expansionary interest rate. Our
estimation of the NIR implies that the interest rate had contractive effects on the economy
during the period 2000Q1-2005Q2, and between the second quarter of 2007 and the first
quarter of 2009. In the rest of the sample the interest rate had expansionary effects.

The magnitude of the contractionary or expansionary effects of the interest rate depends
proportionally of the magnitude of the interest rate gap. The parameter which measures
this relationship is α2, and implies that an increase of one percentage point in the interest
rate gap induces a reduction of 0.14 percentage points in the output gap. Since the inter-
est rate gap can change due to movements in the NIR, the effect of a given level of the
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interest rate may change over time depending on the determinants of the NIR. Consider
for example the year 2008, Figure 4.6 shows that the real interest rate stayed almost con-
stant during that year, nevertheless as the NIR decrease the interest rate gap increase and
the interest rate become more contractive at the end of the year.

Our results suggest there is significant variability of the NIR in Colombia, this is specially
relevant for monetary policy because as the NIR is not observable this variability implies
a large degree of uncertainty about the stance of monetary policy.

4.5. Comparisons of NIR estimations. Annual averages of the real interest rate and the
NIR obtained by the different methodologies are presented in Table 4.1 for the period
2002Q2-2009Q2. As described in previous sections, all the real interest rate definitions
use the nominal 90-day deposit rate deflated by different measures of inflation expecta-
tions. RIR1 uses observed inflation, RIR2 imperfectly rational inflation expectations and
RIR.SEM inflation expectations estimated by a semi-structural model.

On the other hand, UCM1 and UCM2 denote the univariate unobserved component
model estimations using RIR1 and RIR2, respectively. UCM.mv refers to NIR estimated
by a multivariate UCM. The estimations obtained by the multivariate Hodrick-Prescott
filter ares denoted by HPMV.a.b where a = IS, PR indicates the economic relationship
(IS stands for the IS curve and PR for the policy rule), b = NLS,KF refers to the estima-
tion methodology (NLS for the non-linear optimization and KF for the Kalman Filter).
Finally, SEM is related to NIR estimated by the semi-structural model.

The NIR differences are due not only to the estimation methodology but also to the Real
interest rate definition.6 Both UCM and HPMV methods estimate the long-run trend
component of the real interest rate. However, the latter includes an economic relation-
ship. On the other hand the NIR estimated by the SEM methodology is based on eco-
nomic theory. This explain the smooth behavior of the NIR estimated by UCM (Fig-
ure 4.7).

The dynamics of the NIR estimations share a common pattern that can be characterized in
three periods. The first part of the sample (2000-2003) shows a downward trend, followed
by a period of stabilization and upward trend (2004-2008) and at the end of the sample
the NIR start decreasing again. It is important to note that the SEM and the HPMV.IS.NLS
estimates anticipate the fall in the last part of the sample. The NIR in the last quarter of
the sample is around 3.1 in average.

6The real interest rates are plotted in Figure E.1 in Appendix E.
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Variable 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Real RIR1 5.6 7.0 1.6 2.0 3.3 3.0 1.9 3.3 5.6 3.3
Interest RIR2 4.1 5.6 2.6 1.3 2.5 2.5 2.2 3.7 5.2 2.5
Rates RIR.SEM 5.1 5.7 3.5 2.7 3.2 2.8 2.6 4.6 6.0 2.6

UCM1 (RIR1) 5.9 5.4 3.4 2.8 2.9 2.8 2.8 3.4 4.1 3.8
UCM2 (RIR2) 4.6 4.4 3.1 2.4 2.4 2.6 2.8 3.5 4.2 4.1

Natural UCM.mv (RIR1) 6.2 5.1 3.3 2.4 2.4 2.6 3.0 3.6 3.8 3.3
Interest HPMV.IS.NLS (RIR2) 5.6 4.7 3.5 2.6 2.5 2.9 3.5 3.9 3.4 2.4
Rates HPMV.IS.KF (RIR2) 3.4 4.6 4.2 1.9 1.7 2.7 2.7 4.2 4.9 2.9

HPMV.PR.NLS (RIR2) 6.1 4.7 3.4 2.5 2.2 2.3 2.7 3.3 3.6 3.6
HPMV.PR.KF (RIR2) 4.0 3.7 3.0 1.1 1.3 2.4 2.3 2.9 4.8 4.9
SEM (RIR.SEM) 1.8 1.8 1.2 1.1 1.9 3.0 3.7 4.3 3.5 2.7

