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Abstract

General equilibrium theory was criticized for its apparent irrefutabil-

ity, as seemingly implied by the Sonnenschein-Mantel-Debreu theorem.

This view was challenged by Brown and Matzkin (1996), who showed the

existence of testable restrictions on the equilibrium manifold. Brown and

Matzkin, however, maintain the assumption that individual preferences

are invariant (against psychological evidence). I consider the Brown-

Matzkin problem under random preferences: for each profile of endow-

ments one observes a distribution of prices; does there exist a probabil-

ity distribution of preferences that explains the observed distributions of

prices via Walrasian equilibria? I argue that even under random utilities

general equilibrium theory is falsifiable.
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1 Introduction:

Does general equilibrium theory constitute scientific knowledge? According to

a prominent point of view in epistemology, commonly referred to as “falsifica-

tionism”, one can only answer this question by determining whether or not the

theory implies empirical regularities that can be —moreover, that are ex ante

considered likely to be— refuted by real data. The most important defender of

this theory, Karl Popper, argued that scientific discovery should be attempted

through the following process: (i) the internal consistency of a theory must

be formally checked, to verify that it contains no logical inconsistencies; (ii)

the logical principles of the theory must be distinguished from its empirical

implications; (iii) the theory must be compared with alternative existing theo-

retical knowledge that has not been refuted by empirical evidence, in order to

ascertain whether it can explain phenomena that cannot be explained by the

existing knowledge; (iv) finally, the theory must be submitted to tests of its

empirical implications, in order for it to be corroborated (but not verified) or

refuted. Interesting tests are those that are “harsh,” in the sense that, a priori,

the theory would appear likely to fail them. If a theory fails a test, and there

exists no reasonable excuse that can itself be tested, then the theory should be

abandoned.

For general equilibrium, the developments of Arrow, Debreu and McKenzie

during the Fifties took care of step (i): the principles of the theory were most

clearly presented and their logical consistency was highlighted by their existence

results. The work of Sonnenschein, Mantel and Debreu during the Seventies,

however, led many an economist to believe that the rest of the falsificationist

process could not be followed for general equilibrium theory, as it was generally

understood that it did not impose any (strong) empirical regularity that could

be refuted with data, unless one observed individual behavior, which is unlikely.
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This generalized understanding that general equilibrium theory was unfal-

sifiable was problematic from both a scientific point of view and an economic

policy perspective, as it implied that the foundations of most theoretical de-

velopments in economics and of many economic policy recommendations lacked

scientific character and could only be believed out of faith in the theory.

Such pessimistic view, however, was challenged in 1996 by Brown andMatzkin,

who exploited an existing tension between the two fundamental concepts of the

theory, namely individual rationality and market clearing, to show that when-

ever individual budgets are observed, the theory imposes nontrivial testable

restrictions on the prices that can arise as Walrasian equilibria, thus showing

that the theory is falsifiable even without the observation of individual choices.

The argument of Brown and Matzkin making the case for falsifiability of

the theory crucially assumes that individual preferences are invariant and uses

revealed-preference theory in order to argue the existence of data which is incon-

sistent with general equilibrium. This feature of the argument may seem natural

in economics, but opens the door to strong criticism from other disciplines.

From a philosophical standpoint, Krober-Riel (1971) has written that

“...revealed-preference theory tries to leave the problematic relations between

introspectively perceivable preferences and buyer behavior out of consideration:

revealed-preference interprets the observable purchasing acts as ‘revealed pref-

erences’, and only those revealed preferences are accepted as the starting point

for the calculation of demand... It is assumed that the empirical relevance

of demand theory is thereby improved... However if empirical support is re-

quired, revealed-preference theory proves to have as little foundations in reality

as classical theory... The consumer in revealed-preference theory is a ‘defined

individual’, a special kind of homo oeconomicus, whose rationality is presumed

axiomatically... The alleged advantages of increased empirical relevance and
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especially the ‘behavioristic’ point of view of this theory prove to be linguistic

declarations without factual meaning...”

And Hausman (2000) further argued that:

“The notion of ‘revealed preference’ is unclear and should be abandoned.

Defenders of the theory of revealed preference have misinterpreted legitimate

concerns about the testability of economics as the demand that economists

eschew references to (unobservable) subjective states.”

Moreover, a straightforward criticism is evident from the falsificationist process

itself. What if one finds a data set to be inconsistent with the general equilib-

rium theory using the test offered by Brown and Matzkin? Is there a reasonable

excuse to explain such failure? The excuse that first comes to mind is precisely

that individual preferences are not really invariant. If that is the case, individ-

ual rationality and market clearing may still be consistent with the data. The

question is, then, how reasonable is the assumption of variable preferences? Sig-

nificant research in human behavior seems to have convinced psychologists that

it is indeed very reasonable: in the Fifties, mathematical psychologists launched

a search for a theory where human preferences are probabilistic in nature and,

therefore, so are human behavior and choice.

Luce (1959) first wrote that:

“A basic presumption... is that choice is best described as a probabilistic,

not an algebraic phenomenon... The probabilistic philosophy is by now a com-

monplace is much of psychology, but it is a comparatively new and unproven

point of view in utility theory. To be sure, economists when pressed will admit

that the psychologist’s assumption is probably the more accurate, but they have

argued that the resulting simplicity warrants an algebraic idealization.”

Similarly, Block and Marshak (1960) wrote that:

“In interpreting human behavior there is a need to substitute ‘stochastic
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consistency of choices’ for ‘absolute consistency of choices.’ The latter is usually

assumed in economic theory, but is not well supported by experience.”

Accordingly, Luce and Supes (1965) justify the choice of a probabilistic un-

derstanding of human behavior adopted by psychologists by saying that:

“Historically, the algebraic theories were studied first, and they have been

used in economics and statistics almost exclusively. The probabilistic ones are

largely the product of psychological thought, forced upon [psychologists] by the

data [they] collect in the laboratory.”

Does allowing for variable preferences imply, again, that general equilibrium

theory is unfalsifiable? This paper incorporates the theory of random utility

to the problem of deriving testable implications of general equilibrium theory

without the observation of individual choice. My results show that even under

random preferences the theory imposes nontrivial restrictions on probabilistic

distributions of prices, which are necessary and sufficient for them to be consis-

tent with observed profiles of individual endowments and general equilibrium.

The paper is organized as follows: in section 2, I give a brief survey of

relevant literature and distinguish the problem dealt with here from problems

and results obtained elsewhere. Section 3 further motivates the problem, by

introducing an example in which I illustrate both the argument of Brown and

Matzkin for inconsistency of data and theory, as well as its criticism from the

point of view of mathematical psychology. Section 4 then lays down the problem

in the specific way in which it will be dealt with here, and introduces the as-

sumptions that I make. In section 5, I obtain the first results, which constitute a

characterization of data that are consistent with general equilibrium under ran-

dom preferences, via the existence of disaggregate variables satisfying necessary

and sufficient conditions for their rationalizability as consistent with general

equilibrium. Given that this characterization is mediated by existential quanti-
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fiers, it fails to provide the basis for a direct test and it is unclear whether the

null hypothesis of consistency can ever be refuted. Section 6, which introduces

two examples of non-rationalizable data sets illustrating separate dimensions of

the problem, makes the case for refutability, while section 7 provides another

characterization of rationalizability and uses standard results in quantifier elim-

ination to determine the abstract form that restrictions on the data set alone

ought to have.

2 Review of literature:

The first study of the problem of falsifiability of general equilibrium theory

without observation of individual choices was Sonnenschein (1973), where the

following problem was posed: suppose that one observes a function mapping

prices into quantities of commodities; what conditions must this function sat-

isfy if it is to be the aggregate excess demand function of an exchange economy

under standard assumptions? Well-known necessary conditions are continuity,

homogeneity of degree zero and Walras’ law. The surprising result was that

these very mild conditions exhaust all the restrictions of the theory, as shown

by Mantel (1974) and Debreu (1974): for any function that satisfies these three

conditions, there exists an economy, with at least as many consumers as com-

modities, such that, away from zero prices, the function is its aggregate excess

demand function. This result is commonly referred to as the Sonnenschein-

Mantel-Debreu theorem.1

1Mas-Collel (1977) showed that there are no restrictions on the set of equilibrium prices
of an economy, Diewert (1977) showed that there are some restrictions on the derivatives of
the aggregate excess demand and Geanakoplos and Polemarchakis (1980) showed that these
are all the restrictions. A similar result for market demand functions was shown by Diewert
(1977) and Mantel (1977). Andreu proved that a conclusion similar to the Sonnenschein-
Mantel-Debreu applies to finite subsets of prices. Recently, Chiappori and Ekeland (1999)
showed that the Sonnenschein-Mantel-Debreu extends to the whole market demand function,
under smoothness assumptions. For a recount of the earlier part of this literature, see Shafer
and Sonnenschein (1982).
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The conclusion was formed that if the condition that there are at least as

many consumers as there are commodities is acceptable, then the restrictions

of utility maximization disappear when one does not observe individual choices.

This interpretation was challenged by Brown and Matzkin (1996), who showed

that general equilibrium theory is falsifiable, even without observing individual

choices, provided that there exists information about individual budgets. The

novelty of their approach resided in that they did not analyze the aggregate

excess demand function, which from an empirical point of view is inconvenient,

as under the general equilibrium hypothesis it can only be observed precisely

when it vanishes, but focused on the equilibrium manifold, where variations of

individual endowments are accounted for. By varying individual endowments,

Brown and Matzkin showed a conflict that may arise between the two principles

that constitute the basis of general equilibrium: individual rationality and mar-

ket clearing. Specifically, they showed an important tension between aggregate

feasibility and individual-wise satisfaction of the axioms of revealed preference,

the first of which is necessary condition for market clearing, and the second

of which is equivalent to individual rationality. This tension implied that not

every data set of individual endowments and prices can be rationalized as com-

ing from observations of Walrasian equilibria in an exchange economy under

standard assumptions.

A similar approach, where individual endowments are taken into account,

was taken by Chiappori et al (2002), with the difference that they consider

the whole of the equilibrium manifold, rather that just some finite subset of it.

They find that “whenever data are available at the individual level, then util-

ity maximization generates very stringent restrictions upon observed behavior,

even if the observed variables are aggregate (e.g. aggregate excess demand or

equilibrium prices).” Furthermore, under the extra assumption that individuals
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have preferences such that income effects do not vanish, they show that all the

restrictions of individual rationality are preserved upon aggregation, since it

is possible to recover individual preferences from the equilibrium manifold (at

least locally), uniquely up to ordinal equivalence. They also show that some

individual level information is necessary for falsification, since any smooth man-

ifold can be locally rationalized as resulting from utility maximizing agents,

whenever their number is at least as large as the number of commodities and

redistribution of endowments is allowed.

