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Abstract

In the highway procurement market, if firms’ marginal costs are intertempo-
rally linked, the pace at which the government releases new projects over time
will have an effect on the prices it pays. This paper investigates the effects of
the American Recovery and Reinvestment Act on equilibrium prices paid by
the government for highway construction projects using data from California.
I develop a structural dynamic auction model that allows for intertemporal
links in firms’ marginal costs, project level unobserved heterogeneity, and en-
dogenous participation. I show that the model is nonparametrically identified
combining ideas from the control function and measurement error literatures.
I find that the accelerated pace of the Recovery Act projects imposed a sizable
toll on procurement prices, especially on the procurement cost of projects not
funded by the stimulus money.

1 Introduction

The American Recovery and Reinvestment Act (ARRA) of 2009 stipulated a large

injection of funds (over $800 billion) into the economy in a short period of time.1 This

∗I am indebted to Phil Haile and Steve Berry for support and advice. I thank John Asker,
Ariel Pakes, Martin Pesendorfer, Yingyao Hu, Elena Krasnokutskaya, Taisuke Otsu, Jean Tirole,
and seminar participants at BU, Bocconi, FGV-São Paulo, Harvard, LSE, UPenn, Princeton, Pom-
peu Fabra, PUC-Rio, Toulouse, Wharton, and Yale for helpful comments. I also thank Eduardo
Souza-Rodriguez, Ted Rosenbaum, Myrto Kalouptsidi, Sukjin Han, Priyanka Anand for extensive
discussions, and Earl Seaberg and Rich Stone at Caltrans for clarifying conversations about the
data. All errors and opinions remain my own.

1Throughout the paper, I will refer to the American Recovery and Reinvestment Act, as the
stimulus package.
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paper investigates the effects of this demand expansion on equilibrium prices paid by

the government for highway construction projects. Using data from California, I

answer the following questions: (1) How much were the costs of these projects driven

up by the accelerated pace of new projects? (2) What was the effect of the demand

expansion on the prices of other state projects that came afterwards? and (3) What

was the effect on efficiency? The first question aims at quantifying the trade-off the

government faces between getting money in people’s hands right away and getting

more public goods out of the stimulus funds. The second question makes explicit

certain overlooked costs associated with the stimulus funds received by the states.

The third question investigates the effect of the stimulus package on the cost of

resources to society.

Road construction projects are awarded by auctions, therefore, I develop a struc-

tural dynamic auction model in order to answer the questions raised above. The

model builds on three key features. First, I allow for an inter-temporal link in firm’s

marginal costs, i.e., firms’ current costs can be affected by their committed resources

from uncompleted projects awarded in previous periods. Second, I allow for auction-

level unobserved heterogeneity, a project-level factor that affects firms’ behavior but

is not observed by the econometrician. Finally, I allow for endogenous firm participa-

tion, i.e., I let firms’ participation decisions depend on project characteristics (both

observed and unobserved). I apply this model to highway procurement data from

California to estimate the structural parameters, and then perform simulations to

assess the issues raised above.

The basic economic ideas behind my questions are simple. When firms have

upward sloping marginal costs2 and projects take more than one period to complete,

there will be a dynamic linkage between projects awarded in previous periods and the

price of projects in the current period. In other words, firms’ backlogs of uncompleted

projects will affect the current period supply curve. There are many channels that may

affect the supply. Firms operating with a high backlog will likely bid less aggressively

for new projects, since taking an additional contract may require, for example, renting

equipment, which in turn increases the firm’s total costs. Moreover, even firms with

low backlogs may end up bidding less aggressively as well, through a strategic effect,

if rivals are constrained.3 There is also a competition effect, since high backlogs may

2It could also be the case that firms face downward sloping marginal cost curves if, for example,
they experience learning-by-doing. In this paper, I leave firms’ cost structure unrestricted and let
the data tell me how marginal costs and backlogs are related. I do find that marginal costs are
upward sloping.

3Throughout the paper I may refer to a firm being constrained or unconstrained to imply that
the firm has a high or low backlog, respectively.
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deter firms from participating in the auctions, thus reducing the number of bidders

and lessening competition. As a result, for any given project, the higher the backlogs,

the higher the price paid by the government.

The questions raised in this paper are important because the government had two

objectives behind the stimulus package. On the one hand, it wanted to jumpstart the

economy as soon as possible, and on the other, it wanted to invest in transportation

infrastructure. But if the supply is slow to react, there is a trade-off between the two

objectives. This can be explained in the context of my model in the following way.

Besides choosing the size of the expansion, the government can choose when and how

to pace the release of new projects. If it delays new projects, backlogs decrease as

the previously awarded ongoing projects progress. Therefore, we expect lower prices

for new projects. Given a fixed amount of money to spend, this translates into more

public goods acquired. The government then has to decide whether to spend the

money right away at the cost of fewer public goods, or to postpone (or slow down)

the expansion and get more public goods.4

There is also another effect of the demand expansion that affects state govern-

ments. Conditional on the current backlog, the projects funded by the stimulus

money raise the backlog level in future periods, hence future projects funded by the

state will face higher prices. This is, in fact, a hidden cost of the stimulus funds

received by the states.