TABLE 4.1. Annual Averages of Real and Natural Interest Rates. The
name in parenthesis indicates the real interest rate used in the model.
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FIGURE 4.7. NIR estimations
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5. CONCLUDING REMARKS

This paper estimates the natural interest rate for the Colombian economy using three
methodologies; unobserved component models (UCM), Hodrick-Prescott multivariate
filter augmented by an economic relationship (HPMV) and a semi-structural model for a
small open economy (SEM). Different definitions of inflation expectations were used in
order to measure the real interest rate.

The UCM and HPMV are statistical filters and in both cases the NIR is defined as the
trend component of the market real interest rate, what suggests that the NIR may be
considered as a long-run real interest rate anchor for monetary policy. On the other hand,
the NIR estimated by the SEM methodology is based on economic theory which considers
the NIR as a medium term anchor for monetary policy.

For the common estimation sample, 2000-2009, three features are observed in the dynam-
ics of the NIR estimates. The first part of the sample (2000-2003) shows a downward
trend, followed by a period of stabilization and upward trend (2004-2008) and at the end
of the sample the NIR start decreasing again. The NIR in the last quarter of the sample is
around 3.1 in average.
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APPENDIX A. ESTIMATION RESULTS OF UNOBSERVED COMPONENTS MODELS

Estimated coefficients of final state vector

Variable Coefficient R.M.S.E. t-value P-value
Level 3.6632 1.3805 2.6536 0.0091
Cycle1 0.10049 1.0682
Cycle2 -0.59771 1.1487
Lvl 1986. 1 -8.7539 1.9842 -4.4117 0.0000
Lvl 1992. 1 -8.3930 1.9850 -4.2281 0.0000
Irr 1994. 4 8.2582 2.3452 3.5213 0.0006
Lvl 1998. 2 13.342 2.0960 6.3652 0.0000
Lvl 1999. 1 -14.474 2.0955 -6.9073 0.0000

Estimated parameters of the Cycle

The cycle variance is 1.52261
The rho coefficient is 0.9
The cycle period is 20 ( 5 years)
The frequency is 0.314159
The amplitude of the cycle is 0.606094

TABLE A.1. Univariate UCM Estimation Results for RIR1

Statistic P-value

Skewness [χ2(1)] 0.12115 0.7278
Kurtosis [χ2(1)] 0.010216 0.9195
Normal-BS [χ2(1)] 0.13136 0.9364
Normal-DH [χ2(1)] 0.25975 0.8782
Std.Error 2.5370
Normality 0.25975
H(38) 0.37189
r(1) 0.46513
r(10) 0.11387
DW 1.0220
Q(10,6) 36.094
R2
d 0.81247

Information criterion of Akaike 2.032894
Information criterion of Schwartz 2.268977

TABLE A.2. Diagnostic Report for the Univariate UCM using RIR1
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Estimated coefficients of final state vector

Variable Coefficient R.M.S.E. t-value P-value
Level 0.041445 0.011046 3.7521 0.0003
Cycle1 0.0028286 0.0085470
Cycle2 -0.0034745 0.0091907
Irr 1986. 1 -0.038727 0.018750 -2.0654 0.0412
Irr 1992. 1 -0.045769 0.019196 -2.3843 0.0188
Irr 1992. 2 -0.082524 0.019194 -4.2995 0.0000
Lvl 1994. 3 0.070250 0.015905 4.417 0.0000
Lvl 1998. 1 0.043588 0.020771 2.0985 0.0381
Lvl 1998. 2 0.086819 0.021153 4.1043 0.0001
Lvl 1999. 1 -0.13229 0.016821 -7.8646 0.0000

Estimated parameters of the Cycle

The cycle variance is 9.74781e-005
The rho coefficient is 0.9
The cycle period is 20 ( 5 years)
The frequency is 0.314159
The amplitude of the cycle is 0.00448031

TABLE A.3. Univariate UCM Estimation Results for RIR2

Statistic P-value

Skewness [χ2(1)] 0.40872 0.5226
Kurtosis [χ2(1)] 3.5748 0.0587
Normal-BS [χ2(1)] 3.9835 0.1365
Normal-DH [χ2(1)] 5.6721 0.0587
Std.Error 0.020103
Normality 5.6721
H(38) 0.34702
r(1) 0.42188
r(10) 0.062146
DW 1.0997
Q(10,6) 34.762
R2
d 0.85560

Information criterion of Akaike -7.605117
Information criterion of Schwartz -7.318690

TABLE A.4. Diagnostic Report for the Univariate UCM using RIR2
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Parameters?

