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Abstract 
 
 
Operational Risk (OR) results from endogenous and exogenous risk factors, as diverse 
and complex to assess as human resources and technology, which may not be properly 
measured using traditional quantitative approaches.  
 
Engineering has faced the same challenges when designing practical solutions to 
complex multifactor and non-linear systems where human reasoning, expert knowledge 
or imprecise information are valuable inputs. One of the solutions provided by 
engineering is a Fuzzy Logic Inference System (FLIS).  
 
Despite the goal of the FLIS model for OR is its assessment, it is not an end in itself. 
The choice of a FLIS results in a convenient and sound use of qualitative and 
quantitative inputs, capable of effectively articulating risk management’s identification, 
assessment, monitoring and mitigation stages.  
 
Different from traditional approaches, the proposed model allows evaluating mitigation 
efforts ex-ante, thus avoiding concealed OR sources from system complexity build-up 
and optimizing risk management resources. Furthermore, because the model contrasts 
effective with expected OR data, it is able to constantly validate its outcome, recognize 
environment shifts and issue warning signals.   
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1. Introduction 

 
International risk management practice for financial institutions focus on three main risk 
categories: Market Risk (MR), Credit Risk (CR) and Operational Risk (OR). The first 
two categories have a broad literature and, despite the recent financial turmoil, there 
exists some degree of consensus about the main characteristics a management model 
should fulfill in order to be considered useful.  
 
Meanwhile, in spite of being present in all financial institution’s activities and 
notwithstanding the fact that it accounts for some of the biggest losses in history 
(Moosa, 2007; Gallati, 2003), there is less progress and consensus about what an OR 
management model should be.   
 
For example, Basel Committee on Banking Supervision (BCBS) has chosen not to 
employ a soundly based model for calculating capital requirements due to OR. BCBS 
proposal consists of an overall α% charge to the bank’s gross income as a proxy for OR 
exposure, or to apply a βi% charge to a standardized list of business units and business 
lines within the firm, where each unit or line (i) has its own gross income figure and is 
assigned a different charge1; not only both alternatives rely on the assumption of 
linearity of OR with the size of the banks or business activity (Pézier, 2003), but none 
of these alternatives alone creates an incentive for better OR management.   
 
The vast majority of models, including the aforesaid BCBS’ Basic and Standardized 
approaches, are designed for capital requirement calculations only. They are not 
intended for risk management, which should fully entail the identification, assessment, 
monitoring and mitigation of OR. Moreover, traditional models are incapable of 
capturing the effect of risk management decisions, making impossible to evaluate their 
expected outcomes.  
 
There are some reasons why OR management’s theoretical and practical development 
has been less dynamic when compared with MR and CR. Most of the reasons share a 
common ground: the unique characteristics of OR require models not only to deal with 
quantitative, but with qualitative information –a rather difficult task.    
 
Taking into account the unique characteristics of OR this document develops a model 
which allows using qualitative and quantitative inputs in order to attain an expected OR 
figure. The chosen model, a Fuzzy Logic Inference System (FLIS), takes advantage of 
years of successful engineering experience when solving non-linear systems, multifactor 
problems, and using expert knowledge or subjective information as inputs.  
 
The main advantage of the model is a sound and consistent treatment of qualitative and 
quantitative information, along with the ability to integrate the assessment process to the 
identification, monitoring and mitigation of OR, which allows the implementation of a 
rather complete OR management framework.  

                                                 
1 These two alternatives are named by the BCBS (2001) as the Basic Indicator Approach and 
Standardized Approach, respectively. Besides these two approaches, BCBS defines the possibility of 
developing and implementing internal models, also known as Advanced Measurement Approaches, which 
are based on loss experience according to BCBS definition. For a complete description and analysis of the 
three approaches please refer to Dowd (2003) and Pézier (2003).  
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Additionally, contrary to traditional approaches, the proposed estimation of the 
expected OR figure allows effectively measuring and evaluating the expected outcome 
of risk management decisions, preserving this way the true preventive nature of risk 
management. Finally, because the model contrasts effective with expected OR data, it is 
able to constantly validate its outcome, recognize environment shifts and issue warning 
signals. 
 
The document is structured as follows: next chapter briefly introduces OR, focusing on 
its unique characteristics and resulting challenges for risk management; the third chapter 
acquaints the reader with the basics of Fuzzy Logic (FL) and Fuzzy Logic Inference 
Systems (FLIS); the fourth chapter exhibits the general proposed FLIS for OR 
assessment; the fifth chapter presents the model’s results, and the last gives some final 
remarks about the model.  
 
 

2. Characteristics and challenges of Operational Risk (OR) 
 
OR is defined by the BCBS (2003) as the risk of loss resulting from inadequate or 
failed internal processes, people and systems or from external events, including legal 
risk, but excluding strategic and reputational risk.2 Despite BCBS’ effort to provide a 
standard definition for regulatory purposes, OR is still an unclear concept. According to 
Moosa (2007), Holmes (2003), Gallati (2003) and Medova and Kyriacou (2001), this 
has encouraged “residual” definitions which term OR as those types of risk that could 
not be classified as either CR or MR.  
 
Since a negative or residual definition of OR is difficult to work with (Moosa, 2007) 
and because it is expected that the BCBS -taking into account industry’s feedback- will 
include reputational risk (Gallati, 2003), this document embraces the following OR 
definition: failure to meet an operational target or objective with resulting losses being 
monetary or reputational, due to events such as inadequate or failed internal process, 
people and systems or from external events.3 This definition also tries to avoid focusing 
on the underlying known causes and the resulting known losses which results in the 
causes’ and losses’ universe restriction to past observations (Moosa, 2007; Gallati, 
2003), but to focus on the failure to comply with the firm’s operational objectives as the 
core issue, without unnecessarily restricting the causes or the results as is the case with 
most quantitative approaches to OR.     
 
It is clear that OR includes non-linear, multidimensional, heterogeneous and untypical 
factors -such as the human factor-, therefore is a broad, complex and unclear topic, 
more involved than CR or MR.  
 
Nevertheless, it is always tempting to use CR and MR quantitative approaches to assess 
OR; presumably, as asserted by Pézier (2003), this is an effort to facilitate the role of 

                                                 
2 Strategic risks are those resulting from fundamental shifts in the economy or political environment 
(Gallati, 2003). Reputational risks are those resulting from adverse public opinion (BCBS, 1998; BCBS, 
1997).   
3 This is similar to the European Commission (2006) definition because it doesn’t exclude reputational 
risk, but makes explicit that the losses may be monetary or reputational.  
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the supervisor. Unfortunately such temptation comes with severe limitations. Five main 
characteristics of OR may explain this fact4:  

 
Figure No.1 

Operational Risk’s Main Characteristics 
Characteristics Consequences 

OR combines exogenous (natural disasters, terrorism, 
etc.) and endogenous (technology, human resources, 
processes, etc.) factors.  

External information may not be relevant for assessing 
endogenous and some exogenous factors.  

OR is dynamic, changes with business strategy, 
technology, processes, human resources, competition, 
etc.  

OR information is highly context-dependent and comes 
from low-frequency events. The relevance of 
information, either internal or external, decays rapidly as 
time passes.  

OR control and mitigation involve changes in processes, 
technology, human resources, etc.  

OR models should be able to consider mitigation 
measures and their impact in the OR assessment.  