In this paper, I take the same approach as in Brown and Matzkin (1996),

which requires the observation of only a finite data set. However, I allow for

random individual preferences, so that even for a given profile of endowments,

equilibrium prices are random in nature. Another paper in which the problem

of falsifiability of general equilibrium theory in a nondeterministic environment

is studied is Kubler (2001). There, it is studied whether intertemporal general

equilibrium with incomplete markets imposes restrictions on prices of commodi-

ties and assets, given a stochastic process of dividends and aggregate endow-

ments. It is found that if one restricts individual preferences over the tree of the

economy to be additively-separable, expected-utility preferences, then there do

exist testable restrictions.2

So as to avoid confusion, I will now highlight the differences between the

problem studied by Kubler and mine. Conceptually, two differences are clear.

Kubler’s problem is intertemporal, and agents have to make their decisions un-

der uncertainty. The problem I study here, on the other hand, has no intertem-

poral features and although individual preferences are assumed to be random,

my agents never decide under uncertainty. That is to say that instead of an

2See, nonetheless, Constantinides and Duffie (1996) and Krebs (2001), where it is argued
that further idiosyncratic risk may destroy these restrictions. Other extensions of the Brown-
Matzkin analysis, which are less related to the matters dealt with here are Snyder (1999) and
Carvajal (2002a).
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intertemporal problem with uncertainty, my agents face a set of independent

problems, and at each one of these problems they make their decisions fully

aware of their preferences (which have already realized), and with no consider-

ation for other problems in the set. Besides, Kubler assumes the observation

of a joint stochastic process of prices, aggregate endowments and dividends for

a given event tree and a set of agents, while I, also taking as given the sets

of events of nature and agents, assume a very different structure for my data

set: for each one of a set of profiles of individual endowments, I assume that

one observes a probability measure on the space of prices. There is no sense

of sequentiality in either the set of endowments or the way in which prices are

observed.

3 Motivation: revealed preference and the ran-

dom utility criticism.

Suppose that one has gathered data on individual endowments and prices for

a two-consumer, two-commodity exchange economy. Suppose that two profiles

of endowments, e, e0 ∈ ¡R2++¢2, have occurred, and that for both of them, the
vectors of prices ep, bp ∈ R2++ have been observed in the market.3 Figure 1

illustrates the Edgeworth boxes of these endowments and show the budget lines

implied by the vectors of prices. Figure 2 overlaps the previous figures.

This case embeds the example in Brown and Matzkin (1996) of a non-

rationalizable data set. The argument is straightforward. No strongly concave,

strictly monotone utility function can be consistent with the choices that indi-

vidual 1 would have to be making, given his budgets and the aggregate feasibility

constraint. To see this, consider figure 3, where the regions of the budget sets of

3The fact that prices have been the same for both endowments is irrelevant for the argu-
ment. It just makes the figures look simpler.
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individual 1, for the endowment-price combinations (e, bp) and (e0, ep) which are
consistent with the aggregate endowments have been highlighted. If these prices

were equilibria, and hence markets cleared, the demands of individual 1 would

have to be in violation of the Weak Axiom of Revealed Preference (WARP), a

well-known necessary condition for individual rationality. Hence, this data set

is not rationalizable in the Brown-Matzkin context.

To many a mathematical psychologist, this argument would appear unsat-

isfactory, as it relies heavily in the revealed preference paradigm, which gives

the preferences of individuals an absolute, rigid character, something that is

difficult to accept based on observations of human behavior or even on simple

introspection. The assumption that preferences of an individual never change

and are perfectly known by himself, which is very common in economics, is

seldom thought to be realistic in psychology.

In this context, one could, tentatively, argue that there is nothing wrong

with the data that was deemed nonrationalizable in the previous argument. If

one just accepts that there may exist two pairs of preferences (each pair being

composed of a preference relation for each individual,) and that preferences

of individuals may have changed as a result of changes in nature, that one

cannot observe, then there is no objection to arguing that prices ep arise in
both economies when one of the two pairs of preferences is realized, which is

illustrated in the upper panel of figure 4, whereas prices bp are consistent with
the other pair of preferences, as the lower panel of the figure. In both panels,

demands that would be consistent with revealed-preference axioms and market

clearing have been highlighted.4

The purpose of this paper is to show that, even under random utility assump-

4For illustration purposes, the budget line of individual 2 for endowments e has been copied
in dashes relative to the origin of the box under e0. This shows that 2 need not violate the
axioms of revealed preferences, whereas from the continuous budget lines it is clear that 1
does not either.
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tions, general equilibrium theory can still be refuted. Of course, the question

of testability is not interesting if whenever an anomaly in the predictions of

a theory is found, the researcher allows herself or himself to explain it as an

unobservable change in the environment to which the theory applies. If that

were the case, any prediction within the algebraic scope of the theory would

be rationalizable, and the testability question would be meaningless. One must

then impose some stability to the environment of the theory. Here, this stabil-

ity will be given by assuming that we observe, for each profile of endowments,

a probability distribution of prices, which must be explained by an invariant

probability distribution over the preferences in a sense that is explained in the

next section.

4 The problem and definitions:

I assume that there is a finite set I = {1, ..., I} of consumers, and a finite number,
L ∈ N, of commodities. As usual, for each consumer i ∈ I, the consumption set
is the nonnegative orthant RL+.

In order to avoid zero-degree homogeneity problems, I normalize prices to lie

in the (L− 1)-dimensional unit simplex, which I denote by S. Since prices are
going to be assumed as random, I assume that S is endowed with a σ-algebra

Ξ. In empirical applications, Ξ is determined by the finesse with which prices

are discerned.

I also assume that one observes a nonempty set, E ⊆ ¡RL++¢I , of profiles of
strictly positive endowments, and that for each observed profile e =

¡
ei
¢
i∈I ∈ E,

one observes a probability measure on the simplex of prices χe : Ξ −→ [0, 1].

These elements constitute the whole of the observed data. Intuitively, given a

discernible set of (normalized) prices C ⊆ S, C ∈ Ξ, and given an observed
profile of endowments, e ∈ E, the number χe (C) ∈ [0, 1] is to be understood
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as the frequency with which prices were observed to lie in C when endowments

were e.

The question that I want to answer is when data constructed and interpreted

as before are consistent with general equilibrium under random preferences. I

must then first specify such definition of consistency and, in doing so, I must

specify the class of preferences that I am going to allow myself to use when

answering the question. Hence, let U be the family of all continuous, strongly
concave, strictly monotone functions U i : RL+ −→ R. Preferences that are

representable by functions in the class U satisfy standard assumptions in eco-
nomics and are useful in that they guarantee existence of general equilibrium,

uniqueness of individual demand and Walras’ law.

One would like to say that the data set
©
E, (χe)e∈E

ª
is rationalizable if the

observed distributions of prices can be explained as being induced, as equilib-

rium prices, by a probability distribution over the set of profiles of preferences,

UI = (U)I . In this case, however, multiplicity of equilibria poses a serious prob-
lem as there is no reason to expect a one-to-one correspondence between prefer-

ences and Walrasian prices for given endowments. The standard assumption to

make is then that prices are also determined randomly from within the Walras

set of the economy. Since the latter set depends on the profile of endowments,

one would be requiring that there exist, for each e ∈ E, a probability measure5

πe : P
¡UI¢×Ξ −→ [0, 1] such that for each C ∈ Ξ, χe (C) = πe

¡UI , C¢, subject
to the constraint that for each V ∈ P ¡UI¢ and each C ∈ Ξ,

πe (V, C) > 0 =⇒ (∃U ∈ V) (∃p ∈ C) : p ∈WU,e (1)

where for each e ∈ RL++ and each U =
¡
U i
¢
i∈I ∈ UI , the set of Walrasian

equilibrium prices is denoted by WU,e.
5For a set Z, I denote by P (Z) its power set, which is the set of all subsets of Z, and is

therefore a σ-algebra on Z.
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Intuitively, the first condition says that given any observed profile of endow-

ments, e ∈ E, for any discernible set of prices C ∈ Ξ, the observed probability
that prices lie in C is numerically explained by the theoretical joint distribution

of preferences and prices, πe, once all the possible profiles of preferences are

taken into account (and, hence, “integrated out:” πe
¡UI , C¢. The condition,

however, imposes by itself none of the principles of individual rationality and

market clearing. This is done by the second condition, which requires that,

given endowments e ∈ E, the theoretical joint probability assigned to a set of

profiles of preferences V ∈ P ¡UI¢ and a set of prices C ∈ Ξ be positive only if
for at least one of the profiles of preferences in V there is a price in C which is

Walrasian equilibrium given the endowments e.