Finally, from a welfare perspective, if one were to ignore the cost of raising the

money to finance the stimulus package, one should only care about the cost of the

resources used to build or repair the roads. Due to the effect of backlogs on firms’

costs, we should expect an inefficiency generated by the stimulus funds.

The highway construction sector and the stimulus money targeted at it are eco-

nomically important. In particular, highway construction procurement projects auc-

tioned off by the government accounted for $66 billion in 2007,5 and $50 billion of

the stimulus money was targeted at transportation infrastructure (out of which, $30

billion was allocated to construction and repair of highways, roads and bridges, the

biggest single line infrastructure item in the final bill).

I turn now to a description of the methodology used in this paper. Initially,

the empirical literature on auctions assumed away unobserved heterogeneity because

4A related policy issue concerns the optimal project timing to minimize procurement costs condi-
tional on achieving some stimulus objective. This analysis is beyond the scope of the present paper
and is left for future research.

5Data from the US Census Bureau. The figure comprises highway, street and bridges projects
contracted by Federal, State and local governments.
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identification failed otherwise. But this assumption is likely to be violated in many

settings and recent work has paid increasingly attention to it. My estimation ap-

proach uses concepts from the control function and measurement error literatures to

show that the structural model is nonparametrically identified under the presence

of unobserved heterogeneity. I use the first order condition at the bidding stage to

express each firm’s private cost as a function of its bid, the conditional distribution

of equilibrium bids,6 and the value function representing the discounted sum of fu-

ture payoffs. The main challenge is to show the identification of the distribution

function of equilibrium bids conditional on the unobserved heterogeneity, and of the

distribution of unobserved heterogeneity.

My estimation approach combines several key ideas. First, provided that the dis-

tribution of unobserved heterogeneity is identified, I can write the value function as

a function of the distribution of equilibrium bids, as proposed by Jofre-Bonet and

Pesendorfer (2003) (JP hereafter) for a dynamic model without unobserved hetero-

geneity. A second key idea is similar in spirit to the control function approach (see

Chesher (2003) and Imbens and Newey (2009)). The classic approach relies on an

equation that relates an endogenous observed outcome to the unobserved factor. With

a strict monotonicity assumption, the relationship can then be inverted and used to

control for the unobserved factor directly. I depart from this method by allowing the

control function to be an “imperfect” one. That is, I do not require the observables in

the relationship to be a sufficient statistic for the unobserved heterogeneity.7 Rather,

I exploit features of the procurement setting that provide a second “imperfect” control

function. The information obtained from these two noisy controls then resembles a

measurement error problem where we have access to multiple measurements. I attain

identification of the conditional distribution functions using the results in Hu (2008)

for nonlinear models with misclassification error.

This paper contributes to the auction literature in several ways. I improve on

the method of JP by controlling for unobserved heterogeneity, and by relaxing the

assumptions on firms’ participation decisions allowing for endogenous participation.

To my knowledge, this is the first attempt to control for unobserved heterogeneity in a

dynamic auction model. I also relax the structural assumptions in the control function

approaches used previously in the auction literature (see Haile, Hong, and Shum

6Conditional on observed and unobserved auction level factors, and firms’ state variables. To
economize on terminology from now on, when I say distribution of equilibrium bids or distribution
of private values, I always refer to the conditional distribution.

7There are various reasons why this could be the case. For example, the agent’s decision outcome
that we are exploiting may be based on a noisy version of the unobserved factor that we need to
control for, or other unobservable shocks may also affect the outcome.
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(2006) —HHS hereafter— and Roberts (2011)) by allowing the control function to be

an imprecise measure of the unobserved heterogeneity. In a recent attempt to control

for unobserved factors in a static context, Krasnokutskaya (2011) uses a deconvolution

method from the measurement error literature to identify an independent private

values model, in which unobserved heterogeneity enters linearly in the valuation and is

independent of the idiosyncratic components of bidders’ values. In my model, I do not

require specifying the functional form for the relationship between the valuation and

the unobserved factor, and I let the idiosyncratic component of the firm’s valuation

to be correlated with the unobserved component.89

The estimation results suggest that both the effects of backlog and unobserved

heterogeneity are important. I find that increasing the unobserved heterogeneity from

its lowest level to its highest level rises the cost of a firm by 51%, and the equilibrium

winning bid by 15%. Furthermore, although monotone, the effects are nonlinear in

the level of unobserved heterogeneity. Changing the backlog level of one regular firm

from a low level to a high one, increases the cost of that firm by 7.4%, and the

equilibrium price in the auction increases by 4.7%.

From a policy perspective, this paper contributes to the discussion about the stim-

ulus package by raising questions that have not been addressed yet. I quantify costs

associated with the stimulus projects that may help in future policy making. Using

the estimates of the structural parameters of the model in counterfactual simulations

indicate that the government paid prices for stimulus funded projects that are 6.2%

higher (and prices for other projects that are 4.8% higher) due to the effect of the

stimulus projects on firms’ backlogs. These results imply that the government could

have acquired $335 million worth of extra road projects (or 19.7% of the stimulus

money received by California) by forgoing any stimulus effect from ARRA. By no

means does this suggest that the $335 million were “lost,” since the money was actu-

ally transferred to the firms, thus serving the government’s stimulus objective. The

result just makes explicit that part of the demand expansion went into higher prices

rather than quantities. Moreover, I also show that even though California presents

features that may distinguish it from other states, the results are robust and can be

extrapolated to other applications.