Variable GDP CPI RIR1
Level 18.080 102.19 3.0890

(0.000) (0.000) (0.1732)
Slope 0.0060225 1.2795 -0.34281

(0.1008) (0.000) (0.6403)
Cycle1 -0.011542 0.35084 0.0093325
Cycle2 -0.0073581 -0.29772 -1.2810

Estimated parameters of the Cycle

The amplitude of the cycle is 0.0136876 0.460139 1.28098
The rho coefficient is 0.9.
The cycle period is 20 ( 5 years).
The frequency is 0.314159
? P-Values in parenthesis

TABLE A.5. Multivariate UCM Estimation Results using GDP, total CPI
and RIR1

GDP CPI RIR1

Skewness [χ2(1)] 0.85808 2.5006 5.2361
(0.3543) (0.1138) (0.0221)

Kurtosis [χ2(1)] 2.5413 1.0137 8.8576
(0.1109) (0.3140) (0.0029)

Normal-BS [χ2(2)] 3.3994 3.5143 14.094
(0.1827) (0.1725) (0.0009)

Normal-DH [χ2(2)] 4.4787 3.3169 8.9075
(0.1065) (0.1904) (0.0116)

Std.Error 0.012647 0.66210 2.5472
Normality 4.4787 3.3169 8.9075
H( 38) 1.4065 37.487 0.26608
r( 1) 0.057129 0.086898 0.23237
r(11) -0.040052 -0.0023817 0.20108
DW 1.8819 1.7852 1.5078
Q(11, 6) 10.428 210.64 30.203
R2
d 0.021200 0.35273 0.18757

Multivariate Normal DH test 15.99271 (0.0137931)
? P-Values in parenthesis

TABLE A.6. Diagnostic report for the multivariate UCM using GDP, total
CPI and RIR1
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APPENDIX B. ESTIMATION RESULTS OF HPMV FILTERS

Parameter Estimate Std. Error? z-value Pr(> |z|)
α0 -0.000 0.000 -0.277 0.782
α1 0.999 0.016 61.881 < 0.001
α2 -0.026 0.010 -2.542 0.011
α3 -0.000 0.006 -0.031 0.976

σ0 0.028
λ1 14400
λ2 322.591

?VAR-COV correction matrix using Newey West - Quadratic Spectral Kernel

TABLE B.1. Optimization of the HPMV filter - IS curve

Parameter Estimate Std. Error z-value Pr(> |z|)
α0 0.000 0.000 -0.884 0.094
α1 0.999 0.005 207.980 0.000
α2 -0.025 0.004 -6.799 0.000
α3 0.000 0.002 -0.125 0.225

σ0 0.030 0.001 25.607 0.000
λ1 14399.993 3240.313 4.444 0.000
λ2 346.408 42.459 8.159 0.000

TABLE B.2. Kalman Estimation of the HPMV filter - IS curve

Parameter Estimate Std. Error? z-value Pr(> |z|)
α0 -0.017 0.032 -0.528 0.597
α1 2.010 5.002 0.402 0.688
α2 0.224 1.573 0.142 0.887
ρ 0.869 0.166 5.240 <0.001

σ0 0.03
λ1 14400.0
λ2 1.2

?VAR-COV correction matrix using Newey West - Quadratic Spectral Kernel

TABLE B.3. Optimization of the HPMV filter - Policy rule
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Parameter Estimate Std. Error z-value Pr(> |z|)
α0 -0.013 0.028 -0.461 0.161
α1 2.479 1.925 1.287 0.049
α2 0.712 1.157 0.616 0.135
ρ 0.911 0.028 31.972 0.000

σ0 0.031 0.001 53.036 0.000
λ1 14399.8 5323.6 2.705 0.002
λ2 1.036 0.027 38.812 0.000

TABLE B.4. Kalman Estimation of the HPMV filter - Policy rule

APPENDIX C. STATE SPACE REPRESENTATION OF UNOBSERVED COMPONENTS MODELS

The state space (SS) form for an unobserved component model is given by the following
measurement and state equations

yt = Zαααt + εεεt, εεεt ∼ NID(000, G) (C.1)

αααt+1 = Tαααt + εεεt+1, εεεt ∼ NID(0, Q) (C.2)

where ααα1 is the initial state vector such that ααα1 ∼ N(aaa, P ).