OR exposure is not explicit, does not result exclusively 
from transactions. OR is implicit at all levels of the 
firm’s operation.  

OR portfolio completeness is difficult to achieve. 

OR does not have clear exposure and sensitivity 
measures (such as mark-to-market and duration for MR, 
or loan portfolio for CR) 

OR exposure is implicit. There are no exposure 
measures for transactions and processes, and sensitivity 
measures tend to be highly non-linear if identifiable.  

Source: authors’ elaboration, based on Holmes (2003) and Shah (2002). 
 
Taking into account the characteristics and consequences above mentioned, five major 
OR management issues can be acknowledged: 
 

• Historical information is scarce: Unlike MR and CR, OR losses data is 
particularly scarce. This is due to the fact that the most relevant OR losses are of 
the low-frequency-high-impact type5, which makes traditional quantitative 
approaches based on loss experience difficult at best (Austrian Nationalbank,  
2006; Shah, 2004; Alexander, 2003; Gallati, 2003; Holmes, 2003; BCBS, 2001).  

 
A traditional decision to surmount this problem is using industry’s (external) 
information. This alternative is not trouble-free because it assumes the existence 
of a common loss distribution for the whole industry and because some 
qualitative and quantitative methods could be necessary in order to make this 
information meaningful (BCBS, 2004). 
 
Additionally, as asserted by Moosa (2007), industry’s information may be 
inaccurate just because it’s dubious that firms will make their entire operational 
loss data publicly available; they will be tempted to make public those loss 
events that make it to the media only. 
Holmes (2003) also highlights that data scarcity also results in serious 
difficulties for validating or backtesting OR models, thus reducing their 
reliability or usefulness in predicting future outcomes.  

 
                                                 
4 Literature mentions some other characteristics such as OR being one-sided (there is no reward from 
bearing OR), idiosyncratic (an operational event in one firm does not affect others) and indistinguishable 
from other kinds of risk. Moosa (2007) describes these characteristics and the reasons why they are not 
genuine.  
5 OR events can be divided in two groups: i) low-frequency-high-impact (such as rogue trading, major 
lawsuits, terrorism and natural disasters) and ii) high-frequency-low-impact events (such as settlement 
errors and credit card fraud). Occurrence of the latter results in efficiency losses, but low-frequency-high-
impact events can adversely affect the capital of the firm, severely harm its reputation or in extreme 
situations even threaten its existence. (Holmes, 2003) 
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Historical information is not relevant: Besides scarce, OR data is highly context- 
dependent. Context dependency determines how relevant past data is to the 
system under analysis: if a system changes rapidly, the predictive ability of a 
model based on past data is quite limited. OR context dependency is explained 
by the continual change of organizations, the evolution of the environment in 
which they operate and because of extremely changing factors such as human 
resources and technology.  
 
As Holmes (2003) states, CR and MR show a moderate level of context 
dependency, with statistical properties somewhat stable and reliable, whilst OR 
statistical properties are rather dynamic. Scandizzo (2000) highlights that the 
problem may not be the ability of a model to quantify a stable distribution of OR 
losses, but questions the mere existence of such a distribution.  

 
As Scandizzo (2005) asserts, high-severity-loss events are not very useful in 
modeling future exposure, as the risk and control environment, and hence the 
statistical distribution underlying such events, changes sharply immediately 
thereafter.   

 
Furthermore, because OR comprises factors such as training or professional 
experience, assessing OR involves a subjective and qualitative component not 
easily captured by traditional quantitative approaches (Scandizzo, 2000).   

 
• Uncertainty about OR exposure and portfolio completeness: Whilst MR and CR 

exposure stem from clear-cut transactions such as the mark-to-market of a 
currency position or the nominal value of a loan, OR exposure (or size) is not 
clear and is not explicit. OR arises from the mere existence of the firm and does 
not arise exclusively from a given transaction. As exemplified by Holmes 
(2003), two banks with identical asset and liabilities portfolios, with identical 
counterparties and instruments, will exhibit exactly the same MR and CR, but 
may differ significantly in their OR; this reinforces the previously mentioned 
non-relevance of external information.   
 
Consequently, it is difficult to be certain of the OR exposure and portfolio 
completeness, particularly when relying on loss experiences as means for 
inferring loss distributions and assessing OR. In this sense, using losses 
experience, either internal or external, assumes that the only OR causes and 
effects are those found in the data sample; all other sources and effects of OR are 
inconveniently discarded. 
 

• Unclear links between risk factors and OR losses: Unlike MR and CR, for OR 
there isn’t a direct and clear link between the exposure and the likelihood or size 
of losses (Gallati, 2003; Holmes, 2003; Shah, 2002; Scandizzo, 2000). For 
example, MR has linear and non-linear approximations to risk sensitivity, such 
as bond’s duration and convexity or option’s delta and gamma, which clearly 
link exposure to losses.  

 
As pointed by Scandizzo (2000), no mathematical models or pricing equations 
are available that rigorously link the occurrence of a particular OR factor to the 
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market value of a financial institution or with the amount of loss that can 
actually be incurred.  

 
• Difficulties when capturing the effect of risk management decisions: MR and 

CR management decisions (e.g. hedging or unwinding a position) directly and 
clearly affect the risk exposure of the firm. Due to OR complex and diverse risk 
factors and the inability of traditional quantitative approaches to evaluate the 
effect of changes in factors such as training, professional experience, processes, 
controls, or technology, it is difficult that mitigation decisions result in a truly 
updated OR figure.  
 
As Scandizzo (2005) argues, MR and CR managerial decisions affect the 
resulting risk profile directly and in a manner that measurement models have no 
problem capturing. Differently, OR measurement managerial decisions may 
affect the risk profile in a number of different ways, none of which any 
measurement model can capture in a simple and direct way; statistical 
approaches in particular will be unable to take into account such changes, as 
historical data will reflect a risk and control environment which no longer exists.  
 
Remarkably, because of the non-linear and unique nature of OR factors, genuine 
mitigation efforts may even yield undesired outcomes. A firm willing to reduce 
OR may be tempted to undertake as much mitigation efforts (e.g. 
implementation of additional controls, new software, etc.) as possible; 
nevertheless, due to the intricacy of ex-ante evaluation of OR management 
decisions, the firm may be creating a system complexity build-up6, thus fostering 
the rise of an unnoticed, yet potentially significant, source of OR.7  

 
It is also important to highlight that using past operational losses data and 
statistical methods may yield risk measures, such as an OR Value at Risk or  
capital charges, but will be useless when trying to manage OR (Pézier, 2003;  
Cruz, 2002). It is crucial that OR models capture the expected effect of risk 
management decisions.  
 

The mentioned characteristics validate the departure from MR and CR management 
techniques. Such quest for non purely-quantitative approaches has yielded diverse 
approaches, which can be classified according to their degree of reliance on data 
analysis and expert knowledge –the poles of the purely quantitative and purely 
qualitative models, respectively.  
 