8Although in this paper I consider a dynamic independent private values model, the identification
result holds without modification in a static affiliated private values context. Thus, this is also an
extension of Krasnokutskaya’s method. I am currently working on an extension of the dynamic
model with affiliated private values.

9Even though I appeal to additional structure to get two noisy measures of the control function,
it can be substituted for two discretized bids (see An, Hu, and Shum (2010)). Therefore, my method
does not necessarily entail a greater burden on data or structure than other methods.
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In a separate set of simulations I find that the benefit (in terms of lower prices)

of delaying the stimulus projects by 3 months reaches $44 million (or 2.6% of the

stimulus funds). If the government delays the projects by 6 months instead, the

benefit totals $62 million (or 3.7% of the stimulus funds). Finally, results regarding

the inefficiency created by the stimulus projects show that the cost of the resources

used in projects funded by the stimulus money and by other sources increased by

2.8% on average.

The rest of the paper proceeds as follows. I begin with a literature review in

Section 2. Section 3 summarizes features of the stimulus package and its potential

effects. Section 4 introduces the data and details of the procurement process. The

structural model is presented in Section 5. Identification and estimation are discussed

in Sections 6 and 7, respectively. Section 8 presents the estimation results, and Section

9 the simulation results. Finally, Section 10 concludes.

2 Literature Review

This paper is related to several strands in the auction literature. In this section I

summarize some of the recent findings.

Dynamic models. The only papers I am aware of that estimate a dynamic auction

model are JP and Groeger (2010). JP look at how capacity constraints affect bidding

behavior. Although my model is based on JP, I extend it to allow for endogenous

participation and unobserved heterogeneity. Groeger (2010) estimates a dynamic

model with endogenous participation. While his interest is in the dynamic synergies

that result from participation I focus on the dynamic effect of backlogs.

Nonparametric estimation of private values models. The seminal work of Guerre,

Perrigne, and Vuong (2000) studies the identification and estimation of a first-price

symmetric independent private values (IPV) model. Li, Perrigne, and Vuong (2002)

extend the result to the affiliated private values (APV) setting and Li, Perrigne, and

Vuong (2000) to the conditionally independent private values. These papers assume

away the existence of unobserved heterogeneity and rely on an invertible mapping

between the distribution of bidders values and the distribution of observed bids.

Asymmetric bidders. More closely related to my setting is the literature that

estimates structural first-price auction models with asymmetric bidders. This strand

includes Bajari (1997), Bajari (2001), Hong and Shum (2002), Bajari and Ye (2003),

Campo, Perrigne, and Vuong (2003), JP, Flambard and Perrigne (2006), Einav and

Esponda (2008), and Athey, Levin, and Seira (2011).
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Unobserved heterogeneity. Also closely related is the increasing literature on non-

parametric identification of auction models with unobserved heterogeneity. Campo,

Perrigne, and Vuong (2003), HHS, and Guerre, Perrigne, and Vuong (2009) use in-

formation on the number of bidders. The first paper assumes that the number of

bidders is a sufficient statistic for the unobserved auction heterogeneity. HHS use a

control function approach to account for the unobserved heterogeneity. They assume

endogenous participation and model the number of bidders as a strictly increasing

function of the unobserved heterogeneity. Roberts (2011) also uses a control function

approach. He assumes that reserve prices are monotonic in the unobserved hetero-

geneity. Guerre, Perrigne, and Vuong (2009) build on the methodology of HHS to

identify an IPV model with risk averse bidders and unobserved heterogeneity based

on exclusion restrictions derived from bidders endogenous participation. Hong and

Shum (2002) and Athey, Levin, and Seira (2011) take a parametric approach. The

first paper assumes that the median of the bid distribution is distributed Normal

with mean and variance dependent on the number of bidders, while the second one

assumes a parametric form for the distribution of bids conditional on the unobserved

heterogeneity and that the unobserved heterogeneity follows a Gamma distribution.

Other approaches use results from the measurement error literature. Krasnokut-

skaya (2011) uses a deconvolution method to identify an IPV model in which unob-

served heterogeneity enters linearly in the bidder’s valuation and is independent of

the idiosyncratic components of bidders’ values. More recently, An, Hu, and Shum

(2010) and Hu, McAdams, and Shum (2011) rely on new results in the econometric

literature on nonclassical measurement error by Hu (2008) and Hu and Schennach

(2008). They extend the results in Krasnokutskaya (2011) by allowing the unob-

served heterogeneity to be nonseparable from bidders’ valuations. Krasnokutskaya

(2011), An, Hu, and Shum (2010) and Hu, McAdams, and Shum (2011) rely on the

IPV setting and require data on multiple bids from the same auction to identify the

distribution of bidders’ valuations. The three papers consider a static auction model

and none of them deals with endogenous participation.