This, however, demands too little from the rationalization, because it in no

sense requires independence in the random determination of preferences from the

profiles of endowments, which one would like to have. In other words, under only

these two conditions it could occur that the theoretical probabilities assigned

to profiles of preferences depend on the profile of endowments, which would

appear problematic and unsatisfactory unless one has a theory to explain such

dependence. I then impose this independence condition to the rationalizing

distribution, by requiring that the family (πe)e∈E have a common marginal

distribution over UI . That is to say, by demanding that there exist a probability
measure ϑ : P ¡U i¢ −→ [0, 1], such that for every V ∈ P ¡UI¢ and for every
e ∈ E, ϑ (V) = πe (V,S), where prices are integrated out. Then, each one of
the conditional distributions πe|U : Ξ −→ [0, 1], defined, for U ∈ UI such that
ϑ ({U}) > 0 and e ∈ E, as

(∀C ∈ Ξ) : πe|U (C) = πe ({U} , C)
ϑ ({U}) (2)

makes sense on its own right, as they represent “random selectors” over WU,e as
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defined, for example, in Allen (1985). For notational simplicity, let me denote

by z the set of all probability measures on S, defined over Ξ. Given profiles of
preferences u ∈ UI and endowments e ∈ ¡RL++¢I a random selector is a function
ϕ ∈ z such that ϕ (Wu,e) = 1.6

In order to distinguish sources of randomness, that is in order to distinguish

randomness in preferences from the one that arises in prices even when prefer-

ences have been determined, I assume that there exists a nonempty and finite

set, Ω, of “natural” states of the world, which account, only, for changes in the

preferences of individuals. Rationalizability is then defined as:7

Definition 1 A data set
©
E, (χe)e∈E

ª
is Ω-rationalizable if there exist a prob-

ability measure δ : P (Ω) −→ [0, 1], a function u : Ω −→ UI and a function
ϕ : u [Ω]×E −→ z such that for each e ∈ E and each C ∈ Ξ:8

χe (C) =
X
ω∈Ω

δ (ω)ϕ (u (ω) , e) (C) (3)

and for each ω ∈ Ω and each e ∈ E:

ϕ (u (ω) , e)
¡
Wu(ω),e

¢
= 1 (4)

In the definition, δ is a probability distribution over the states of Nature,

u is a rule that assigns, to each state of Nature, a profile of utilities for the

individuals and ϕ assigns to each profile of utilities which can occur, u (ω),

6This is under the ideal assumption that Wu,e ∈ Ξ. A weaker requirement would be that

(∀C ∈ Ξ) :Wu,e ⊆ C =⇒ ϕ (C) = 1

Given assumptions that I will introduce below, I can work under the “ideal” assumption.
7Given a function f : X −→ Y and a set Z ⊆ X, f [Z] is the image of Z under f :

f [Z] = {y ∈ Y y ∈ Y | (∃x ∈ Z) : f (x) = y}

8Notation is somewhat tricky here. Since ϕ maps u [Ω] × E into z, which is a function
space, then, for u ∈ u [Ω] and e ∈ E, ϕ (u, e) ∈ z means that ϕ (u, e) is a function with domain
Ξ and target set [0, 1]. For C ∈ Ξ, the value of this function is ϕ (u, e) (C)
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and each profile of endowments e, a probability distribution over S. The first
condition in the definition is again that the observed probabilities be explained

by δ, u and ϕ, whereas the second one requires that each distribution over S
have as support the Walras set of its economy, so that it be a bona fide random

selector.

In order to solve the problem, I will consider only the finite case with fully

fine discernibility of prices. That is, throughout the rest of the paper I will

maintain the assumptions that Ξ = P (S), #E <∞ and9

(∀e ∈ E) : #Supp (χe) <∞∧ χe (Supp (χe)) = 1 (5)

where

Supp (χe) = {p ∈ S|χe ({p}) > 0} ⊆ RL++ (6)

That is, I assume that prices can be observed with infinite accuracy, that

only a finite number of profiles of endowments have been observed (as in Brown

and Matzkin, 1996) and that for each observed profile of endowments only a

finite number of strictly positive prices have been observed to occur.10

5 Rationalizable data sets:

In Brown and Matzkin (1996), given observed endowments and prices, the ex-

istence of unobservable individual preferences was implicitly tested through the

existence of individual demands (for each endowment and price) which were
9The logical connector ‘and’ will be denoted by ∧. The symbol ∨ will denote ‘or’, while

¬ will denote negation of a subsequent logical sentence. Parenthesis will be used to clarify
sentences and their quantification. The existencial and universal quantifiers will be given their
standard notation, ∃ and ∀ respectively.
10Under the null hypothesis of rationalizability, if one restricts U to include only differ-

entiable functions with interior contours, this assumption holds generically on endowments.
This follows, given that Ω is finite, from Debreu (1970), since demands must in this case be
continuously differentiable, as shown by Debreu (1972). In this case, only a finite number
of prices can have positive probability, which I assume by imposing that all the observed
distributions have finite, and hence discrete, support.
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required to satisfy the Strong Axiom of Revealed Preferences (SARP), Walras’

law and market clearing.

Here, one observes individual endowments e ∈ E, the supports of each of

the distributions of prices given those endowments {Supp (χe) ⊆ S}e∈E , and
the actual probabilities that each one of the prices in these supports attains

{χe ({p})}p∈Supp(χe),e∈E (7)

The unobservables whose existence one wants to establish are the profiles of

preferences that occur in each state of the world {u (ω)}ω∈Ω, the probability
that each state of the world attains, {δ (ω)}ω∈Ω, and the random selectors given
utilities and endowments {ϕ (u (ω) , e)}ω∈Ω,e∈E .
There exists, however, a third class of variables: those that one could observe

under the ideal assumption of being able to access individual-level data, as if

one could use the economy as an experimental laboratory. There are two groups

of data in this set of “observable-but-unobserved” variables. The first ones are

the demands of each individual, for each one of the budgets that he has ever

faced, and for each one of the states of nature.11 Second, since for each profile of

individual budgets actual choices depend on ω, then the profiles of demands from

those budgets are also random variables. If one had access to individual-level

data, one would know the distributions of these variables. Hence, the probability

distributions of these choices are in this category of observable-but-unobserved.

If these two groups of variables were observed, under the null hypothesis of

consistency with general equilibrium they would have to satisfy certain condi-

tions implied by individual rationality under random preferences and market

clearing. For the first group of variables, the necessary and sufficient conditions

are that for every individual and given a state of nature, demands must satisfy

11Under the null hypothesis, some of these exercises may be clearly counterfactual.
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SARP across budgets. For the second type of variables, I use the extension of

the Axiom of Stochastic Revealed Preference (ASRP), originally proposed by

McFadden and Richter (1990) and extended by Carvajal (2002b) to the case

of collective choices over not-necessarily-finite choice sets. Finally, if one could

also observe random selectors, and they were therefore treated as observable-

but-unobserved, then the restrictions of their definition, namely that they be

probability measures and have supports within the Walras sets, should be im-

posed directly.

Theorems 1 and 2 below characterize rationalizability in terms of existence of

these observable-but-unobserved variables and the aforementioned conditions.

Before they can be stated, I need to introduce the following pieces of notation.

Notation 1 Given
©
E, (χe)e∈E

ª
, denote, for each i ∈ I:

Bi = ©Bi ⊆ RL+
¯̄
(∃e ∈ E) (∃p ∈ Supp (χe)) : B

¡
p, ei

¢
= Bi

ª
(8)

Denote also:

B =
(
B ⊆ ¡RL+¢I ¯̄̄ (∃e ∈ E) (∃p ∈ Supp (χe)) : B =

Y
i∈I

B
¡
p, ei

¢)
(9)

where for p ∈ S and ei ∈ RL+,

B
¡
p, ei

¢
=
©
x ∈ RL+

¯̄
p · x 6 p · eiª (10)

Notation 2 Suppose that for each i ∈ I, Γi,Bi ⊆ P ¡Bi
¢ \ {∅}. Given B =Q

i∈I B
i ∈ B, denote

ΓB =

(
C ⊆ B|

Ã
∃ ¡Ci

¢
i∈I ∈

Y
i∈I
Γi,B

i

!
:
Y
i∈I

Ci = C

)
(11)
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and denote by ΣB the σ-algebra generated by ΓBon B. Moreover, denote:

B ⊗ Σ =
[
B∈B

¡{B} ×ΣB¢ (12)

Notation 3 For any set Z ⊆ ¡
RL
¢I
, denote its indicator function by 1Z :¡

RL
¢I −→ {0, 1}, which is defined by

³
∀x ∈ ¡RL¢I´ : 1Z (x) =

 1 if x ∈ Z

0 otherwise
(13)

Using this notation12, the first characterization of rationalizability is given

next. Its importance is that it disentangles all the mechanisms that are present

behind a rationalizable data set.

Theorem 1 A data set
©
E, (χe)e∈E

ª
is Ω-rationalizable only if

• For each i ∈ I, each Bi ∈ Bi and each ω ∈ Ω, there exist xi,Bi,ω ∈ RL+;

• Defining, for each i ∈ I and each Bi ∈ Bi,

Γi,B
i

=
[
ω∈Ω

nn
xi,B

i,ω
oo

(14)

then, for each B ∈ B and each C ∈ ΣB there exists gB,C ∈ R+;

• For each ω ∈ Ω, there exists dω ∈ R+;

• For each ω ∈ Ω, each e ∈ E and each p ∈ Supp (χe), there exists fω,e,p ∈ R

which satisfy the following conditions:

12And, also, for any set Z and any K ∈ N ∪ {∞}, denoting by {zk}Kk=1
seq
⊆ Z the fact that

{zk}Kk=1 is a sequence defined in Z.
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1. For each i ∈ I, each ω ∈ Ω, each K ∈ N and each ©Bi
k

ªK
k=1

seq
⊆ Bi:

³
(∀k ∈ {1, ...,K − 1}) : xi,Bi

k+1,ω ∈ Bi
k

´

=⇒


xi,B

i
1,ω = xi,B

i
K ,ω

∨
xi,B

i
1,ω /∈ Bi

K

 (15)

2. For each i ∈ I, each ω ∈ Ω, each e ∈ E and each p ∈ Supp (χe):

p · xi,B(p,ei),ω = p · ei (16)

3. For each B ∈ B,
gB,B = 1 (17)

and for each B ∈ B, each K ∈ N and each disjoint {Ck}Kk=1
seq
⊆ ΣB:

KX
k=1

gB,Ck = gB,∪Kk=1Ck (18)

4. For each K ∈ N and each {Bk, Ck}
seq
⊆ B⊗Σ, there exists ω ∈ Ω such that

KX
k=1

gBk,Ck 6
KX
k=1

1Ck

µ³
xi,B

i
k,ω
´
i∈I

¶
(19)

5. For each B ∈ B and each C ∈ ΣB

gB,C =
X
ω∈Ω

dω1C

µ³
xi,B

i,ω
´
i∈I

¶
(20)
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6. For each e ∈ E, each p ∈ Supp (χe) and each ω ∈ Ω:

X
i∈I

xi,B(p,e
i),ω 6=

X
i∈I

ei =⇒ fω,e,p = 0 (21)

7. For each ω ∈ Ω and each e ∈ E:

dw > 0 =⇒
X

p∈Supp(χe)
fω,e,p = 1 (22)

8. For each e ∈ E and each p ∈ Supp (χe):

χe ({p}) =
X
ω∈Ω

dωfω,e,p (23)

Proof. Suppose that δ : P (Ω) −→ [0, 1], u : Ω −→ (U)I and ϕ : u [Ω] −→ z

Ω-rationalize
©
E, (χe)e∈E

ª
. Denoting, ∀ω ∈ Ω, u (ω) = ¡ui (ω)¢

i∈I , implicitly

define ∀i ∈ I, ∀Bi ∈ Bi and ∀ω ∈ Ω, xi,Bi,ω ∈ RL+ by13

n
xi,B

i,ω
o
= Argmax

y∈Bi
ui (ω) (y) (24)

which one can do since each Bi is nonempty and compact and each ui (ω) is

continuous and strongly concave. Denote:

xi,B
i,ω = arg max

y∈Bi
ui (ω) (y) (25)

Then, ∀i ∈ I and ∀ω ∈ Ω, Theorem 2 in Matzkin and Richter (1991),

(b)=⇒(a) implies condition 1, whereas condition 2 follows, by construction,
from the monotonicity of ui (ω).