 
 
 
                                                 
6 The system complexity build-up arises from the additional interactions created by the implementation of 
mitigation efforts. The implementation of a new control (e.g. a new software) to mitigate OR may create 
new sources of OR, which may arise from the new control itself or from its interaction with other controls 
or processes.         
7 This is akin to the decision of a firm to hedge via a complex derivative instrument. Despite its market 
risk exposure may be reduced, if the derivative’s expertise of the firm is not adequate, the complexity of 
the chosen instrument may result in an undesired or unplanned outcome. As presented by Dowd (2003), 
the use of sophisticated techniques for mitigating CR and MR (e.g. collateralization, netting, credit 
derivatives, asset securitization) transforms these risks into operational risks. 
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Figure No.2 
Risk Modeling Methods 

 
 
 
 
 
 
 
 
 
 
 
 

Source: Shah (2002) 
 
Shah (2003, 2002) identifies the dynamic and endogenous nature of OR as the main 
motivation for using expert knowledge in order to overcome purely quantitative 
approaches’ flaws. According to Shah, models capable of combining expert knowledge 
with data analysis are better suited for modeling OR.  
 
Applications based on expert knowledge are not new, and are typical of disciplines 
different from Finance or Economics, such as Engineering. When dealing with complex 
systems, where information is incomplete or imprecise, especially when humans are 
involved, control engineering has successfully relied on Fuzzy Logic (FL).8  
 
It is important to highlight that FL is by no means a replacement for quantitative 
approaches when assessing OR losses, but a complement which deals with the complex 
and non quantitative information content of OR factors. Hence, Cruz (2002) asserts that 
FL does not compete with mathematical probability theory as means of evaluating 
random events or estimating an OR VaR, but rather can be regarded as a complement 
for dealing with real-world problems in which available information is subjective, 
incomplete or unreliable, and when systems are non-linear, allowing this way to 
understand OR correlations and causalities.  
 
 

3. Fuzzy Logic (FL) and Fuzzy Logic Inference Systems (FLIS) 
 
The fundamental concept of ordinary sets is “membership”, which states that an 
element belongs or not to a set. This type of sets, described by unambiguous definition 
and boundaries, is known as ordinary or crisp sets; these sets are characterized by 
discrete–bivariate membership (yes or no, 1 or 0, true or false) and classic, Boolean or 
Aristotelic logic.  
                                                 
8 According to Cruz (2002), FL has been applied extensively in the real world, mostly in an engineering 
context, to control systems where the timing and level of inputs are at least to some extent uncertain […]. 
FL everyday applications include medicine, automotive industry (e.g. antilock breaking systems, speed 
limiters), water treatment, air and ground traffic control, military sonar, nuclear fusion and home 
appliances design. FL has been used in finance industry too, mainly in insurance and credit card fraud 
detection, credit risk analysis, money laundering and other types of financial crime. (Sivanandam et al., 
2007; Austrian Nationalbank, 2004; Hoffman, 2002; von Altrok, 2002; Bundesbank, 1999; Klir and 
Yuan, 1995) 
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In contrast to ordinary sets, Lofti A. Zadeh (1965) acknowledged the fact that in reality 
there are elements characterized by membership functions which are not discrete, but 
continuous, where different degrees of membership exist between yes or no, 1 or 0, true 
or false; this type of sets have unclear boundaries, therefore Zadeh named them as fuzzy 
sets. As stated by Sivanandam, et al. (2007), the main contribution of the fuzzy set 
concept is the ability to model uncertain and ambiguous information, the kind of 
information frequently found in real life.   
 
A plain example of an ordinary set is presented in the following graph. There are ten 
concepts, of which we try to define the “American cities” set; it is straightforward that 
only Bogotá, Brasilia, Buenos Aires and Washington can be regarded as members of 
such set. For ordinary sets there is no uncertainty about the applicable boundaries.      
 

Figure No.3 
An Ordinary Set 

 
 

 
 
 
 
 
 
 

Source: authors’ elaboration. 
 
The main difference between fuzzy set and ordinary set theories underlies on the fact 
that the former allows for a gradual or partial membership of the elements (Cox, 1994), 
being able to recognize that membership can’t always be regarded as bivalent, Boolean 
or binary, but as a matter of degree. A plain example of a fuzzy set is presented in the 
following figure, where we try to establish the membership of the days of the week to 
the “week-end” set. 
 

Figure No.4 
A Fuzzy Set 

 
 
 
 
 
 
 
 

Source: authors’ elaboration, based on Mathworks (2009). 
 

In this example it is impossible to unambiguously assign a discrete membership to the 
week-end set for each one of the days of the week. For example, many individuals will 
include Friday as the beginning of the week-end, some others will define it at the end of 
Friday’s working hours, and others when the clock’s minute and hour hands meet at 
Friday’s midnight. It can be seen that the membership of the elements (days of the 
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week) to the set (week-end) is not clearly bounded, is a matter of degree, therefore it is 
better described by a fuzzy set. The next figure shows how this example is represented 
through the membership concept. 

 
Figure No.5 

Days of the Week as Discrete and Continuous Membership  
 
 
 
 
 
 
 
 

Source: authors’ elaboration, based on Mathworks (2009). 
 

Another example is presented next. Regarding an individual’s height, according to 
ordinary sets theory there is a precise –discrete- level which defines if someone is “tall” 
or “short”; any person whose height falls below the threshold level is considered 
“short”, independent of the difference with such level, which can be ten inches or one 
millimeter. In the other hand, being “tall” or “short” is a matter of degree for fuzzy sets. 

 
Figure No.6 

Height as Discrete and Continuous Membership  
 
 
 
 
 
 
 
 
 
 
 
 

Source: authors’ elaboration, based on Mathworks (2009). 
 
In this example, according to ordinary sets theory the man in the middle would be 
regarded as “short”. For fuzzy sets theory the man in the middle belongs 80% to the 
“short” concept and 20% to the “tall” concept, therefore gaining precision from rather 
imprecise concepts. 
 
It is important to emphasize the fact that ordinary sets can be regarded as a particular 
case of fuzzy sets, in which degrees of membership are restricted to two extreme 
alternatives: 0 or 1. (Bojadziev and Bojadziev, 2007; Klir and Yuan, 1995) 
 
In both examples the transition from a bivariate to a multivariate membership allows to 
better define the characteristics of an element, with clear gains in terms of ability to 
describe real-life cases and imprecise concepts. The lines used in Figure No.5 and No.6 
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Triangular Trapezoidal Gaussian

Generalized Bell Sigmoidal (left) Polynomial (left)

to describe the membership –either discrete or continuous- of elements to a set are 
known as membership functions.          
 
A membership function is the line which defines the transition between sets, thus 
mapping the degree of membership of the elements of such sets. In the height example 
the ordinary membership function defines the transition as a discrete jump at a given 
height level. A continuous membership function, typical of fuzzy sets, recognizes that an 
individual belongs to the “tall” and “short” categories in some degree, with this degree 
varying in a smooth and continuous manner. Therefore, as pointed out by Sivanandam 
et al. (2007), fuzzy sets theory allows dealing with imprecise or vague information 
within a quantitative approach.    
 
There exists a wide variety of membership functions. The most used and practical is the 
triangular membership function, characterized by its simplicity and low information 
requirements (Bojadziev and Bojadziev, 2007; McNeill and Thro, 1994). Nevertheless, 
there exist other functions such as trapezoidal, Gaussian, sigmoidal and polynomial, 
where higher complexity comes with higher information content. Some typical 
membership functions are presented next. 

 
Figure No.7 

Typical Membership Functions 
 

 
 
 
 
 
 
 
 
 

Source: Mathworks (2009) 
 
Several membership functions can be used to better represent the sets, even using a 
mixture of different types of functions. The next figure represents temperature as an 
ordinary and as a fuzzy set; the latter uses five trapezoidal membership functions. 
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Figure No.8 
Temperature as an Ordinary and as a Fuzzy Set 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: authors’ elaboration, based on Klir and Yuan (1995). 
 