My identification approach combines features of both the control function tech-

niques and of the recent papers that exploit the nonclassical measurement error results

and I apply it to a dynamic model with endogenous participation. By combining the

two methods I am able to extend the results from both approaches. First, I can relax

the structural assumptions in the control function approach by allowing the control

function to be an imprecise measure of the unobserved heterogeneity. Second, I can

extend the results in Hu, McAdams, and Shum (2011) to the APV setting (although
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in the present paper I focus on a dynamic model with IPV, in ongoing work I show

nonparametric identification of a static model with APV). Furthermore, within the

static IPV paradigm although my method requires data on two additional endogenous

outcomes it only requires having data on the winning bid in an auction.

Highway procurement. Finally, my paper is related to earlier work on the analysis

of highway contracts. For example, Porter and Zona (1993) and Bajari and Ye (2003)

are interested in detecting collusion among bidders, Hong and Shum (2002) assess the

winner’s curse, JP find evidence of capacity constraints, Bajari and Tadelis (2001) and

Bajari, Houghton, and Tadelis (2006) look at the implications of incomplete procure-

ment contracts, Krasnokutskaya (2011) finds evidence of unobserved heterogeneity,

Krasnokutskaya and Seim (2011) study bid preference programs and participation, Li

and Zheng (2009) and Einav and Esponda (2008) look at endogenous participation

and its effect on procurement cost.

3 Stimulus Package and Its Effects

The American Recovery and Reinvestment Act is a job and economic stimulus bill

intended to help states and the nation restart their economies and stimulate em-

ployment after the worst economic downturn in over 70 years. In drafting this bill,

Congress recognizes that investment in transportation infrastructure is one of the

best ways to create and sustain jobs, stimulate economic development, and leave a

legacy to support the financial well-being of the generations to come. The intent and

language of the bill responded to the urgency of the economic situation by tasking

state departments of transportation and other transportation stakeholders to quickly

move forward with transportation infrastructure projects.

Nationally, the bill provided $50 billion for transportation infrastructure, out of

which $30 billion was allocated to construction and repair of highways, roads and

bridges. The latter constituted the biggest single line infrastructure item in the final

bill. The state of California received the most funds of any state, with approximately

$2.6 billion awarded for highways, local streets and roads projects,10 and $1.07 billion

for transit projects in addition to other discretionary funds.11 The stimulus funds

became the primary focus of California’s Department of Transportation (Caltrans),

10About $900 million correspond to local streets and the funds were administered by the local
governments. I exclude these projects from my analysis.

11In January 2010, California was awarded more than $2.3 billion for its high-speed intercity
rail, the largest allocation in the nation. The state also received an additional $130 million in new
funding for four highway, local street, rail and port projects across the state from the Recovery Acts
Transportation Investment Generating Economic Recovery (TIGER) Grant program.
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and in March 2009, California modified existing law to allow projects to start sooner.

Even though under the guidelines of the Recovery Act states were given 120 days to

obligate half of their federal stimulus transportation funding to projects, California

obligated half the funds two months ahead of the deadline. Furthermore, California

was the first state in the nation to obligate $1 billion (by May 2009) and $2 billion

(by September 2009). The funding, was fully obligated on February 18, 2010, and

was designated to 907 projects (516 projects worth $2.5 billion were already awarded

to begin work by then).

In summary, the government had two objectives behind the stimulus package

which are explicit in the name of the Act. On the one hand, it aims at jumpstarting

the economy as soon as possible, and on the other, it aims at investing in transporta-

tion infrastructure. But when the supply is slow to react, there is a trade-off between

the two objectives. To some extent one can reinterpret the result in Goolsbee (1998)

in terms of this trade-off. Using data from R&D government expenditure, he finds

that the majority of the expansion in R&D expenditure goes directly into higher

wages, an increase in the price rather than the quantity of inventive activity. This is

due to an inelastic supply of scientific and engineering talent. Therefore, even though

the money from the expansion still goes into the people’s hands —scientists in his

case— it does not necessarily translate into more public goods.

In the highway procurement setting, the trade-off is caused by the inter-temporal

linkage of firms’ costs (through their backlogs) and upward sloping marginal cost

curves. JP documents the fact that previously won and uncompleted contracts affect

a firm’s current costs. Since the duration of highway paving contracts is typically

several months, winning a large contract may commit some of the bidder’s machines

and resources for the duration of the contract. Although a firm can pay overtime

wages, hire additional workers and rent additional equipment, this may increase total

cost. Therefore the cost of taking on an additional contract is increasing in the firm’s

backlog.12 As a result, for any given project, the higher the current backlogs are the

higher the price paid by the government.

In addition to the direct effect of backlogs on prices, there are other indirect

channels which affect the equilibrium price of a project. Through a strategic effect,

even firms currently operating with a low level of backlog may end up bidding less

aggressively if rivals are constrained. In a static context, Maskin and Riley (2000)

and Cantillon (2008) find that asymmetries in bidders’ costs soften competition since

12In a static context, Bajari and Ye (2003), DeSilva, Dunne, and Kosmopoulou (2003), and Bajari,
Houghton, and Tadelis (2006) also find that firms bid less aggressively as backlog increases.
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low cost firms react to high cost firms participating in the auction by strategically

increasing their bids. The asymmetries in my model arise from firms having different

levels of backlogs. Furthermore, there is a competition effect affecting prices. High

backlogs may deter firms from participating in the auctions, thus reducing the number

of bidders. A key feature of my model, as opposed to the one in JP, is that it considers

endogenous entry, thus taking the latter effect into account.