The measurement equation in (C.1) describes a linear relationship between the observed
variables vector, yt, and the state vector, αααt. The state equation, (C.2), describes the un-
observed components dynamics.

For the UCM the state vector contains the trend, seasonal and other unobserved compo-
nents. The noise processes of (C.1) and (C.2), εεεt and εεεt, are assumed to be orthogonal to
each other and serially uncorrelated Gaussian errors. They also are independent from the
initial state vector ααα1.
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The SS form for the model that includes local linear trend and cycle is given by equations
(C.1) and (C.2) with the following vectors and matrices

αααt = (µt, βt, ϕt, ϕ∗t )
′, εεεt = (ηt, ζt, κt, κ∗t )

′

T =


[
1 1
0 1

]
O

O ρ

[
cosλ sinλ
− sinλ cosλ

]
 , Z =

[
1, 0, 1, 0

]
(C.3)

Q =


[
σ2
η 0

0 σ2
ζ

]
O

O
[
σ2
κ 0

0 σ2
κ∗

]
 , G = σ2

ε

where O represents a zero matrix of appropriate size.

The SS representation for the multivariate trend - cycle model written in SUTSE form is
given by

yt = Zαααt + εεεt, εεεt ∼ NID(000, G) (C.4)

αααt+1 = Tαααt + εεεt, εεεt ∼ NID(000, Q) (C.5)

where

yt = [y1t, y2t, . . . , ykt]
′

αααt+1 = [µµµt, βββt, ϕϕϕt, ϕϕϕ∗t ]
′ (C.6)

εεεt = [ηηηt, ζζζt, κκκt, κκκ∗t ]
′

T =


[
I I
0 I

]
O

O ρ

[
cosλI sinλI
− sinλI cosλI

]
 , Z =

[
I, 0, I, 0

]
(C.7)

Q =


[
Σ2
η 0

0 Σ2
ζ

]
O

O
[
Σ2
κ 0

0 Σ2
κ∗

]
 , G = Σ2

ε (C.8)
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APPENDIX D. SEMI STRUCTURAL MODEL

D.1. State - space representation.

Measurement equation.

yyyt = zAAAt + ηηηt

where

yyyt =


∆yt
πt

∆qt
∆Bt
it


and

z =


4 0 0 0 0 0 0 0 0 0 1 0 −4 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 1 0 0 −4 0 0 0 0
0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0



V(ηηηt) = GG′ =


0 0 0 0 0
0 σm 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Transition equation

wAAAt+1 = BtAAAt + cXXXt+1 +Hνννt+1

It can be rewritten as:

AAAt+1 = TtAAAt + CXXXt+1 +Rνννt+1

where Tt = w−1Bt, C = w−1c , R = w−1H and
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AAAt =



ỹt
r̃t
q̃t
πct

Et(πct+1)
λ

B̃t
r̄t

∆q̄t
τt

∆ȳt
∆B̄t
ỹt−1

q̃t−1

B̃t−1

∆B̄t−1

∆B̄t−2

B̃t−2

B̃t−3



, XXXt =



Tt
πimpt

π̄t+1

r̄∗t
1

∆ḡt
∆Y


, νννt =



ηỹt
ηπt
η
E(π)
t

ηq̃t
ηb̃t
ητt
ηq̄t
η∆ȳ
t

ηb̄t
ηr̃t


,

w =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −(1− β1 − β2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
−ρb 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 −ϕ1 −ϕ2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,
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Bt =



α1 α2 α3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ρr̃ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 ρq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
β3 0 0 β1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ζt−1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 ρab 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ρτ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 φ 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ρb̄ 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



,

c =



α4 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 β2 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 γ1 0 0 0
ϕ4 0 0 0 ϕ0 ϕ3 0
0 0 0 0 γτ 0 0
0 0 0 0 0 0 (1− φ)
0 0 0 0 b0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



,

and
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H =



σỹ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 σr̃

0 0 0 σq̃ 0 0 0 0 0 0
0 σπ 0 0 0 0 0 0 0 0
0 0 σE(π) 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 σb̃ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 σq̄ 0 0 0
0 0 0 0 0 στ 0 0 0 0
0 0 0 0 0 0 0 σ∆ȳ 0 0
0 0 0 0 0 0 0 0 σb̄ 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



The variance-covariance matrix of νννt is an identity matrix Q of size 10× 10.