The previous graph evaluates the degree of membership for the 24C° temperature, 
where five categories exist: Very Low, Low, Mild, High and Very High. If the 
temperature is considered as an element of an ordinary set (upper section of Figure 
No.8) 24C° would be considered unambiguously (100%) as a Very High temperature, 
although being somewhat close to the level where it could be considered as High; a 
change of a couple of degrees would result in an abrupt change of category. If 
considered as an element of a fuzzy set (lower section of Figure No.8) 24C° would be 
regarded as 80% Very High and 20% High, and this membership would vary smoothly 
and continuously as temperature changes. 
 
The process just presented, converting a crisp quantity to the appropriate fuzzy sets 
through the use of membership functions, is known as fuzzification (Sivanandam, et al., 
2007; Klir and Yuan, 1995; McNeill and Thro, 1994). According to Klir and Yuan 
(1995) the gain of fuzzification is greater generality, higher expressive power, an 
enhanced ability to model real-world problems and, most importantly, a methodology 
for exploiting the tolerance for imprecision; besides, although the use of ordinary sets is 
mathematically correct, it is unrealistic and unpractical.  
 
The choice of the membership function is somewhat arbitrary but should be done with 
simplicity, convenience, speed and efficiency in view (Mathworks, 2009). Cox (1994) 
emphasize that special attention should be drawn to the overlapping between 
membership functions: the overlapping is a natural result of fuzziness and ambiguity 
associated with the segmentation and classification of a continuous space.    
 
Cox (1994) also highlights that FL models are rarely sensitive to the membership 
function choice, making them quite robust and resilient, which is an important property 
when models are initially prototyped.  
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Concerning the logic used to evaluate propositions, ordinary sets rely on ordinary logic; 
this type of logic, also known as classical, Aristotelic or Boolean logic, conceives the 
universe in terms of well-structured categories, where an item is either a member of a 
set or not, without the existence of middle grounds.9 Using the logical operators AND, 
OR and NOT, which correspond to conjunction, disjunction and complement, 
respectively10, propositions are evaluated as follows:  
 

Figure No.9 
Ordinary Logical Operators  

Conjunction Disjunction

A B A AND B A B A OR B A NOT A
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

Complement

 
Source: authors’ elaboration. 

 
As mentioned before, ordinary sets can be regarded as a particular case of fuzzy sets, in 
which degrees of membership are restricted to two extreme alternatives (0 or 1). Due to 
this fact the choice of the fuzzy logical operators should be able to preserve the ordinary 
logical operators for bivariate memberships –as in Figure No.9- and be capable of 
evaluating multivariate degrees of membership. The simplest fuzzy logical operators 
which comply with these requirements are the following:   
 

Figure No.10 
Fuzzy Logical Operators 

 
 Conjunction Disjunction

A B min(A,B) A B max(A,B) A 1-A
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

Complement

 
Source: authors’ elaboration. 

 
Using min(.) instead of AND for conjunction, max(.) instead of OR for disjunction and 
1-(.) instead of NOT for complement, allows the logic to be applied to any set, 
independent of it being discrete or continuous.11  
 
Fuzzy logic operators allow assessing propositions with respect to a fuzzy set. Based on 
the previously presented fuzzy representation of temperature (Figure No.8) some 
propositions are assessed next:   

                                                 
9 Classic, Aristotelic or Boolean logic deals with propositions that are necessarily either true or false. This 
type of logic relies on two inviolable laws: the Law of Non Contradiction and the Law of the Excluded 
Middle. The former says that the intersection of a set with its complement results in an empty or null set 
(A ∩ Ā = ∅); the latter says that the union of a set with its complement results in the universal set of the 
underlying domain (A ∪ Ā = X). (Cox, 1994; Klir and Yuan, 1995)  
10 Mathematically the logical operator AND can be expressed as “intersection” (∩), OR can be expressed 
as “union” (∪) and NOT as “complement” (XC).  
11 Some alternatives do exist for the min(.) and max(.) functions. In the case of disjunction min(.) may be 
replaced by product [prod(.)] and max(.) may be replaced by the algebraic sum [probor(.)], where 
probor(a,b)= a + b – ab. Nevertheless, the majority of FL applications use min(.) and max(.) as 
disjunction and conjunction operators. (Mathworks, 2002; Cox, 1994) 
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Figure No.11 
Assessing Propositions with Respect to a Fuzzy Set12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: authors’ elaboration. 
 
The existence of these fuzzy logical operators allows developing and evaluating fuzzy 
inference rules, which are rules for deriving truths from stated or proven truths 
(McNeill and Thro, 1994). The set of fuzzy inference rules or knowledge base which 
contain general knowledge pertaining to a problem domain, connect antecedents with 
consequences, premises with conclusions, or conditions with actions (Klir and Yuan, 
1995). If A and B are fuzzy sets, the simplest form of a fuzzy inference rule is the 
following: 
 

if A, then B 
 
Other more elaborate rules may look like the following:  
 

if A is […] AND B is […],then C is […] 
 

if A is […] AND B is […] OR C is […], then D is […] 
 

if A is not […] OR B is […] AND C is […], then D is not […], etc. 
 

 
Inference rules result from expert knowledge and try to imitate human’s reasoning 
capabilities. Cox (1994) claims that the process of building a knowledge base via the 

                                                 
12 The reader should be aware that this figure demonstrates that under FL the Law of Non Contradiction 
of ordinary logic (the intersection of a set with its complement results in an empty or null set) does not 
hold: for example, the intersection of the NOT Mild set and Mild set is not an empty set. According to 
Cox (1994) some of the strongest and deepest capabilities in fuzzy reasoning stem from its failure to obey 
this dictum of Boolean logic. 
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elaboration of fuzzy inference rules forces experts to deconstruct their expertise into 
fragments of knowledge, which results in a significant benefit of fuzzy system 
modeling: to gain the ability to encode knowledge directly in a form that is very close to 
the way experts them-selves think about the decision process.13   
 
As stressed by Sivanandam, et al. (2007), the Achilees’ heel of a fuzzy system is its 
rules; smart rules give smart systems and other rules give less smart or even dumb 
systems. Bojadziev and Bojadziev (2007) emphasize the important role played by the 
experience and knowledge of human experts when developing the knowledge base 
because they are appointed to state the objective of the system to be controlled.  
 
The evaluation of the inference rules is carried out by a fuzzy inference processing 
engine, which is based on the fuzzy logical operators previously introduced. The fuzzy 
inference processing engine is in charge of evaluating input’s degree of membership to 
the fuzzy output sets according to all the inference rules, where such evaluation is done 
simultaneously.14  
 
Each time the fuzzy inference processing engine evaluates an input’s degree of 
membership to the inference rules, it maps each solution variable into its corresponding  
output fuzzy set, where the resulting number of output fuzzy sets matches the number of 
inference rules used to evaluate the inputs. For example, after evaluating an input (or 
inputs) with three inference rules we could have the following three resulting output 
fuzzy sets:  

 
Figure No.12 

Output Fuzzy Sets 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Source: authors’ elaboration. 
 