From the stimulus objective perspective, an increase in the prices of projects poses

no problem since money still reaches the firms. However, given a fixed budget, higher

prices clash with the investment objective since the government can buy fewer public

goods. Moreover, from a welfare point of view, if we were to ignore the cost of raising

the money to finance the stimulus package (i.e., suppose there is no surplus lost when

the government raises taxes), we should only care about the cost of the resources used

to build or repair the roads. Since higher backlogs increase firms’ costs, the demand

expansion generates an inefficiency.

In the highway procurement setting, the government does not only choose the

amount of the demand expansion, but has another choice variable at hand: when and

how to pace the release of new projects. Pacing matters because the current level

of firms’ backlogs is a function of previously awarded contracts. To illustrate the

issue, think of an extreme case. Suppose the government does not announce any new

projects. As previously awarded projects progress, the backlog levels decay naturally

over time. As was discussed above, the lower the backlog, the lower the prices for new

projects. The longer the government waits to release the stimulus funded projects,

the lower its prices, and given a fixed amount to spend, the higher the quantities of

public goods (i.e., more roads) it can purchase. But on the other hand, firms may

receive the funds too late, defeating the government’s first objective. In the words of

Caltrans Director Will Kempton, it appears that the priority was putting the money

in people’s hands: “This is about getting the stimulus dollars out to projects quickly

and providing jobs as soon as we can.” In Section 9, I quantify the amount of public

goods the government gave up as a result of this policy.

I am also interested in the effect of stimulus funded projects on the prices of

projects funded from other sources. The linkage is again through the backlogs. Stim-

ulus funded projects raise committed capacity, and thus we should expect higher

prices for projects coming after them. However, these projects are funded by the

states. There is then an externality that may have been overlooked by the states

when receiving the stimulus funds. I quantify this effect in Section 9 as well. Table

1 shows the dollar amount of projects awarded by year, and for 2009 and 2010 it
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Table 1: Projects by Year and Source

Total Amount Number of Avg Amount Avg Length
Year Funds

Awarded ($B) Projects ($M) (days)

2006 2.666 598 4.457 167.7
2007 2.923 584 5.004 158.0
2008 3.551 656 5.413 142.8
2009 total 3.327 636 5.230 141.6

other 2.336 560 4.172 131.0
ARRA .990 76 13.028 219.3

2010 total 3.141 648 4.846 155.5
other 2.441 614 3.974 142.2

ARRA .700 34 20.589 395.2

includes a breakdown by source of funds. Stimulus funded projects accounted for

30% and 23% of the total dollar value in 2009 and 2010 respectively. Those projects

were significantly larger on average (3 and 5 times as large, respectively) than projects

from other sources. Also, the projects were longer on average. The effects on backlogs

are then expected to be relatively larger.

4 Data and Procurement Process

In this section I describe the procurement process in California and the data I use.

Additionally, I present some preliminary descriptive regressions to show that the

data suggest the existence of both a backlog effect and unobserved heterogeneity.

Although no causal effect can be claimed at this level, the regressions show that there

is a positive correlation between a firm’s backlog level and its bids, and a negative

correlation with its individual participation decision. Also, high levels of backlogs are

associated with a smaller number of bidders. These results suggest the presence of

dynamic links between previously won projects and current outcomes.

I use highway procurement data from Caltrans from January 2000 through July

2011, from all 12 districts. For each project, I collect information from the publicly

available bid summaries. The data correspond to road and highway maintenance

projects’ auctions, and include information on the bidding and award date, project

characteristics (location of the job site, the estimated working days required for com-

pletion, and an engineer’s estimate of the project cost in dollars), the number of

planholders (potential bidders), the identities of the bidders, and their bids. Data

from the same source, although for different time periods, have been used in previous
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studies by JP, Bajari, Houghton, and Tadelis (2006), and Krasnokutskaya and Seim

(2011).

I complement Caltrans’ data by constructing the backlog variable using previously

won uncompleted projects. For each firm, at any point in time the backlog is defined

as the amount of work in dollars that is left to do from previously won projects.

Following Porter and Zona (1993) and JP, I assume a constant pace for the progression

of work. Thus, for each firm and for every contract previously won, I compute the

amount of work in dollars that is left to do by taking the initial size of the contract

and multiplying by the fraction of time that is left until the project’s completion date.

To make this variable comparable across firms, I standardize it by subtracting the

firm specific mean, and then dividing by the firm specific standard deviation.

I also collect data on firms’ number of plants and their locations, and calculate

the driving distance13 to the job location. For projects with multiple locations I take

the average across them, and for firms with multiple plans I consider the minimum

distance, i.e., the distance to the closest plant. Finally, for each project I construct a

measure of active bidders in the area by counting the number of distinct firms that

bid in the same county over the prior year.