13The notational proviso of note 8 applies here: ui (ω) is a function mapping RL+ into R,
which takes the value ui (ω) (y) at y ∈ RL+.
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Define ∀B ∈ B and ∀C ∈ ΣB,

gB,C = δ

µ½
ω ∈ Ω|

µ
arg max

y∈Bi
ui (ω) (y)

¶
i∈I
∈ C

¾¶
(26)

Condition 3 is immediate, whereas condition 4 follows from theorem 1 in Car-

vajal (2002b).14

Define now, ∀ω ∈ Ω, dω = δ ({ω}).Then, by construction,

gB,C = δ

µ½
ω ∈ Ω|

µ
arg max

y∈Bi
ui (ω) (y)

¶
i∈I
∈ C

¾¶
= δ

µ½
ω ∈ Ω|

³
xi,B

i,ω
´
i∈I
∈ C

¾¶
=

X
ω∈Ω:(xi,Bi,ω)

i∈I∈C
δ ({ω}) (27)

=
X
ω∈Ω

δ ({ω})1C
µ³

xi,B
i,ω
´
i∈I

¶
=

X
ω∈Ω

dω1C

µ³
xi,B

i,ω
´
i∈I

¶

which is condition 5.

Define ∀ω ∈> Ω, ∀e ∈ E and ∀p ∈ Supp (χe), fω,e,p = ϕ (u (ω) , e) ({p}).
Also, define ∀ω ∈ Ω, ∀e ∈ E and ∀p ∈ Supp (χe), fω,e,p = ϕ (u (ω) , e) ({p}) and
suppose that for ω ∈ Ω, e ∈ E and p ∈ Supp (χe),

X
i∈I

xi,B(p,e
i),ω 6=

X
i∈I

ei (28)

14Since #Ω < ∞, it follows that ∀i ∈ I and ∀Bi ∈ Bi, #Γi,Bi < ∞, and hence, ∀B ∈ B,
#ΓB < ∞. Since ΣB is the σ-algebra generated by ΓB , it is true that #ΣB < ∞. Since
#E <∞, and ∀e ∈ E, #Supp (χe) <∞ then #B <∞ and therefore condition 1 in Carvajal

(2002b) is satisfied. Conditions 2 and 3 are also satisfied since ∀B ∈ B, B =
Q
i∈I

−→
B i =Q

i∈I B
i. Alternatively, the result can be argued using theorem 2 in Carvajal (2002b), given

remark 2 there.
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By construction, this means that

X
i∈I

arg max
y∈B(p,ei)

ui (ω) (y) 6=
X
i∈I

ei (29)

which implies that p /∈ Wu(ω),e and, then, since ϕ (u (ω) , e)
¡
Wu(ω),e

¢
= 1, it

follows that ϕ (u (ω) , e) ({p}) = 0 and, therefore, that fω,e,p = 0, implying

condition 6.

Now, let eω ∈ Ω and e ∈ E and suppose that deω > 0 and
P

p∈Supp(χe) fω,e,p 6=
1. By construction, since ϕ (u (eω) , e) ∈ z, it must be that

X
p∈Supp(χe)

ϕ (u (eω) , e) ({p}) < 1 (30)

which implies that ∃C ⊆ S\Supp (χe) : ϕ (u (eω) , e) (C) > 0. Then, since δ (eω) =
deω > 0, it follows that

χe (C) =
X
ω∈Ω

δ (ω)ϕ (u (ω) , e) (C)

> δ (eω)ϕ (u (eω) , e) (C) (31)

> 0

contradicting the fact that C ⊆ S\Supp (χe). This implies condition 7.
Finally, by construction, ∀e ∈ E and ∀p ∈ Supp ({p}),

χe ({p}) =
X
ω∈Ω

δ (ω)ϕ (u (ω) , e) ({p}) (32)

=
X
ω∈Ω

dωfω,e,p

which is condition 8.

At the risk of being pedantic, let me give intuition about the conditions of

the theorem. Suppose that the null hypothesis of Ω-rationalizability, for some
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set Ω of events, is true. Then,

• For each individual i ∈ I, each budget Bi ∈ Bi, and each state of the
world ω ∈ Ω, let xi,Bi,ω ∈ RL+ be i’s utility-maximizing demand over Bi

when ω realizes.

• For each individual i ∈ I and each budget Bi ∈ Bi, let Γi,Bi ⊆ RL+

be the collection of (singleton sets of) bundles that constitute i’s utility

maximizing demands over Bi, considering all possible events in Ω.

• For each collective budget B =
Q

i∈I B
i ∈ Bi, let ΣB be the product

σ-algebra generated by the collection
n
Γi,B

i
o
i∈I

over B.

• For each collective budget B =
Q

i∈I B
i ∈ Bi and each set of profiles of

bundles C ∈ ΣB, let gB,C ∈ R+ be the probability that if each individual
chooses from Bi individually rationally, then the profile of choices lies in

C.

• For each ω ∈ Ω, let dω be its probability.

• For each state of the world ω ∈ Ω, each profile of endowments e ∈ E

and each observed price (given e) p ∈ Supp (χe), let fω,e,p ∈ R+ be the
probability assigned to price p by the random selector corresponding to e

and the profile of preferences assigned at ω.

Under this interpretation of the variables used in the theorem, the intuition

of its conditions is as follows:

• Fix an individual i ∈ I and a state of the world ω ∈ Ω. By doing so,
one is also fixing preferences which are represented by ui (ω). Individual

rationality then imposes that the SARP be satisfied across all possible

budgets, which is condition 1.
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• Fix an individual i ∈ I, a state of the world ω ∈ Ω and a budget Bi ∈ Bi.
Since i’s preferences in ω are strictly monotonic, Walras’ law must be

satisfied, which is condition 2

• Fix a collective budget B ∈ B. Condition 3 is a straightforward ap-

plication of Kolmogorov’s axioms given the definition of the numbers

{gB,C}C∈ΣB as probabilities.

• Condition 4 is less straightforward. It is an application of the exten-

sion of the Axiom of Stochastic Revealed Preference of McFadden and

Richter (1990) to collective problems as proposed by Carvajal (2002b).

Its intuition is that events that are likely to happen should happen of-

ten. That is, recall that for each (B,C) ∈ B ⊗ Σ, the number gB,C is

the probability that the profile of individually-rational choices from B lies

in C, and that for given state of the world ω ∈ Ω such profile of choices
is
³
xi,B

i,ω
´
i∈I
. Now, for a sequence of collective budgets and collective

choice sets {Bk, Ck}Kk=1
seq
⊆ B⊗Σ, consider the event ‘for each k, choosing

rationally from Bi
k, individuals determine a profile of choices that lies in

Ck.’ If such an event occurs with “high” probability, in the sense that

the number
PK

k=1 gBk,Ck is “high,” then, it should also be true that for

at least one state of the world ω ∈ Ω it happens that for “many” of the
collective budgets Bk their profile of individually-rational choices lies in

Ck, so that the number

KX
k=1

1Ck

µ³
xi,B

i
k,ω
´
i∈I

¶
(33)

is also “high.”

• Condition 5 specifies that, indeed, the probabilities over collective bud-
gets gB,C are explained by the probabilities over states of the world, via
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individual rationality.

• Fix a profile of endowments e ∈ E, an observed price p ∈ Supp (χe) and a

state of the world ω ∈ Ω. If the profile of individually-rational demands,³
xi,B(p,e

i),ω
´
i∈I
, does not clear markets, then it cannot be assigned a pos-

itive probability by the random selector at e and the profile of preferences

in ω. This is imposed by condition 6.

• Fix a state of the world ω ∈ Ω. Condition 6 has restricted the supports
of the random selectors to Walras’ sets. Condition 7 simply implies that

they are, indeed, probability distributions.

• Given Ω-rationalizability, probabilities over states of the world and ran-
dom selectors must explain the observed probabilities accurately. This is

precisely condition 8.

If collective budgets and states of the world are fully discriminating in terms

of individual behavior, in the sense that for each state of the world there exists

a budget for which individual behavior would differ from all the rest of states

of the world, then one does not need probabilities both over states of the world

and over collective choices, and just the latter suffices for Ω-rationalizability, as

theorem 2 shows. The intuition of its conditions is the same as on theorem 1,

only that by strengthening condition 5 one can now discern probabilities over

states of the world from those over collective choices.

Theorem 2 Given Ω, suppose that a data set
©
E, (χe)e∈E

ª
satisfies that

• For each i ∈ I, each Bi ∈ Bi and each ω ∈ Ω, there exist xi,Bi,ω ∈ RL+;

• Defining, for each i ∈ I and each Bi ∈ Bi,

Γi,B
i

=
[
ω∈Ω

nn
xi,B

i,ω
oo

(34)
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then, for each B ∈ B and each C ∈ ΣB there exists gB,C ∈ R+;

• For each ω ∈ Ω, each e ∈ E and each p ∈ Supp (χe), there exists fω,e,p ∈
R+,

which satisfy the following conditions:

1. For each i ∈ I, each ω ∈ Ω, each K ∈ N and each ©Bi
k

ªK
k=1

seq

⊆ Bi:

³
(∀k ∈ {1, ...,K − 1}) : xi,Bi

k+1,ω ∈ Bi
k

´

=⇒


xi,B

i
1,ω = xi,B

i
K ,ω

∨
xi,B

i
1,ω /∈ Bi

K

 (35)

2. For each i ∈ I, each ω ∈ Ω, each e ∈ E and each p ∈ Supp (χe):

p · xi,B(p,ei),ω = p · ei (36)

3. For each B ∈ B,
gB,B = 1 (37)

and for each B ∈ B, each K ∈ N and each disjoint {Ck}Kk=1
seq
⊆ ΣB:

KX
k=1

gB,Ck = gB,∪Kk=1Ck (38)

4. For each K ∈ N and each {Bk, Ck}
seq

⊆ B⊗Σ, there exists ω ∈ Ω such that

KX
k=1

gBk,Ck 6
KX
k=1

1Ck

µ³
xi,B

i
k,ω
´
i∈I

¶
(39)
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5.