                                                 
13 Cox (1994) emphasizes that conventional expert and decision systems fail because they force experts to 
crisply dichotomize rules, resulting in an unnecessary multiplication of rules and the inability to articulate 
solutions to complex problems. 
14 According to Cox (1994) the main difference between conventional expert systems and a fuzzy expert 
system is the latter’s simultaneous evaluation of inference rules, which compared to the serial evaluation 
of the former has the advantage of being able to examine all the rules and their impact in the output space. 
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The aggregation of these three fuzzy sets produces the final output fuzzy region, which 
contains the information of the degree of membership (or truth) of the inputs (or 
propositions) after evaluated by all the inference rules.  
 
Afterwards, because a single and crisp quantity is required, the best representative value 
of the output fuzzy region has to be calculated; because of consisting in the conversion 
of fuzzy into ordinary quantities, this process is known as defuzzification, and 
corresponds to the calculation of the expected value of the output (Cox, 1994).   
 

Figure No.13 
Aggregation and Defuzzification 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Source: authors’ elaboration. 

 
According to the literature (Sivanandam, et al., 2007; Klir and Yuan, 1995; Cox, 1994), 
there exist several defuzzification methodologies:  
 

• Centroid: this is the most widely used method, also known as the center of 
gravity method or center of area method. It’s calculated as the weighted average 
of the output fuzzy region and corresponds to the point in the x-axis which 
divides the output fuzzy region into two equal subareas.  

• Max-membership-principle: also known as height method or maximum height 
method, finds the domain point with the maximum truth, which corresponds to 
the x-axis point where the maximum height with respect to the origin is found. If 
the solution is not unique, the point is located in the center of the solution range; 
when this conflict resolution approach is used the method is regularly known as 
Mean-max-membership-principle. 

• Weighted average method: the maximum truth (height) of each output fuzzy set 
is used to calculate the weighted average of maximum truth.  

• Centre of sums: similar to the weighted average method, but the areas of each 
output fuzzy set are used as weights instead of using the truths (heights). 

• Center of largest area: the centroid of the largest output fuzzy set area is used as 
the expected value of the output.  
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According to Sivanandam, et al. (2007), Klir and Yuan (1995) and Cox (1994) the most 
used method is the centroid. Cox (1994) highlights centroid’s consistency and well-
balanced approach, its sensitiveness to the height and width of the total fuzzy region15 
and the smooth changes in the expected value of the output across observations; Cox 
also emphasizes that unless there are reasons to believe that the model requires a more 
advanced or specialized method of defuzzification, the model should be limited to either 
the centroid or the max-membership-principle method. 
 
Finally, according to McNeill and Thro (1994), the combination of fuzzy inference rules 
and the fuzzy inference processing engine –based on fuzzy logical operators- results in 
an expert fuzzy system. Jointly, as in Figure No.14, the use of an expert fuzzy system and 
fuzzy sets theory results in a Fuzzy Logic Inference System (FLIS).  
 

Figure No.14 
A Fuzzy Logic Inference System 

 
 
 
 
 
 
 
 
 
 
 
 

Source: authors’ elaboration. 
 

4. A Fuzzy Logic Inference System (FLIS) for Operational Risk (OR) 
 
OR is a good candidate for a FLIS-based solution. Inputs to be captured include 
qualitative and quantitative information, whereas the former comes mainly from expert 
knowledge and the latter is rather incomplete and scarce. Additionally, the solution 
space is highly multidimensional and non-linear, where expert-human knowledge has a 
lot to offer in terms of articulating solutions to complex problems, and where traditional 
quantitative approaches alone are fated to fail.    
 
Several authors (Austrian Nationalbank, 2006; Elkins, 2004; Shah, 2003; Causal 
Actuarial Society, 2003; Shah, 2003; Hoffman, 2002; Cruz, 2002; Scandizzo, 2000) 
have highlighted some of the aforesaid potential benefits of using FL based approaches 
to measure OR. Nevertheless, just a few (Elkins, 2004; Shah, 2003) have developed a 
formal, yet practical, OR model, which is the primary objective of this section.    
 
Furthermore, because a FLIS-based solution is capable of evaluating updated qualitative 
and quantitative OR factors, and their interactions through the imitation of human’s 
reasoning capabilities, it is possible to obtain an updated and comprehensive expected 
OR figure. Most notably, this possibility allows the risk management process to 
                                                 
15 Regarding centroid’s sensitiveness, Cox (1994) affirms that it behaves in a manner similar to Bayesian 
estimates, that is, it selects a value that is supported by the knowledge accumulated from each executed 
proposition. 
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evaluate mitigation efforts ex-ante, avoiding in some extent the aforementioned system 
complexity build-up and optimizing risk management resources. 
 
The herein proposed OR model can be described as a FLIS model based on the self-
assessment of Key Rate Indicators (KRIs) within a bottom-up approach. In the next 
sections this broad description will become clear as we address the two first stages of 
risk management: identification and assessment. Monitoring and mitigation stages are 
addressed in the fifth chapter after the model’s results are presented.  
 

a. Identification 
 
The identification process begins by defining the appropriate approach for managing 
OR. Two alternative approaches are commonly used: top-down and bottom-up.  
 
The first alternative, a top-down approach, focuses on OR’s identification through the 
combination of an external or internal database of loss events and traditional risk 
discovery techniques such as workshops, checklists or questionnaires, where identified 
risks are aggregated into risk categories consistent with the organization’s definition of 
risk. Top-down approaches do not focus on the identification of sources or causes of 
risk, but on the identification of direct or indirect losses that have affected or may affect 
the firm as a whole, where the identification process is usually centralized within the 
organization. (Gallati, 2003) 
 
Differently, a bottom-up approach, instead of relying on effective or potential losses 
(symptoms), focuses primarily on the identification of the potential sources or causes of 
OR within the organization (Gallati, 2003). Under this approach the identification 
process requires the organization’s breakdown into its core processes, which in turn 
may be broken down into subprocesses and tasks, followed by mapping risk exposures 
and the potential downside events that could result in the inability to meet the firm’s 
objectives; the risk exposure analysis includes understanding the risk factors that 
generate OR (human resources, technology, processes, external events, etc.) and 
recognizing their interrelations and their typically non-linear cause-and-effect 
relationship.  
 
Regarding OR quantitative assessment, a top-down approach consists of calculating a 
loss figure at the firm level and then attempting to allocate it down to the firm’s 
businesses, often using a proxy such as expenses or a scorecard approach. Under a 
bottom-up approach OR quantitative assessment consists of the analysis of loss events 
in individual business processes and the identification and quantification of each type of 
risk at that level (Haubenstock and Hardin, 2003).  
 
Despite both approaches may use qualitative information, the bottom-up approach will 
profit more from it. Under the bottom-up approach the expert knowledge is used to 
understand the linkages between OR factors and their effects, thus providing valuable 
information for monitoring and mitigation stages. The use of qualitative information 
under a top-down approach mainly consists of an overall impression of the OR at the 
firm level (Gallati, 2003).  
 
The choice between a bottom-up and a top-down approach within the proposed model 
mainly follows the dominance of the first in terms of its ability to map risks and make 
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use of and profit from qualitative inputs at a conveniently disaggregated level. This will 
allow a more comprehensive and constructive identification, assessment, monitoring 
and mitigation of OR. As Scandizzo (2005) argues, because OR is not product specific, 
risk mapping is the basis for OR management.  
 