During the sample period I consider, Caltrans awarded 6686 projects with a total

dollar value of $26.6 billion. In my analysis, I exclude projects where the main task

is other than road and highway maintenance —such as landscaping, electrical work,

or work on buildings— leaving 5753 auctions in my dataset.14 Since I do not have

auxiliary data to construct the backlogs prior to 2000, I drop the first year in my

sample (589 auctions) in the estimation and use it to construct the backlogs at the

beginning of 2001.

Caltrans uses a first-price sealed bid auction mechanism. The letting process

involves the following steps. First, there is an initial announcement period of the

project where few details are revealed (consisting of a short description of the project

that includes the location, completion time, and a short list of the tasks involved).

The advertising takes place three to ten weeks prior to the letting date, and depends

on the size or complexity of the project. Second, interested firms may request a bid

proposal document which includes the full description of the work to be done and

13I use Google Maps to get the distances. I also tried driving time instead of distance and results
remained unchanged.

14Data for projects in the first semester of 2003 are missing. This accounts for 264 projects.
Even though I cannot include these projects in my estimation, using auxiliary data I was able
to reconstruct who the winner was, its bid and the number of working days. This is extremely
important, because without these data I would have not been able to construct the backlog variable
and would have had to discard data from 2000 to 2003 in the estimation.
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project plans. Planholders may submit a sealed bid. Finally, on the letting day, bids

are unsealed, ranked, and the project is awarded to the lowest bidder. The winning

firm is awarded the contract within 30 days (for projects up to $200 million), or 60

days (for projects above $200 million).

While a firm cannot submit a bid without requesting the detailed specification,

buying the project documents does not always result in a bid. On average, less than

45% of the planholders ends up submitting a bid. This may be rationalized from

the fact that preparing the bid in this setting is costly. To bid on a project, a firm

has to submit a bid bond (a predetermined percentage of the bid) and complete bid

documents. The bid should include a detailed breakdown of costs by items (such as

labor, mobilization, and materials). In most of the cases, firms have to subcontract

parts of the work. This involves having to contact and negotiate with subcontractors.

The process of reviewing the contract and submitting a bid is therefore costly, in

terms of time and resources. Also, the bid preparation process I describe serves

as a justification for an assumption I make later. It specifies that firms only learn

their private project cost after they have decided to bid. Furthermore, I follow the

standard convention in the literature and assume that firms know the identities of

the other bidders. Krasnokutskaya and Seim (2011) justify this assumption in the

highway procurement setting by the fact that it is common for bidders to share the

same subcontractor in a given project, and thus it should be easy for them to learn

who else is bidding.

In the data there are 1420 unique bidders. The vast majority only submits a bid

once or just a few times in the 11 years of my sample period (52% of the firms submit

at most 3 bids; 80% of the firms, at most 18 bids). On the other hand, there is a small

group of firms that submit bids regularly throughout the period. Figure 1 shows a

histogram for the number of bid submissions. Based on this fact, I consider two types

of firms: regular and fringe. Regular firms are selected according to the following

criteria: the top ten firms in terms of dollar value won who submit at least 300 bids

in the sample period. At least one of the 10 regular firms participates in 77% of the

auctions; regular firms won 23% of the projects which accounted for 27% of the total

dollar value awarded.

Table 2 presents summary statistics for selected variables. On average, an auction

attracts 14 planholders and close to 6 bidders. As was already mentioned, less than

half of the planholders ends up submitting a bid. There is one regular bidder, on

average, and the number ranges from 0 to 5. The average project has a duration

close to 5 months. The variable (rank2−rank1)
rank1

is also referred as “money left on the

13



Figure 1: Number of Bid Submissions
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Table 2: Summary Statistics of Selected Variables

Obs Mean Std. Dev. Min Max

Number of bidders 5753 5.67 3.11 1 23
Number of planholders 5753 14.36 8.49 2 50
bidders/planholders 5753 .44 .19 .02 1
Number of reg bidders 5753 .94 .86 0 5
log(estimate) 5753 13.90 1.41 11.17 19.79
Number of days 5753 127.67 178.19 7 1850
(rank2-rank1)/rank1 5625 .10 .12 0.00 1.49
(rank1-est)/est 5753 -.11 .25 -.83 2.30

table” in the auction literature. It measures the difference between the lowest and

second lowest bid, as a fraction of the lowest bid, and gives an indication of the level

of uncertainty or informational asymmetries in the market. On average, the second

lowest bid is 10% higher than the winning bid. Table 3 provides a summary with

a breakdown by number of bidders. Although “money left on the table” decreases

with the number of bidders, it does not approach 0, suggesting that the magnitude

of informational asymmetries may be large. This can also be seen from the relative

difference of the winning bid to the engineer’s estimate. It is on average -11%, and

it is clearly decreasing in the number of bidders. It goes from being 24% above the