(∀ω ∈ Ω) (∃B ∈ B) (∀eω ∈ Ω\ {ω}) (∃i ∈ I) : xi,Bi,eω 6= xi,B
i,ω (40)

6. For each e ∈ E, each p ∈ Supp (χe) and each ω ∈ Ω:

X
i∈I

xi,B(p,e
i),ω 6=

X
i∈I

ei =⇒ fω,e,p = 0 (41)

7. For each ω ∈ Ω such that

g
B(ω),

n
(xi,Bi(ω),ω)

i∈I

o > 0 (42)

and for each e ∈ E: X
p∈Supp(χe)

fω,e,p = 1 (43)

8. For each e ∈ E and each p ∈ Supp (χe):

χe ({p}) =
X
ω∈Ω

g
B(ω),

n
(xi,Bi(ω),ω)

i∈I

ofω,e,p (44)

Where B (ω) ∈ B is implicitly defined by

B = B (ω)⇐⇒ (∀eω ∈ Ω\ {ω}) (∃i ∈ I) : xi,Bi,eω 6= xi,B
i,ω (45)

Then,
©
E, (χe)e∈E

ª
is Ω-rationalizable.

Proof. Given conditions 1 and 2, it follows from theorem 2 in Matzkin and

Richter (1991), (a)=⇒(b), that ∀i ∈ I and ∀ω ∈ Ω, ∃U i,ω ∈ U such that

¡∀Bi ∈ Bi¢ : Argmax
y∈Bi

U i,ω (y) =
n
xi,B

i,ω
o

(46)
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Define the function u : Ω −→ UI by (∀ω ∈ Ω) : u (ω) = ¡U i,ω
¢
i∈I

Now, recalling that ∀i ∈ I, and ∀Bi ∈ Bi:

Γi,B
i

=
[
ω∈Ω

n
xi,B

i,ω
o

(47)

and defining ∀B ∈ B, the function γB : Σ
B −→ [0, 1] by

¡∀C ∈ ΣB¢ : γB (C) =
gB,C , it follows from condition 3 that γB is a probability measure and then,

from condition 4 and theorem 1 in Carvajal (2002b), that ∃δ : P (Ω) −→ [0, 1],

a probability measure, such that ∀B ∈ B and ∀C ∈ ΣB :

δ

µ½
ω ∈ Ω|

µ
arg max

y∈Bi
ui (ω) (y)

¶
i∈I
∈ C

¾¶
= gB,C (48)

Define also ∀ω ∈ Ω, B (ω) as

B (ω) = B ∈ B ⇐⇒ (∀eω ∈ Ω\ {ω}) (∃i ∈ I) : xi,Bi,eω 6= xi,B
i,ω (49)

which one can do by condition 5. By construction, ∀ω ∈ Ω :

g
B(ω),

n
(xi,Bi(ω),ω)

i∈I

o = γB(ω)

µ½³
xi,B

i(ω),ω
´
i∈I

¾¶
(50)

whereas

γB(ω)

µ½³
xi,B

i(ω),ω
´
i∈I

¾¶
(51)

= δ

µ½eω ∈ Ω|µarg max
y∈Bi(ω)

ui (eω) (y)¶
i∈I
∈
½³

xi,B
i(ω),ω

´
i∈I

¾¾¶
= δ

³neω ∈ Ω| (∀i ∈ I) : xi,Bi(eω),ω = xi,B
i(ω),ω

o´
= δ ({ω})

where the last step follows by definition of B (ω) .
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Now, construct ϕ : u [Ω] × E −→ z as follows. Let u ∈ u [Ω] and let

e ∈ E. By definition and condition 5, # {ω ∈ Ω|u (ω) = u} = 1. Then, let

{ωu} = {ω ∈ Ω|u (ω) = ω}.
If g

B(ωu),
n
(xi,Bi(ωu),ωu)

i∈I

o > 0, then define ϕ (u, e) : Ξ −→ [0, 1] as follows:

(∀p ∈ Supp (χe)) : ϕ (u, e) ({p}) = fωu,e,p

(∀p ∈ S\Supp (χe)) : ϕ (u, e) ({p}) = 0 (52)

(∀D ∈ Ξ : #D 6= 1) : ϕ (u, e) (D) =
X
p∈D

ϕ (u, e) ({p})

Condition 7 implies that, so defined, ϕ (u, e) ∈ z.
If, alternatively, g

B(ωu),
n
(xi,Bi(ωu),ωu)

i∈I

o = 0, then let p ∈ Wu,e, which

exists by Arrow and Debreu (1954) and define ϕ (u, e) : Ξ −→ [0, 1] by:

(∀D ∈ Ξ) : ϕ (u, e) (D) =

 1 if p ∈ D

0 otherwise
(53)

I now claim that u : Ω −→ UI , δ : P (Ω) −→ [0, 1] and ϕ : u [Ω]× E −→ z

Ω-rationalize
©
E, (χe)e∈E

ª
.

First, let e ∈ E and p ∈ Supp (χe). Then,

X
ω∈Ω

δ (ω)ϕ (u (ω) , e) ({p}) =
X
ω∈Ω

g
B(ω),

n
(xi,Bi(ω),ω)

i∈I

ofω,e,p
= χe ({p}) (54)
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where I have used condition 8. Hence ∀e ∈ E and ∀C ∈ Ξ :

χe (C) = χe (C ∩ Supp (χe))

=
X

p∈C∩Supp(χe)
χe ({p})

=
X

p∈C∩Supp(χe)

X
ω∈Ω

δ (ω)ϕ (u (ω) , e) ({p})

=
X

p∈C∩Supp(χe)

X
ω∈Ω:δ({ω})>0

δ (ω)ϕ (u (ω) , e) ({p}) (55)

=
X

ω∈Ω:δ({ω})>0

δ (ω)
X

p∈C∩Supp(χe)
ϕ (u (ω) , e) ({p})


=

X
ω∈Ω:δ({ω})>0

δ (ω)
X
p∈C

ϕ (u (ω) , e) ({p})


=
X

ω∈Ω:δ({ω})>0
δ (ω)ϕ (u (ω) , e) (C)

=
X
ω∈Ω

δ (ω)ϕ (u (ω) , e) (C)

where the sixth step follows from the fact that, by condition 7, ∀ω ∈ Ω such
that δ ({ω}) > 0, if p /∈ Supp (χe) then ϕ (u (ω) , e) ({p}) = 0.
Second, fix ω ∈ Ω such that g

B(ω),
n
(xi,Bi(ω),ω)

i∈I

o > 0 and let e ∈ E.

Suppose that p /∈ Wu(ω),e. If p /∈ Supp (χe), it follows by construction that

ϕ (u (ω) , e) ({p}) = 0. Now, if p ∈ Supp (χe) \Wu(ω),e, it follows that

X
i∈I

xi,B(p,e
i),ω 6=

X
i∈I

ei (56)

and hence, from condition 6, one has that

ϕ (u (ω) , e) ({p}) = fω,e,p (57)

= 0
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It then follows that ϕ (u (ω) , e)
¡S\Wu(ω),e

¢
= 0 and that ϕ (u (ω) , e)

¡
Wu(ω),e

¢
=

1.

That the same conclusion applies ∀ω ∈ Ω such that g
B(ω),

n
(xi,Bi(ω),ω)

i∈I

o = 0
is given by construction.

6 Nonrationalizable data sets:

The results of the previous section characterizes rationalizability via the ex-

istence of several unobserved variables satisfying certain conditions. It could

happen, however, that values for those variables satisfying such conditions al-

ways exist, so that the general equilibrium hypothesis is irrefutable. I will show

in section 7 that one can obtain testable conditions purely on the observed data.

However, since I will not obtain these quantifier-free restrictions, but will only

show their existence, the question would still arise of whether or not they are

tautological. I now show examples of nonrationalizable data sets, whose exis-

tence implies that the quantifier-free restrictions are not tautological and that

the hypothesis is refutable.

There are two types of examples, which correspond to the existence or not

of particular observable-but-unobserved variables. The first type of example

has to do with the inexistence of demands that satisfy SARP. This case arises

solely from the supports of the observed distributions of prices and its lack of

rationality has nothing to do with the actual probabilities observed therein. I

therefore refer to this case as “Inconsistent Supports.” If this were the only kind

of example, one could suspect that there is a stronger version of the results

of section 5 which does not need to utilize any variables regarding the actual

values of the probabilities and that, therefore, the testable restrictions we are

obtaining are just a relaxation of the ones found by Brown and Matzkin, in

which we allow for #Ω-many instances of SARP per individual instead of just
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one. The second type of example shows that this is not the case, as it shows that

under consistent supports, there are values of the actual probabilities which are

impossible to rationalize. I will refer to this case as “Inconsistent Probabilities.”

The existence of this example implies that the existence clauses for gB,C , dω and

fω,e,p in theorems 1 and 2 were not trivial.

6.1 Inconsistent supports:

Consider figure 5, where endowments e, e0 ∈ ¡RL++¢2 and prices p, p0 ∈ S are
illustrated.

Suppose that the supports of χe and χe0 are given as in figure 6.

I now show that for no Ω can these data be Ω-rationalized.

I argue by contradiction. Suppose that for some Ω these data are rational-

izable. Let p ∈ Supp (χe). By definition, there must exist ω ∈ Ω such that
(δ (ω) > 0 ∧ p ∈ Wu(ω),e). Fix one such ω. Since δ (ω) > 0, there must exist

p0 ∈ Wu(ω),e0 such that p0 ∈ Supp (χe0). But, then, consider figure 7, where I

have drawn arbitrary p ∈ Supp (χe) and p0 ∈ Supp (χe0) and have highlighted

the regions of consumer 1’s budget that are feasible given the aggregate endow-

ments and market clearing. Whatever p ∈ Supp (χe) and p0 ∈ Supp (χe0) are,

it is impossible that consumer 1 satisfy the weak axiom of revealed preferences,

and therefore it cannot be that p ∈Wu(ω),e and p0 ∈Wu(ω),e0 .

Indeed, this example is extreme in that all the prices in Supp (χe) are in-

consistent15 with all the prices in Supp (χe0). Clearly, it suffices that there exist

one price in either one of the supports which is inconsistent with all the prices

in the other support. Conversely, if a data set is such that for each price in the

support of the price distribution at given endowments there exists at least one

consistent price in the support of the price distribution at all other observed

15 In the sense that, given market clearing, at least one consumer would have to violate the
axioms of revealed preferences and, hence, individual rationality.
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endowments, then there is no a priori reason to rule out rationalizability. The

next example shows that in such a case the actual values of the probabilities

matter, so that there is no a priori reason to imply rationalizability either.