Consequently, the identification stage will consist of the firm’s breakdown into its core 
processes, which in turn may be broken down into sub-processes and tasks. As 
Haubenstock (2003) asserts, the result of this stage is a risk map detailing which of 
these risks applies to any one business, process or organizational unit and to what 
degree, where degree is often defined as frequency and severity, rated either 
qualitatively (high, medium, low) or on a quantitative scale. 
 
The number of levels the firm is broken-down into will depend on firm’s characteristics 
such as size, complexity of its processes and the employee’s background. Authors’ 
experience in the implementation of the proposed model within the International and 
Monetary Affairs Division of Colombia’s Central Bank signals the benefits of a detailed 
breakdown. The possibility of reaching the expertise of the incumbent or “owner” of 
each one of the tasks which compose the processes and sub-processes results in an 
extraordinary practical view of the interaction and consequences of OR causes. In many 
occasions the incumbent of the task was able to identify, describe and analyze OR 
sources and linkages which were not apparent to the managerial staff.   
 
According to Blunden (2003) the identification of a risk’s incumbent or “owner” is to 
ensure that a specific person (or committee) takes responsibility for the risk and 
therefore for its management and mitigation, not to generate a blame culture. Without 
such responsibility approach for risk ownership there will be many fewer risks 
identified and much less enthusiasm on the part of management and supervisors to be 
conscious of the risks faced by an organization. 
 
Despite a high-detail decomposition of the firm’s processes may help identify and 
analyze a broader base of OR sources and their connections, two main issues have to be 
considered. First, if the firm is too large the implementation of a risk management 
program may become burdensome; however, even if the majority of the firm’s 
operational risk does not result from a few critical processes, this issue may be partially 
surmounted through a decentralized implementation of the model within the firm.  
 
Second, depending on the employee’s background, the qualitative inputs may become 
particularly biased; a careful design of the management process (e.g., a “no blame” 
culture) is necessary to avoid subjective bias (Alexander, 2003). Again, the risk 
manager should find an optimal level of detail for the firm’s sources of risk according to 
its inherent characteristics.  
 

b. Assessment 
 
Assessment provides the organization with an objective process by which to determine 
what the exposures are, how well the organization is controlling and monitoring them, 
what the potential weaknesses are, what the organization should be doing to improve, 
who is responsible for these actions, and how the organization plans to accomplish 
them. (Haubenstock, 2003)  
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OR assessment under this model relies on a Fuzzy Logic Inference System (FLIS). As 
presented before, the design of the FLIS consists of several elements, which will serve 
the purpose of capturing and interpreting quantitative and qualitative factors in order to 
ultimately deduce an expected OR figure. Hence, before applying the FLIS model, the 
elements of a FLIS should be properly defined. 
 

i. Inputs and fuzzification procedure 
 
Risk mapping may be described as a systematic way of extracting task-specific 
information on the various ways a process can fail (Scandizzo, 2005). The most simple 
and common risk mapping technique consists of constructing a probability/severity 
chart where risk management priorities may be easily identified, but where information 
for specific management actions is absent.  
 
A more complete way is to map the risks to the phases of a business activity and 
identify the task-specific key risk factors and drivers in the process; this leads to a more 
complex result, where priorities and information for management’s specific actions are 
provided, but where standardization across different firms, processes or even tasks is 
rather troublesome.   
 
The herein proposed mapping technique is an intermediate one, where the trade-off 
between standardization and comprehensiveness is most favorable and constructive for 
an effective risk management program. Instead of identifying heterogeneous task-
specific key risk factors or constructing a plain probability/severity chart, the model 
relies on task-generic key risk factors, capable of reasonably signaling priorities and 
strategies for risk management purposes.  
 
The aforementioned task-generic key risk factors will be those variables, either 
quantitative or qualitative, which together will serve the purpose of estimating the 
probability and severity of OR events at the task level. Those risk factors are commonly 
known as Key Risk Indicators (KRIs) and can be classified as descriptive, performance 
or control indicators.  

 
Figure No.15 

KRIs’ Classification 
Class Description 

Descriptive 
Variables related to the expected impact of an OR 
event; they exhibit a low ability to predict its 
occurrence.  

Performance 
Variables related to the probability of an OR event 
happening; they exhibit a low ability to address the 
impact of an OR event.  

Control 

Variables related to managerial actions or decisions. 
Management can predict their evolution and can use 
them as indicators of how the control environment 
will be in the immediate future. 

Source: authors’ elaboration, based on Scandizzo (2005) 
 
The definition of the KRIs should observe five convenient features:  
 

• Relevancy (variables should effectively capture a specific KRI class); 
• Generality (variables can be used across firms, processes or tasks); 
• Non-redundancy (avoid correlated KRIs); 
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• Measurability (variables should be quantifiable and verifiable); 
• Monitoring facility (cost and simplicity of monitoring).  

 
According to these features, the proposed KRIs are i) impact of task’s failure on the 
process; ii) impact of process’ failure on the firm’s objectives; iii) expertise; iv) 
probability, and v) feedback. The following figure describes and classifies the proposed 
KRIs.  
 

Figure No.16 
Selected KRIs 

KRI Class Description Source; Type 
Impact of task’s 
failure on the 
process (IoP) 

Expected impact at the process level of an OR 
event happening in a specific task.  

Expert knowledge from 
the task’s incumbent and 
backup; Qualitative input. 

Impact of process’ 
failure on the firm  

(IoF) 

Descriptive 
 Expected impact at the firm’s business level of an 

OR event happening in a specific process. 
Expert knowledge from 
the process’ manager; 
Qualitative input.  

Expertise 
(E) Control 

Perceived proficiency of the employee for 
developing a specific task. It comprises the 
human resources training and knowledge level.  

Expert knowledge from 
the task’s incumbent and 
backup; Qualitative input. 

Probability 
(P) 

Control / 
Performance 

Expected likelihood of an OR event happening in 
a specific task. It comprises the efficiency of 
controls in place.16 

Expert knowledge from 
the task’s incumbent and 
backup; Qualitative input. 

Feedback  
(F) Performance 

Effective OR data is contrasted against expected 
OR in order to constantly validate the model and 
recognize eventual environment shifts. It issues 
warning signals as reality overtakes expectations. 

OR event collection; 
Quantitative input. 

Source: authors’ elaboration. 
 
Some important remarks about the selected KRIs, their characteristics and the proposed 
capture method are now addressed:  

 
• Each task requires the evaluation of the mentioned KRIs, which means that 

each task has its own OR assessment. In order to obtain the sub-process, 
process or firm level OR figure, an aggregation method should be defined.  

 
Authors’ choice is to equally weight each task, sub-process or process within 
the firm. This choice recognizes that impact related KRIs already represent a 
weighting scheme.   
 
The aggregation of the OR allows achieving a firm level figure, which can be 
easily decomposed for OR prioritizing purposes, as will be described when the 
mitigation stage is addressed. 

 
• Besides capturing the qualitative information from the task’s incumbent, the 

appointed backup employee is also required to separately provide his 
qualitative information. Both employees’ qualifications are weighted by their 
expertise level to obtain the weighted expected OR Indicator.  

 

                                                 
16 The proposed model deals directly with the risk remaining after all -formal and informal- controls are 
considered (residual risk). The authors found that questioning employees or managers about the 
probability of an OR event happening without controls (inherent risk) resulted in awkward and ultimately 
unhelpful answers. 
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This is of key importance for the model since it is most probable that OR will 
increase as the backup is temporarily in charge of the incumbent’s duties. Thus, 
when the incumbent is absent from the office (e.g. on vacation, ill, etc.) the 
backup information is the sole source of KRIs.  
 