estimate when there is only one bidder to 26% below it when there are 8 or more

14



Table 3: Summary Statistics of Selected Variables by Number of Bidders

# bidders 1 2 3 4 5 6 7 8+ All

# obs 128 556 822 899 791 713 535 1,309 5,753
log(estimate) mean 13.47 13.91 13.82 13.92 13.96 13.99 14.08 14.02 13.90

std dev 1.20 1.29 1.29 1.40 1.43 1.46 1.50 1.47 1.41
(rank2-rank1)/rank1 mean 0.19 0.12 0.10 0.08 0.08 0.07 0.08 0.10

std dev 0.19 0.13 0.12 0.08 0.10 0.07 0.09 0.12
(rank1-est)/est mean 0.24 0.05 -0.02 -0.08 -0.10 -0.15 -0.20 -0.26 -0.11

std dev 0.41 0.26 0.24 0.23 0.21 0.19 0.19 0.18 0.25

bidders. Also note that larger projects, as measured by the engineers’ estimate, seem

to attract more bidders (without conditioning for any other variable).

I now turn to the descriptive regression results. Table 4 shows results for OLS

regressions where the dependent variable is the log of bids. The first three columns

include observations from all bidders, columns 4 and 5 include only bids from fringe

bidders, and the last three columns include only regular bidders. The regressors in-

clude the (log) engineers’ estimate, the (log) number of working days, the number

of items involved in the project, the (log) distance between the firm and the project

location, and the number of regular and fringe bidders in the auction. Some specifi-

cations include a dummy which equals one if the bidder is a regular firm, the firm’s

standardized backlog, the sum of standardized backlogs for regular firms participating

in the auction, and the sum of standardized backlogs for regular firms not partici-

pating in the auction. All specifications also include time, district, and type of work

fixed effects. All signs are as expected. Bigger projects (as proxied by the engineers’

estimate) and greater distance to the job site are associated with larger bids, shorter

projects, and a higher number of rivals are associated with lower bids.

As mentioned in the Introduction, backlogs may affect equilibrium bids via several

channels. First, there is a direct effect: we expect the higher the firms’ backlog, the

higher the cost for completing a new project, and the higher the cost, the higher its

bid. From Table 4 columns 6-8 we see that an increment of 1 standard deviation in a

firm’s backlog is associated with a 3% increase in its bid. The second channel is the

strategic effect. That is, if rivals are constrained, even an unconstrained firm may bid

less aggressively. We see that sum of (standardized) backlogs of rivals is positively

correlated with the level of bids for both regular and fringe firms. For example, an

increase in the backlogs of all 10 regular firms by 1 standard deviation is associated

15
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with a 6% higher bid for a fringe firm. For a given regular firm, conditional on its

backlog, if other regular firms increase their backlog by 1 standard deviation, its bid

is 6.3% higher.

Finally, the third channel is the competition effect. I show that higher backlogs

are associated with a lower number of bidders (see Table 7), and we see in Table 4

that the lower the number of bidders (both regular and fringe) participating in an

auction, the higher the equilibrium bids.

Table 5 shows the results for the OLS regression of (log) winning bid. Results are

qualitatively similar to the previous table, except that some coefficients are now not

statistically significant which may be due to the fewer number of observations.

Since I have 5164 auctions with a total of 29606 bids, and most of the auctions

have more than one bid, I can exploit the panel structure of the data to control

for unobserved (auction-level) heterogeneity observed by bidders when making their

bidding decisions, but not observed by the econometrician. Table 6 shows the results

for a random effects panel data model. Estimates of the coefficients for the observable

variables do not vary significantly with respect to those from the OLS regressions,

but the error variance from the unobserved heterogeneity accounts for 60 to 70%

of the total error variance, supporting the existence of (auction-level) unobserved

heterogeneity.

Now I show evidence that higher levels of backlogs are associated with less par-

ticipation. In the first column of Table 7, I show the results from an OLS regression

where the dependent variable is the number of bidders. The regressor potential firms

is a proxy for the number of active firms in the area.15 We observe that the sum

of standardized backlogs is significant and enters with a negative sign, meaning that

the level of backlogs is negatively correlated with the number of bidders. Since the

dependent variable is a count variable, I also fit a Poisson regression model where the

conditional mean is modeled as E[NB|x] = exp(xβ). Estimation results for the coeffi-

cients β are shown in the second column. Again, as the level of backlog increases, the

equilibrium entry probability decreases. Since in the Poisson distribution the mean

and variance are the same, I run a test for the goodness-of-fit. The large value for χ2

is an indicator that the Poisson distribution is not a good choice. In the third column

I show results for a negative binomial regression which is often more appropriate in

cases of overdispersion, where α is the overdispersion parameter.16 Although a likeli-

15It is constructed by counting the number of distinct firms that bid in the same county over the
prior year.

16When the overdispersion parameter is zero, the negative binomial distribution is equivalent to
a Poisson distribution.
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Table 7: Number of Bidders

OLS Poisson Negative Binomial

constant 16.259*** 3.404*** 3.388***
(.884) (.112) (.135)

log(eng) -.742*** -.118*** -.119***
(.067) (.008) (.010)

log(days) .214** .034*** .039**
(.105) (.013) (.008)

items .018*** .003*** .003***
(.002) (.0002) (.0003)

potential firms .0001 .00003 .00003
(.0001) (.0001) (.0001)

sum std bl -.244*** -.039*** -.039***
(.022) (.003) (.003)

α .070***
(.005)

nobs 5164 5164 5164
R2 0.15
χ2 4505 283

Dependent variable is the number of bidders. All regressions
include time, district, and type of work dummies. Standard
errors in parenthesis. ***, **, * denote significance at the
1%, 5% and 10% level.

hood ratio test shows that the overdispersion parameter is significantly different from

zero, the point estimates remain virtually unchanged.