6.2 Inconsistent probabilities:

Consider figure 8, which resembles the example of section 3. That is, suppose

that endowments e and e0 and associated distributions of prices χe and χe0 have

been observed such that Supp (χe) = Supp (χe0) = {bp, ep}.
Figure 9 overlaps the previous two figures. It follows from either section

3 or the remarks at the end of the previous subsection that Supp (χe) and

Supp (χe0) are consistent. Nonetheless, the following claim establishes that not

every arbitrary values of χe0 ({bp}) and χe ({ep}) can be rationalized for given set
of events Ω. The claim is based on figure 9 and is to apply only for this example.

Claim 1 For every set of events Ω, a data set {{e, e0} , (χe, χe0)} is Ω-rationalizable
only if χe0 ({bp}) + χe ({ep}) > 1.
Proof. Without loss of generality, suppose that {{e, e0} , (χe, χe0)} is Ω-rationalized
by u : Ω −→ U2, δ : P (Ω) −→ [0, 1] and ϕ : u (Ω)× {e, e0} −→ z such that the

support of δ is Ω.16 Denote:

Ω1 =
©
ω ∈ Ω| ep ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

ª
Ω2 =

©
ω ∈ Ω| bp ∈Wu(ω),e ∧ bp ∈Wu(ω),e0

ª
(58)

Ω3 =
©
ω ∈ Ω| bp ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

ª
By SARP, Ω1 ∩Ω2 = ∅. Now, suppose that ω ∈ Ω\ (Ω1 ∪ Ω2). Then,

¬ ¡¡ep ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢ ∨ ¡bp ∈Wu(ω),e ∧ bp ∈Wu(ω),e0
¢¢

(59)

16That is that ∀ω ∈ Ω, δ ({ω}) > 0. If this is not initially the case, Ω can be trivially
reduced so that the assumption holds.
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which is

¬ ¡ep ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢ ∧ ¬ ¡bp ∈Wu(ω),e ∧ bp ∈Wu(ω),e0
¢

(60)

or, equivalently,

¡ep /∈Wu(ω),e0 ∨ ep /∈Wu(ω),e

¢ ∧ ¡bp /∈Wu(ω),e ∨ bp /∈Wu(ω),e0
¢

(61)

This implies that

¡ep /∈Wu(ω),e0 ∧ bp /∈Wu(ω),e

¢
∨ ¡ep /∈Wu(ω),e0 ∧ bp /∈Wu(ω),e0

¢
(62)

∨ ¡ep /∈Wu(ω),e ∧ bp /∈Wu(ω),e

¢
∨ ¡ep /∈Wu(ω),e ∧ bp /∈Wu(ω),e0

¢
and therefore, given the data set, that

¡bp ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢
∨ ¡bp ∈Wu(ω),e0 ∧ bp /∈Wu(ω),e0

¢
(63)

∨ ¡bp ∈Wu(ω),e ∧ bp /∈Wu(ω),e

¢
∨ ¡bp ∈Wu(ω),e ∧ ep ∈Wu(ω),e0

¢
The second and third possibilities are self-contradictory, whereas the fourth

one is impossible by SARP. Hence,
¡bp ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢
and ω ∈ Ω3.

This proves that Ω1 ∪Ω2 ∪Ω3 = Ω.
Suppose now that ω ∈ Ω1\Ω3. Then,

¡ep ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢ ∧ ¬ ¡bp ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢
(64)
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which implies that

¡ep ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢ ∧ ¡bp /∈Wu(ω),e0 ∨ ep /∈Wu(ω),e

¢
(65)

and hence that

ep ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e ∧ bp /∈Wu(ω),e0 (66)

Moreover, by WARP, since ep ∈Wu(ω),e0 , it follows that

ep ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e ∧ bp /∈Wu(ω),e0 ∧ bp /∈Wu(ω),e (67)

which implies that

ϕ (u (ω) , e0) ({ep}) = 1

ϕ (u (ω) , e0) ({bp}) = 0 (68)

ϕ (u (ω) , e) ({ep}) = 1

ϕ (u (ω) , e) ({bp}) = 0

On the other hand, suppose that ω ∈ Ω2\Ω3. Then,

¡bp ∈Wu(ω),e ∧ bp ∈Wu(ω),e0
¢ ∧ ¬ ¡bp ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢
(69)

from where

¡bp ∈Wu(ω),e ∧ bp ∈Wu(ω),e0
¢ ∧ ¡bp /∈Wu(ω),e0 ∨ ep /∈Wu(ω),e

¢
(70)

and

bp ∈Wu(ω),e ∧ bp ∈Wu(ω),e0 ∧ ep /∈Wu(ω),e (71)
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Again, by WARP, since bp ∈Wu(ω),e, it follows that

bp ∈Wu(ω),e ∧ bp ∈Wu(ω),e0 ∧ ep /∈Wu(ω),e ∧ ep /∈Wu(ω),e0 (72)

and hence that

ϕ (u (ω) , e) ({bp}) = 1

ϕ (u (ω) , e) ({ep}) = 0 (73)

ϕ (u (ω) , e0) ({bp}) = 1

ϕ (u (ω) , e0) ({ep}) = 0

Consider now the case when ω ∈ Ω3. By definition,
¡bp ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢
whereas, by SARP ¬ ¡ep ∈Wu(ω),e0 ∧ bp ∈Wu(ω),e

¢
, which means that

¡bp ∈Wu(ω),e0 ∧ ep ∈Wu(ω),e

¢ ∧ ¡ep /∈Wu(ω),e0 ∨ bp /∈Wu(ω),e

¢
(74)

Hence,

(ϕ (u (ω) , e0) ({bp}) = 1 ∧ ϕ (u (ω) , e0) ({ep}) = 0) (75)

∨ (ϕ (u (ω) , e) ({ep}) = 1 ∧ ϕ (u (ω) , e) ({bp}) = 0)
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Now, by Ω-rationalizability, the previous results imply that

χe0 ({bp}) =
X
ω∈Ω

δ (ω)ϕ (u (ω) , e0) ({bp})
=

X
ω∈Ω1\Ω3

δ (ω)ϕ (u (ω) , e0) ({bp})
+

X
ω∈Ω2\Ω3

δ (ω)ϕ (u (ω) , e0) ({bp}) (76)

+
X
ω∈Ω3

δ (ω)ϕ (u (ω) , e0) ({bp})
=

X
ω∈Ω2\Ω3

δ (ω) +
X
ω∈Ω3

δ (ω)ϕ (u (ω) , e0) ({bp})
whereas

χe ({ep}) =
X
ω∈Ω

δ (ω)ϕ (u (ω) , e) ({ep})
=

X
ω∈Ω1\Ω3

δ (ω)ϕ (u (ω) , e) ({ep})
+

X
ω∈Ω2\Ω3

δ (ω)ϕ (u (ω) , e) ({ep}) (77)

+
X
ω∈Ω3

δ (ω)ϕ (u (ω) , e) ({ep})
=

X
ω∈Ω1\Ω3

δ (ω) +
X
ω∈Ω3

δ (ω)ϕ (u (ω) , e) ({ep})
Then,

χe0 ({bp}) + χe ({ep}) =
X

ω∈Ω2\Ω3
δ (ω) +

X
ω∈Ω1\Ω3

δ (ω) (78)

+
X
ω∈Ω3

δ (ω) (ϕ (u (ω) , e0) ({bp}) + ϕ (u (ω) , e) ({ep}))
>

X
ω∈Ω2\Ω3

δ (ω) +
X

ω∈Ω1\Ω3
δ (ω) +

X
ω∈Ω3

δ (ω)

= 1
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where the inequality comes from the fact that, as implied by previous results,

∀ω ∈ Ω3,
ϕ (u (ω) , e0) ({bp}) + ϕ (u (ω) , e) ({ep}) > 1 (79)

given that

ϕ (u (ω) , e0) ({bp}) = 1 ∨ ϕ (u (ω) , e) ({ep}) = 1 (80)

Hence, probabilities such that χe ({ep})+χe0 ({bp}) < 1 are not rationalizable,
in spite of the consistency of the supports.

7 Quantifier-free testable restrictions:

In this section I show that given the set of states of the world Ω, the observed

set of profiles of endowments E and, for each observed profile of endowments

e ∈ E, the set of observed prices Supp (χe), there exist restrictions (free of

existential quantifiers) on the values of the probabilities that these observed

prices can take. Moreover, I find, in abstract, the general functional form of

these restrictions.

Before obtaining the result, a new and straightforward characterization of

rationalizability is introduced. This characterization may appear notationally,

and perhaps operationally, simpler that the one provided by the results of section

5. To my mind, however, this new characterization is much less interesting by

itself, as it fails to uncover a fundamental feature of the theory of random

preferences, namely the randomness of choices, which was fully done in that

section. That is the reason why I have chosen to defer this new characterization

until now.