• Besides capturing the information for a normal state-of-the-nature scenario, the 
incumbent and the backup are required to gather and give their qualitative 
information about what a contingency state (earthquake, collapse of 
communications, etc.) would imply for the probability (P) KRI. This is of key 
importance for the model since it allows identifying tasks, sub-processes and 
processes which are more sensitive to extreme events happening.  

 
• The feedback (F) KRI is a particular input, which will result from the OR event 

collection. Depending on the task the feedback is captured manually (e.g. in a 
spreadsheet) or on real-time (e.g. an automatic electronic error report from a 
transactional platform).17   

 
Feedback is a quantitative input that serves the purpose of contrasting the 
expected OR events with effective OR events. If effective OR events surpass 
the expectancy, the model internally adjusts –increases- the expected OR in 
order to recognize an eventual environment shift or a injudicious KRI 
evaluation; at the same time a warning signal is issued to inform the risk 
manager of the incident.  
 

• To separately capture the impact of task’s failure on the process and the impact 
of process’ failure on the firm’s objectives allows discriminating between OR 
events that could seriously endanger firm’s business goals and those that may 
be important at the process level, but have moderate or negligible effects for 
the firm.  

 
To guarantee a sound judgment of the impact of a process’ failure on the firm’s 
business goals a strategic view of the firm is required. Therefore, the 
managerial level should be appointed to provide this KRI. 
 

• In order to capture the inputs, the incumbent and the backup use a Matlab® 
based GUI (Graphic User Interface) which requires a non-scaled qualitative 
assessment of the corresponding KRIs for each of his tasks (IoP, P, E). The 
manager of each process also uses a GUI for his qualitative assessment of IoF. 
This means that the model relies on self-assessment.  

 
Haubenstock (2003) asserts that self-assessment helps to unveil and discuss 
risk across the organization and discuss interdependencies, but highlights that 
independent involvement plays a key role in coordinating, reviewing, 
discussing and challenging the results in order to ensure that everyone is 
responding in a consistent fashion.  
 

                                                 
17 Feedback’s capture is a rather difficult chore. For automated tasks it may require some technological 
developments; for non-automated tasks, where an employee is in charge of event’s report and 
documentation, feedback’s capture may be troublesome. This is the KRIs which author’s are still working 
on to enhance its capture procedure. 
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Authors’ experience corroborates Haubenstock assertions. It is crucial to have a 
staff that ensures consistency in the assessment procedure, capable of fully 
understanding the FLIS and of analyzing the responses in order to keep the 
process and results objective. Additionally, authors found that training and 
accompanying incumbents, backups and managers is essential to facilitate and 
enhance the procedure.      

 
Afterwards, in order to capture KRIs and to be able to translate them into quantitative 
variables, the fuzzification procedure should be defined. The foundation of this 
procedure is the design of the fuzzy sets and the membership functions.  
 
The fuzzy sets theory will make possible to obtain the imprecise and vague, yet valuable 
and irreplaceable, judgment of the people associated with the tasks and processes to be 
evaluated. It would be clumsy and imprecise to ask for true or false, yes or no, 1 or 0 
answers when dealing with variables such as expertise, impact or probability.  
 
In order to translate the judgment of the people into a quantitative variable, the 
corresponding membership functions should be defined. Authors’ choice is to employ 
the most used and practical membership function: triangular (Bojadziev and Bojadziev, 
2007; McNeill and Thro, 1994). The next figure presents authors’ Probability (P) input 
as a mixture of triangular membership functions. 
 

Figure No.17 
Probability KRI as a Fuzzy Variable 

 
 
 
 
 
 
 
 
 
 
 
 

Source: authors’ elaboration. 
 

ii. Outputs 
 
The expected OR figure may be of two types: expected operational loss or expected 
operational indicator. The choice will depend on the objectives of the OR management 
model. If the model is intended to solely calculate capital requirements due to OR, then 
the expected OR figure should inevitably be a dollar-loss; if the model is intended to 
serve as a tool for OR management, it may yield a loss or an indicator.  
 
The choice of expected OR figure type will define the nature of the output fuzzy set. If 
the expected OR figure is in the form of an index OR Indicator, the risk manager should 
fit linguistic variables such as high, medium and low to a subjective output scale (e.g. 0 
to 10, 1 to 100, etc.) through the design of appropriate membership functions; in this 

Low Medium-low Medium Medium-high High

Probability
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way the risk manager will use the model’s output as a relative indicator of the expected 
OR.  
 
If the expected OR figure is monetary the risk manager will define a scale which reveals 
his expert judgment of how to qualify a monetary loss. According to Shah (2003), since 
inference rules cover all possible combinations of KRI levels, an estimated loss amount 
can be calculated for the current levels of each KRI, resulting in a expected OR dollar-
loss; in this case, instead of defining a subjective indicator scale, the risk manager 
should fit an OR dollar-loss scale, which may result from an empirical distribution 
based on –internal or external- historical losses or other quantitative methods such as 
Extreme Value Theory.   
 
As stated by Sevet (2008), because central banks’ OR relate to the potential failure to 
achieve predefined legal or statutory obligations, their approach to the OR management 
has to remain predominantly qualitative.18 Since the proposed model was built for the 
Foreign Reserves Department and the Operations and Market Development Department 
of Colombia’s Central Bank, an organization not obliged to calculate OR capital 
requirements, the choice is to employ an OR Indicator as output. 
 
Therefore, authors’ choice is to use a 0 to 10 OR Indicator which employs a mixture of 
the most used and practical membership function: triangular. The next figure presents 
authors’ output set.  

 
Figure No.18 

OR Indicator as a Fuzzy Variable 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: authors’ elaboration. 
 
As already mentioned, a risk manager interested in a monetary OR figure could fit an 
estimated loss amount instead of an OR indicator. In this case traditional quantitative 
approaches could help the risk manager to define the most appropriate dollar-loss scale. 
 
 

                                                 
18 On the other hand, because all private sector risk-generating events materialize in a financial “Value-at-
Risk”, their OR management can and indeed must be based on a quantitative approach and justify 
monetary incentives at company and individual levels. (Sevet, 2008) 
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iii. Knowledge base 
 
The set of inference rules or knowledge base have the objective of deconstructing 
expert’s knowledge and encoding it in a form that the FLIS is capable of mimicking 
human’s reasoning capabilities to solve complex systems.  
 
Therefore, an expert (or group of experts) analyzes the KRIs, their different linkages 
and their relation to the linguistic variables in the output space, resulting in a list or set 
of educated inference rules that will solve simultaneously any combination of inputs 
and calculate the expected OR Indicator.  
 
Authors’ knowledge base consists of approximately 180 inference rules. Literature 
doesn’t mention a method for establishing the optimal number of inference rules, but to 
achieve an intuitive, smooth and continuous solution space for every combination of 
KRIs is a fair rule of thumb adopted by the authors. 
 

iv. Defuzzification 
 
Having specified the input space, the output space, and the knowledge base, the method 
for estimating the expected OR Indicator is to be defined. Cox (1994) highlights 
centroid’s consistency and well-balanced approach, its sensitiveness to the height and 
width of the total fuzzy region and the smooth changes in the expected value of the 
output across observations. Additionally, Cox affirms that it behaves in a manner 
similar to Bayesian estimates, that is, it selects a value that is supported by the 
knowledge accumulated from each executed proposition.  
 