D.2. Estimation results. Table D.1 presents a list of all the parameters and their values.
For those that were estimated, the reported value is the posterior mode. The estimation
were carried out using the multiple-try MCMC described in Liu et al. [2000] with the
FORTRAN95 procedures developed by Bonaldi et al. [2010].

The Posterior and priors distributions of those parameters for which the likelihood func-
tion of the model was informative are reported in Table D.1
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Item Parameter Feasible range Value in Castillo et. al.(Ref) Calibrated value/Posterior mode

1 β1 (0, 1) 0.7 0.77
2 β2 (0, 1− β1) 0.15 0.02
3 ρb (0, 1) 0.2 0.1

4a ϕ1 (−0.5, 0.5) 0 0.15
5a ϕ2 (0, 1) 0.62 0.21
6 α1 (0, 1) 0.65 0.91
7 α2 (−0.5, 0) −0.17 -0.14
8 α3 (0, 0.5) 0.04 0.012
9 ρr̃ (0, 1) n.a. 0.43

10a ρq (0, 1) 0.6 0.86
11 β3 (0, 0.5) 0.2 0.15
12 ρτ (0, 1) 0 0.1
13 φ (0, 1) 0.95 0.95
14 ρb̄ (0, 1) n.a. 0.94
15 α4 (0, 0.5) 0.2 0.003

16a γ1 (0.4, 1) 0.65 0.66
17a ϕ4 (−1, 0) −0.6 -0.039
18a ϕ0 (−5, 0) 0.45 -2.49
19a ϕ3 (−0.1, 0.1) 0 0.007
20 γτ (0, 3) 1.25 2.34
21 b0 (0.05, 15) n.a. 10.18

22a σỹ (0,∞) n.a. 1.88
23a σr̃ (0,∞) n.a. 6.69
24a σq̃ (0,∞) n.a. 26.8
25a σπ (0,∞) n.a. 2.66
26a σE(π) (0,∞)∗ n.a. 0.87
27a σb̃ (0,∞) n.a. 1.79
38a σq̄ (0,∞)∗ n.a. 0.019
29a στ (0,∞)∗ n.a. 2.69
30a σ∆ȳ (0,∞)∗ n.a. 0.05
31a σb̄ (0,∞)∗ n.a. 0.24
32 σm (0,∞) n.a. 0.001
33 λ (0, 1) n.a. 0.35
34 ρab (0, 1) n.a. 0.59

*: small variances (permanent shocks)
a: estimated parameters.

TABLE D.1. Parameter Estimations

D.2.1. MCMC diagnostic. Two statistics are presented in order to check convergence in the Markov
chains. Figure D.2 plots the within variance of the Markov chains and a variance estimator ob-
tained by a weighted average of the within and the between variance. They are expected to
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FIGURE D.1. Priors and Posterior distributions

converge both to the same level. Table D.2 presents the potential scale reductor described in Gel-
man and Shirley [2010] for each of the estimated parameters. Those authors argue that in practice
this statistic should be less than 1.1 for each parameter (perfect mixing of the chains implies that
the statistic converges to 1). Both statistics support the fact that the MCMC converged.
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FIGURE D.2. Multivariate MCMC diagnostic

Parameter Statistic
ϕ1 1.00118
ϕ2 1.00015
ρq 1.00036
γ1 1.00338
ϕ4 1.00097
ϕ0 1.00277
ϕ3 1.00169
σỹ 1.00211
σr̃ 1.00210
σq̃ 1.00099
σπ 1.00109
σE(π) 1.00465
σb̃ 1.00003
σq̄ 1.00160
σ∆ȳ 1.00422
σb̄ 1.00003

TABLE D.2. Potential scale reductor
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APPENDIX E. REAL INTEREST RATES
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FIGURE E.1. Real interest rates
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