Theorem 3 A data set
©
E, (χe)e∈E

ª
is Ω-rationalizable if, and only if,:
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• For each i ∈ I, each Bi ∈ Bi and each ω ∈ Ω, there exist xi,Bi,ω ∈ RL+,
λi,B

i,ω ∈ R++ and V i,Bi,ω ∈ R;

• For each ω ∈ Ω, there exists dω ∈ R+;

• For each ω ∈ Ω, each e ∈ E and each p ∈ Supp (χe), there exists fω,e,p ∈
R+;

such that:

1. For each i ∈ I, each ω ∈ Ω, each e, ee ∈ E, each p ∈ Supp (χe) and eachep ∈ Supp (χee),

V i,B(ep,eei),ω 6 V i,B(p,ei),ω+λi,B(p,e
i),ωp·

³
xi,B(ep,eei),ω − xi,B(p,e

i),ω
´
(81)

with strict inequality if

xi,B(ep,eei),ω 6= xi,B(p,e
i),ω (82)

2. For each i ∈ I, each ω ∈ Ω, each e ∈ E and each p ∈ Supp (χe),

p · xi,B(p,ei),ω = p · ei (83)

3. X
ω∈Ω

dω = 1 (84)

4. For each ω ∈ Ω, each e ∈ E and each p ∈ Supp (χe),

X
i∈I

xi,B(p,e
i),ω 6=

X
i∈I

ei =⇒ fω,e,p = 0 (85)
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5. For each ω ∈ Ω and each e ∈ E,

dω > 0 =⇒
X

p∈Supp(χe)
fω,e,p = 1 (86)

6. For each e ∈ E and each p ∈ Supp (χe),

χe ({p}) =
X
ω∈Ω

dωfω,e,p (87)

Proof. Necessity: Suppose that δ : P (Ω) −→ [0, 1], u : Ω −→ (U)I and ϕ :

u [Ω] −→ z Ω-rationalize
©
E, (χe)e∈E

ª
. Denoting, ∀ω ∈ Ω, u (ω) = ¡ui (ω)¢

i∈I ,

implicitly define ∀i ∈ I, ∀Bi ∈ Bi and ∀ω ∈ Ω, xi,Bi,ω ∈ RL+ by17

n
xi,B

i,ω
o
= Argmax

y∈Bi
ui (ω) (y) (88)

which one can do since each Bi is nonempty and compact and each ui (ω) is

continuous and strongly concave. Denote:

xi,B
i,ω = arg max

y∈Bi
ui (ω) (y) (89)

Then, ∀i ∈ I and ∀ω ∈ Ω, theorem 2 in Matzkin and Richter (1991),

(b)=⇒(c) implies that ∀i ∈ I, ∀Bi ∈ Bi and ∀ω ∈ Ω, ∃λi,Bi,ω ∈ R++ and

∃V i,Bi,ω ∈ R that satisfy condition 1, whereas condition 2 follows, by construc-
tion, from the monotonicity of ui (ω).

Let ∀ω ∈ Ω, dω = δ ({ω}). The fact that ∀ω ∈ Ω, dω ∈ R+ and condition 3
follow directly from the fact that δ is a probability measure.

Define ∀ω ∈ Ω, ∀e ∈ E and ∀p ∈ Supp (χe), fω,e,p = ϕ (u (ω) , e) ({p}), and
17The notational proviso of note 8 applies here: ui (ω) is a function mapping RL+ into R,

which takes the value ui (ω) (y) at y ∈ RL+.
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suppose that for ω ∈ Ω, e ∈ E and p ∈ Supp (χe),

X
i∈I

xi,B(p,e
i),ω 6=

X
i∈I

ei (90)

By construction, this means that

X
i∈I

arg max
y∈B(p,ei)

ui (ω) (y) 6=
X
i∈I

ei (91)

which implies that p /∈ Wu(ω),e and, then, since ϕ (u (ω) , e)
¡
Wu(ω),e

¢
= 1,

it follows that ϕ (u (ω) , e) ({p}) = 0 and therefore that fω,e,p = 0, implying

condition 4.

Now, let eω ∈ Ω and e ∈ E and suppose that deω > 0 and
P

p∈Supp(χe) fω,e,p 6=
1. By construction, since ϕ (u (eω) , e) ∈ z, it must be that

X
p∈Supp(χe)

ϕ (u (eω) , e) ({p}) < 1 (92)

which implies that ∃C ⊆ S\Supp (χe) : ϕ (u (eω) , e) (C) > 0. Fix one such C.

Since δ (eω) = deω > 0, it follows that

χe (C) =
X
ω∈Ω

δ (ω)ϕ (u (ω) , e) (C)

> δ (eω)ϕ (u (eω) , e) (C) (93)

> 0

contradicting the fact that C ⊆ S\Supp (χe). This implies condition 5.
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Finally, by construction, ∀e ∈ E and ∀p ∈ Supp ({p}),

χe ({p}) =
X
ω∈Ω

δ (ω)ϕ (u (ω) , e) ({p}) (94)

=
X
ω∈Ω

dωfω,e,p

which is condition 6.

Sufficiency: By conditions 1 and 2 and theorem 2 in Matzkin and Richter

(1991), (c)=⇒(b), it follows that ∀i ∈ I, ∀ω ∈ Ω, ∃U i,ω ∈ U such that

(∀e ∈ E) (∀p ∈ Supp (χe)) : x
i,B(p,ei),ω = arg max

y∈B(p,ei)
U i,ω (y) (95)

Define the function u : Ω −→ UI by (∀ω ∈ Ω) : u (ω) = ¡U i,ω
¢
i∈I .

Let S = #Ω ∈ N and denumerate Ω = {ω1, ω2, ..., ωS}. Consider the follow-
ing algorithm:

Algorithm 1 Input: Ω

1. s = 1, Θ = ∅.

2. If (∃eω ∈ Θ) : u (eω) = u (ω), then θ = ∅ and go to 4.

3. θ = {ωs}

4. Θ = Θ ∪ θ

5. If s = S, then eΩ = Θ and stop.
6. s = s+ 1 and go to 2.

Output: eΩ
The output of the algorithm, eΩ ⊆ Ω, has the properties that:

³
∀ω, eω ∈ eΩ´ : ω 6= eω =⇒ u (ω) 6= u (eω) (96)
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³
∀ω ∈ Ω\eΩ´³∃eω ∈ eΩ´ : u (eω) = u (ω) (97)

Define now the function δ : P (Ω) −→ R as follows:

³
∀ω ∈ eΩ´ : δ ({ω}) = dω +

X
eω∈Ω\eΩ:u(eω)=u(ω)

deω
³
∀ω ∈ Ω\eΩ´ : δ ({ω}) = 0 (98)

(∀Φ ∈ P (Ω) : #Φ 6= 1) : δ (Φ) =
X
ω∈Φ

δ ({ω})

By condition 3 and construction, it follows that δ is a probability measure over

Ω.

Now, define the function ϕ : u [Ω] × E −→ z as follows. Fix u ∈ u [Ω] and

e ∈ E. By definition and the second property of eΩ, {ω ∈ Ω|u (ω) = u}∩ eΩ 6= ∅.
Let ωu ∈ {ω ∈ Ω|u (ω) = u} ∩ eΩ. By the first property of eΩ, ∀eω ∈ eΩ\ {ωu},
u (ω) 6= u, from where

#
³
{ω ∈ Ω|u (ω) = u} ∩ eΩ´ = 1 (99)

and hence ωu can be defined with no ambiguity. If δ ({ωu}) > 0, then define

ϕ (u, e) : Ξ −→ [0, 1] as:

(∀p ∈ Supp (χe)) : ϕ (u, e) ({p}) =
dωufωu,e,p +

P
ω∈Ω\eΩ:u(ω)=u dωfω,e,p
δ ({ωu})

(∀p ∈ S\Supp (χe)) : ϕ (u, e) ({p}) = 0 (100)

(∀C ∈ Ξ : #C 6= 1) : ϕ (u, e) (C) =
X
p∈C

ϕ (u, e) ({p})
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Notice that, by construction,

ϕ (u, e) (S)

=
X
p∈S

ϕ (u, e) ({p})

=
X

p∈Supp(χe)
ϕ (u, e) ({p})

=
X

p∈Supp(χe)

dωufωu,e,p +
P

ω∈Ω\eΩ:u(ω)=u dωfω,e,p
δ ({ωu}) (101)

=
dωu

P
p∈Supp(χe) fωu,e,p +

P
ω∈Ω\eΩ:u(ω)=u

³
dω
P

p∈Supp(χe) fω,e,p
´

δ ({ωu})

=
dωu +

P
ω∈Ω\eΩ:u(ω)=u dω
δ ({ωu})

= 1

where the fifth equality follows from condition 5. This and the construction

imply that ϕ (u, e) ∈ z. If, alternatively, δ ({p}) = 0, then let p ∈ Wu,e, which

exists by Arrow and Debreu (1954), and define ϕ (u, e) : Ξ −→ [0, 1] by

(∀C ∈ Ξ) : ϕ (u, e) (C) =

 1 if p ∈ C

0 otherwise
(102)

from where it is obvious that ϕ (u, e) ∈ z.
I now show that the functions u, δ and ϕΩ-rationalize the data set

©
E, (χe)e∈E

ª
.
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First, let e ∈ E and C ∈ Ξ. Then, by construction,

X
ω∈Ω

δ ({ω})ϕ (u (ω) , e) (C)

=
X

ω∈Ω:δ({ω})>0
δ ({ω})ϕ (u (ω) , e) (C)

=
X

ω∈eΩ:δ({ω})>0

δ ({ω})
X
p∈C

ϕ (u (ω) , e) ({p})


=
X

ω∈eΩ:δ({ω})>0
X
p∈C

δ ({ω})ϕ (u (ω) , e) ({p})

=
X

ω∈eΩ:δ({ω})>0
X
p∈C

dωfω,e,p +
X

eω∈Ω\eΩ:u(eω)=u(ω)
deωfeω,e,p

 (103)

=
X
p∈C

X
ω∈Ω

dωfω,e,p

=
X
p∈C

χe ({p})

= χe (C)

where the fifth step follows from the properties of eΩ and the fact that ∀ω ∈ eΩ,
δ ({ω}) = 0 implies that dω = 0, and the previous to last step follows from

property 6.

Now, fix ω ∈ Ω and e ∈ E. Suppose that for some p ∈ S, ϕ (u (ω) , e) ({p}) >
0. By the second property of eΩ, ∃eω ∈ eΩ such that u (eω) = u (ω). If δ (eω) = 0,
it follows by construction that

p ∈ Wu(eω),e (104)

= Wu(ω),e

If, on the other hand, δ (eω) > 0, then, by construction,
(∃bω ∈ Ω) : u (bω) = u (eω) ∧ dbω > 0 ∧ fbω,e,p > 0 (105)
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By condition 4, X
i∈I

xi,B(p,e
i),bω =X

i∈I
ei (106)

and, hence, by construction,

p ∈ Wu(bω),e
= Wu(eω),e (107)

= Wu(ω),e

This implies that ϕ (u (ω) , e)
¡S\Wu(ω),e

¢
= 0, or that ϕ (u (ω) , e)

¡
Wu(ω),e

¢
=

1.

The previous characterization and appendix 9 allow for the following theo-

rem, for which I need the following notation: define the functions sgn : R −→
{−1, 0, 1} by

sgn (x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(108)

and −−→sgn : RL −→ {−1, 0, 1}L by

−−→sgn (x) = (sgn (xl))Ll=1 (109)

Theorem 4 Given Ω, let E ∈ ¡RL+¢I and for each e ∈ E, Supp (χe) ⊆ S be
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given. Let Ψ be the set of vectors18

³¡
χe,p

¢
p∈Supp(χe)

´
e∈E
∈
Y
e∈E

[0, 1]#Supp(χe)

such that the data set E,

C 7−→
X
p∈C

χe,p


e∈E

 (110)

is Ω-rationalizable.19 Ψ is a semialgebraic set.