Taking into account these advantages and because it’s the most used method 
(Sivanandam, et al., 2007; Klir and Yuan, 1995; Cox, 1994), centroid or center of 
gravity method is the authors’ choice. 
 
 

5. Results 
 
Based on the set of inference rules the FLIS is capable of inferring all the attainable OR 
Indicator results for any KRIs combination. These results are best presented as a surface 
plot; the next figure exhibits the OR Indicator as a combination of Impact on the 
Process and Probability, where the remaining KRIs are held constant. 
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Figure No.19 
OR Indicator as a combination of Impact on the Process and Probability 

 
 
 
 
 
 
 
 
 
 

 
 
 

Source: authors’ elaboration. 
 
The previous figure, somewhat similar to a probability/severity chart, displays the non-
linear relation between Impact on the Process or Probability and the OR Indicator, 
where each combination of these KRIs results in a unique position on the surface. 
Intuitively, if an event happening within a task has a low (high) Impact on the Process 
and a low (high) Probability, the OR Indicator yields a low (high) outcome, where 
intermediate results are also considered according to the knowledge base.  
 
Figure No.20 exhibits the OR Indicator as a combination of Impact on the Process and 
Expertise. Once again, the non-linear relation between the selected KRIs is 
acknowledged.   

 
Figure No.20 

OR Indicator as a combination of Expertise and Probability 
 

 
 
 
 
 
 
 
 
 
 
 

Source: authors’ elaboration. 
 
Comparing Figure No.19 and Figure No.20 helps distinguishing the different effects of 
changes along Probability and Expertise on the OR Indicator according to the expert’s 
knowledge.  Because the slope of the OR Indicator with respect to Probability is greater 
that the slope with respect to Expertise –holding all other KRIs constant– it could be 
asserted that the experts that designed the knowledge base recognize that it is more 
efficient to focus on reducing the likelihood of an event happening (e.g. better controls) 
than increasing training. 
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Figure No.21 exhibits all the remaining combinations of KRIs and OR Indicator. They 
exhibit some degree of non-linearity and are rather intuitive.  

 
Figure No.21 

OR Indicator as combinations of selected KRIs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Source: authors’ elaboration. 
 
Ultimately the FLIS will take each KRI level and evaluate them simultaneously in order 
to infer their joint correspondence to the OR Indicator; this is akin to constructing a six-
dimensional space where the KRIs’ levels results in the OR Indicator, a rather complex 
procedure. This way the model is capable of modeling the non-linearity and complexity 
of OR assessment, while remaining intuitive and practical.  
 
Despite measuring OR is the goal of the FLIS model, it is not an end in itself. The OR 
Indicator’s importance comes from its monitoring and mitigation capabilities, which are 
related to its use as trend indicator and as tool for ex-ante evaluating the effects of risk 
management decisions, correspondingly.  
 
Monitoring is based on the evolution of the OR Indicator, which helps analyzing the 
dynamics of the OR over time. The OR Indicator’s evolution is due to changes in self-
assessed KRIs and the Feedback KRI. Concerning the first, OR Indicator evolves each 
time a related KRI is evaluated by the incumbent, backup or manager. About the latter, 
the Feedback is continuously updating the expected OR Indicator as new OR events 
arrive. Moreover, because the OR Indicator for each process, sub-process and task can 
be easily broken down to the underlying KRIs, this model allows monitoring not only at 
an aggregated level, but at KRI level. This fact provides the risk manager with the 
possibility of identifying the primary source of any aggregated OR Indicator change.  
 
This assures that the monitoring stage, which is devoted to understanding the current 
risk profile, its changes and its priorities (Haubenstock, 2003), is properly fulfilled.  
 
Mitigation refers to the actions the risk manager undertakes in order to reduce the 
expected OR. Those actions should effectively tackle the causes of OR (inadequate or 
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failed internal process, people and systems or from external events, among others), 
where the chosen KRIs have valuable information for the risk manager to prioritize the 
resources devoted to those actions.  
 
As before, because the OR Indicator for each process, sub-process and task can be 
easily broken down to the underlying KRIs, this model allows prioritizing risk 
management actions at KRI level. For example, if the OR Indicator is disaggregated to 
the KRI level, and the most adverse KRI is a low expertise level, the risk manager is 
able to focus his efforts and resources to instruct the corresponding incumbents and 
backups.   
 
Finally, because the model allows evaluating the expected change in the OR Indicator 
caused by the implementation of an eventual mitigation action, it is possible to estimate 
the resulting expected OR, which also helps optimizing risk management resources.   
 
 

6. Final Remarks 
 
OR sources and exposures are more diverse, complex (prone to positive feedbacks and 
dynamic coupling) and context-dependent than those typical of MR and CR. Therefore, 
as presented in the second part of this paper, OR assessment requires models which do 
not rely exclusively on traditional quantitative approaches. The use of a FLIS is an 
alternative worth implementing since it allows exploiting human (logic) reasoning and 
expert knowledge to articulate qualitative and quantitative inputs when solving the 
multifactor and highly non-linear system which underlies OR.  
 
Besides the ability of a FLIS to overcome some of the assessment difficulties faced by 
traditional quantitative approaches, it allows articulating OR measurement with the 
other stages of OR management. Whilst quantitative approaches rely on a broad 
approximation to OR assessment -where risk sources are not clearly identified and 
mitigation efforts cannot be evaluated-, the proposed model allows an institution to 
assess, identify and monitor OR’s sources, as well as evaluate risk management 
decisions ex-ante (procedures, controls, etc.). Two main advantages are (i) the proposed 
model preserves the true preventive nature of risk management, where measurement is 
not an end in itself, and (ii) the ability to evaluate mitigation efforts ex-ante, which 
minimizes the likelihood of OR sources’ build-up from the system’s complexity and 
optimizes risk management resources.  
 
A key design feature is the self-regulation mechanism embedded in the system, where 
expected OR indicators are dynamically adjusted with the occurrence of events or 
changes in perception from the staff involved in the operational process. Therefore, 
misjudgments of OR in the construction of the expectations are dynamically corrected 
against "reality" using a positive feedback mechanism in the implementation of the 
FLIS system.  
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Finally, some practical issues the authors confronted when implementing the system are 
worth mentioning. First, although these methods are widely used in engineering, 
managerial staff tends to underestimate an expert-based approach that converts 
symbolic knowledge into quantitative indicators. This results in some resistance in its 
implementation. Even if model risk and estimation error are very significant in OR, 
surprisingly, managers prefer statistics and regression based quantitative methods to 
methods based in experts’ views or knowledge. This issue may be surmounted with 
proper training about the model and other model’s which deal with experts’ views (e.g. 
Black-Litterman portfolio model). 
 
Second, since it relies on self-assessment, the model depends on the quality and 
frequency of the information provided by the incumbent, back-up and managerial staff. 
In order to ensure high-quality data the model’s implementation should be accompanied 
by training and support from the risk management officer, who should be able to 
analyze the results and identify problems related with criteria homogeneity and the 
eventual existence of a “blame culture”, among others.       
 
Third, as discussed in the literature, the quality of the knowledge base is the starting 
point for the model’s value. The process of decomposing experts’ knowledge into 
inference rules is time demanding and requires a throughout understanding of the 
sources of risks, tasks and processes, along with their non-linear and complex 
interrelation.  
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