Proof. It follows from theorem 3 that

³¡
χe,p

¢
p∈Supp(χe)

´
e∈E
∈ Ψ ⊆

Y
e∈E

[0, 1]
#Supp(χe) (111)

if, and only, if there exists a vector

ζ =



Ãµµ³
xi,B(p,e

i),ω
´
p∈Supp(χe)

¶
e∈E

¶
ω∈Ω

!
i∈IÃµµ³

λi,B(p,e
i),ω

´
p∈Supp(χe)

¶
e∈E

¶
ω∈Ω

!
i∈IÃµµ³

V i,B(p,ei),ω
´
p∈Supp(χe)

¶
e∈E

¶
ω∈Ω

!
i∈Iµ³

(fω,e,p)p∈Supp(χe)
´
e∈E

¶
ω∈Ω

(dω)ω∈Ω



(112)

18By a vector ³¡
za,b

¢
b∈{1,...,B}

´
a∈{1,...,A}

I denote ¡
z1,1, z1,2, ..., z1,B , z2,1, z2,2, ..., z2,B , ..., zA,1, zA,2, ..., zA,B

¢
19The notation C 7−→ P

p∈C χe,p means that the function χe : Ξ −→ [0, 1] is constructed
as:

(∀C ∈ Ξ) : χe (C) =
X
p∈C

χe,p
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in the Cartesian product of the sets

ÃY
e∈E

¡
RL+
¢#Supp(χe)!#ΩI

(113)

ÃY
e∈E

(R++)#Supp(χe)
!#ΩI

(114)

ÃY
e∈E

(R)#Supp(χe)
!#ΩI

(115)

ÃY
e∈E

[0, 1]#Supp(χe)
!#Ω

(116)

[0, 1]
#Ω (117)

(which is a finite-dimensional Euclidean space), such that

µ³¡
χe,p

¢
p∈Supp(χe)

´
e∈E

, ζ

¶
(118)

satisfies the following conditions:

(i) ∀i ∈ I, ∀ω ∈ Ω, ∀e, ee ∈ E, ∀p ∈ Supp (χe) and ∀ep ∈ Supp (χee),


sgn
³
V i,B(ep,eei),ω − V i,B(p,ei),ω

− λi,B(p,e
i),ωp ·

³
xi,B(ep,eei),ω − xi,B(p,e

i),ω
´´
= −1

∨

sgn
³
V i,B(ep,eei),ω − V i,B(p,ei),ω

− λi,B(p,e
i),ωp ·

³
xi,B(ep,eei),ω − xi,B(p,e

i),ω
´´
= 0

∧
−−→sgn

³
xi,B(ep,eei),ω − xi,B(p,e

i),ω
´
= (0)

L
l=1





(119)
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(ii) ∀i ∈ I, ∀ω ∈ Ω, ∀e ∈ E and ∀p ∈ Supp (χe), sgn
³
p · ei − p · xi,B(p,ei),ω

´
=

0.

(iii) sgn
¡P

ω∈Ω dω − 1
¢
= 0.

(iv) ∀ω ∈ Ω, ∀e ∈ E and ∀p ∈ Supp (χe),

−−→sgn
Ã
fω,e,p

ÃX
i∈I

ei −
X
i∈I

xi,B(p,e
i),ω

!!
= (0)Ll=1 (120)

(v) ∀ω ∈ Ω and ∀e ∈ E,

sgn

dω

 X
p∈Supp(χe)

fω,e,p − 1
 = 0 (121)

(vi) ∀e ∈ E and ∀p ∈ Supp (χe),

sgn

Ã
χe,p −

X
ω∈Ω

dωfω,e,p

!
= 0 (122)

Consider the set of vectors

µ³¡
χe,p

¢
p∈Supp(χe)

´
e∈E

, ζ

¶
(123)

that satisfy conditions (i) to (vi). By definition 4, such set is semialgebraic. By

corollary 1, the projection of this set into
Q

e∈E R#Supp(χe), which is precisely

Ψ, is also semialgebraic.

It follows from Arrow and Debreu (1954) that the set Ψ introduced in the

previous theorem need not be empty. The first example of section 6 shows that

such set may be empty and, more interestingly, the second example in that

section shows that, when nonempty, the set Ψ may be a proper subset of

Y
e∈E

[0, 1]
#Supp(χe) (124)
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Then, there do exist testable restrictions on the set Ψ only, and these restrictions

take, in abstract, the form of polynomial inequalities (although they could be

of the form sgn (1) = 0, as shown by the first example of nonrationalizability).

8 Concluding remarks:

The goal of this paper has been to argue that general equilibrium theory is

refutable, even without observation of individual choices and allowing individ-

ual preferences to vary randomly. This result goes in line with the ones of

Brown and Matzkin (1996), which showed that the common belief that general

equilibrium theory was unfalsifiable, as seemingly implied by the Sonnenschein-

Mantel-Debreu literature of the Seventies, was overly pessimistic. My results,

however, try to overcome the criticism, common in mathematical psychology, of

the assumption of invariant preferences which is implicitly present in the work

of Brown and Matzkin via their application of revealed-preference theory.

I have found that for a given finite economy, if one observes a finite set of

profiles of individual endowments and, for each one of these profiles, a proba-

bility distribution of prices with finite support is also observed, there exists an

exhaustive set of necessary conditions that have to be satisfied for the data to

be consistent with general equilibrium theory, given a set of possible states of

the world and allowing for random determination of individual preferences in

these states of the world. These restrictions were studied here in two instances.

Firstly, a characterization of the condition of consistency of data and theory

was given via the existence of individual contingent demands and of probabilis-

tic distributions of choices and equilibrium prices. Secondly, it was argued that

these existential quantifiers can be eliminated, and that the conditions of the

first characterization have an equivalent in terms of conditions purely on the

data. These latter conditions were not explicitly obtained, and only their ab-
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stract mathematical form could be determined. However, I have also shown

that they are not vacuous: they constitute a test of the consistency of data and

general equilibrium theory with power to refute this hypothesis.

In the paper I have assumed that as the state of the world changes in-

dividuals realize that their preferences change and choose accordingly. This

accommodates an interpretation of the theory of random choice found in the

literature. An alternative interpretation is that individuals, although endowed

with one preference relation, are unclear about their preferences and act accord-

ingly to their perceptions of these preferences, which depend on the state of the

world. This interpretation can be easily accommodated by my results. However,

in both interpretations, if there are additional hypotheses about how different

states of the world affect individual preferences, they need to be incorporated

in the theory, since in my results I allow a very general class of preferences to

be assigned to the individuals at each one of the different states of the world.

The conditions found here should continue to be necessary, but my arguments

for sufficiency may not accommodate these additional hypotheses, and hence

the list of restrictions given here is no longer exhaustive.

9 Appendix: Tarski-Seidenberg quantifier elim-

ination.

Some of the logical statements in the paper contain existential quantifiers on

unobserved (and even unobservable) variables of their models. It is convenient to

argue that these quantifiers can be eliminated and to obtain as much information

as possible regarding equivalent statements that are free of quantifiers. For

this, I used the classical theory of quantifier elimination presented here. This

appendix takes concepts from Mishra (1993).
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Definition 2 A function µ : RK −→ R, where K ∈ N, is a (Real) Multivariate
Monomial if there exists {αk}Kk=1

seq
⊆ N ∪ {0} such that for every x ∈ RK ,

µ (x) =
KY
k=1

xαki (125)

The degree of the monomial is deg (µ) =
PK

k=1 αk.

Definition 3 A function ρ : RK −→ R, where K ∈ N, is a (Real) Multi-
variate Polynomial if for some M ∈ N, there exist Multivariate Monomials©
µm : RK −→ R

ªM
m=1

and {am}Mm=1
seq
⊆ R\ {0} such that,

ρ =
MX
m=1

amµm (126)

The degree of the polynomial is deg (ρ) = maxm∈{1,...,M} {deg (µm)}.

Definition 4 A set A ⊆ RK , where K ∈ N, is a semialgebraic set if it can be
determined by a set theoretic expression of the form

A =
M[
m=1

Nm\
n=1

©
x ∈ RK ¯̄ sgn ¡ρm,n (x)

¢
= sm,n

ª
(127)

where for each m ∈ {1, ...,M}, M ∈ N and each n ∈ {1, ..., Nm}, Nm ∈ N,
ρm,n : RK −→ R is a Multivariate Polynomial and sn,m ∈ {−1, 0, 1}.

Definition 5 A function η : A −→ B, where A ⊆ RKA and B ⊆ RKB are

semialgebraic sets (KA,KB ∈ N), is a semialgebraic map if its graph,

Graph (η) =
©
(x, y) ∈ RKA ×RKB

¯̄
y = η (x)

ª
(128)

is semialgebraic.

Theorem 5 (The Tarski-Seidenberg Theorem:) Let A ⊆ RK , where K ∈ N, be
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a semialgebraic set and let η : RK −→ RK0
, where K0 ∈ N, be a semialgebraic

map. Then,

η [A] =
n
y ∈ RK0

¯̄̄
(∃x ∈ A) : η (x) = y

o
(129)

is a semialgebraic set.

Proof. This is theorem 8.6.6 in Mishra (1993), pp. 345.

Corollary 1 Let A ⊆ RK1 × RK2 , where K1,K2 ∈ N, be a semialgebraic set
and let

−→
A1 be its projection into RK1 , defined as

−→
A1 =

©
x ∈ RK1

¯̄ ¡∃y ∈ RK2
¢
: (x, y) ∈ A

ª
(130)

Then,
−→
A1 is semialgebraic.

Proof. Define the function η1 : RK1×RK2 −→ RK1 by η1 (x, y) = x. Its graph,

G (η1) =
¡
RK1 ×RK2

¢×RK1 is clearly semialgebraic. Since A is semialgebraic,

it follows from the Tarski-Seidenberg theorem that

©
x ∈ RK1

¯̄
(∃ (x0, y) ∈ A) : η1 (x

0, y) = x
ª

=
©
x ∈ RK1

¯̄
(∃ (x0, y) ∈ A) : x0 = x

ª
(131)

=
©
x ∈ RK1

¯̄ ¡∃y ∈ RK2
¢
: (x, y) ∈ A

ª
=
−→
A1

is semialgebraic.
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