As a last piece of evidence, Table 8 shows probit estimates for the participation de-

cision of regular firms. The dependent variable is a binary variable indicating whether

the firm participates in the auction. The firms’ backlog coefficient is significant and

enters with a negative sign. In fact, increasing a firm’s backlog by 1 standard devi-

ation makes the firm 15% less likely to participate, and a firm with a standardized

backlog equal to 2 is 55% less likely to participate than a firm with a standardized

backlog equal to -2.

5 The Model

This section describes the model I take to the data. The model I develop here is based

on JP’s repeated first-price bidding game in which firms’ costs are intertemporally

linked through their backlogs. I depart from it in two critical ways. I allow for auction

level unobserved heterogeneity and endogenous participation.
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Table 8: Regular Bidders Participation Decision

(1) (2)

constant -.784*** -.729***
(.168) (.169)

log(eng) .168*** .167***
(.012) (.012)

log(days) -.041** -.041**
(.020) (.020)

items -.0007* -.0007*
(.0003) (.0003)

log(dist) -.602*** .603***
(.010) (.010)

potential bidders -.001*** -.001***
(.0002) (.0002)

std bl -.069*** -.073***
(.010) (.010)

sum std bl rivals -.015***
(.004)

nobs 51640 51640

Probit estimates for the decision to participate
(regular firms only). All regressions include time,
district, and type of work dummies. Standard er-
rors in parenthesis. ***, **, * denote significance
at the 1%, 5% and 10% level.

Time is discrete with an infinite horizon, t = 1, 2, . . .. I consider two types of

risk-neutral firms. My main focus is on regular firms which are long-lived and stay in

the game forever. The number of regular firms is fixed and known, and I denote it by

N reg. Fringe firms are short-lived: they participate in an auction and then die. This

modeling choice reflects my finding that a small group of firms submits bids regularly

in the sample period and a large group of firms submits bids just a few times (see

Section 4). For the latter group, I do not have enough observations to describe their

dynamic behavior.

Each project is associated with characteristics (Y,W ) which are drawn indepen-

dently and identically from the distribution function FY,W (·) with finite support

SY,W .17 These characteristics include all the information about the project such as

17Throughout the paper, random variables are in uppercase and their realizations in lowercase;
vectors are in boldface. I denote the cumulative distribution function of a latent random variable X
by FX(·), and that of an observable random variable X by GX(·). I use lowercase for their associated
densities or probability mass if the random variable is discrete. Later in the paper, I use lowercase
boldface to denote some matrices.
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the size and duration of the project, its location, the quality of the existing road, etc.

The distinction between Y and W is that the latter represents auction specific un-

observable factors, i.e., factors observed by the firms participating in the auction but

not by the econometrician. I assume that the unobserved factors can be summarized

as a scalar index. I assume that future project characteristics are not known to the

firms at time t, but the distribution function FY,W (·) is common knowledge.

The existence of unobserved auction heterogeneity is an important feature of my

model. It is also a critical difference from JP. As has been documented by Krasnokut-

skaya (2011) in the highway procurement setting, costs can be substantially affected

by local conditions, such as elevation, curvature, traffic, age, or quality of the exist-

ing road. These conditions are included in the project plans and documentation and

hence observed by the firms, but typically are not observed by the econometrician.18

I assume an independent private values (IPV) setting (symmetric conditional on

project and firms’ characteristics). This assumption is justified by the fact that

in road/highway maintenance projects, the project itself is precisely specified, hence

bidders can accurately predict their own costs (as opposed to a common-value setting).

The source of variation in private costs comes from firms having different opportunity

costs for their own resources or differences in the input prices they face.

I consider a general non-separable structure for the private costs. For regular

bidder i in auction t, the cost of completing the project is given by

(1) Cit = c(C̃it, Yt,Wt, sit)

where C̃it is the private type, and sit is a vector of state variables for bidder i.19

Bidder i’s state vector, si, includes a list of the sizes of all uncompleted projects won

by i in the past and the time to complete each of them. I assume that the vector

of all regular bidders’ state variables, denoted by s, is observed by all bidders and

the econometrician. Note that bidder i observes all components of (1) separately

and not just the realization of Cit. Krasnokutskaya (2011) considers a similar cost

structure, although she imposes a linear functional form on (1), an assumption that is

crucial for identification in her setting. Li, Perrigne, and Vuong (2000) also consider a

similar structure where bidder’s costs are composed of common and individual factors.

However, bidders do not observe the realization of the common factor separately from

18Additionally, it is common for firms to send engineers to the location to assess these factors
before submitting a bid.

19Implicitly I am assuming that all regular firms have the same cost function c(·). This is not
necessary and it is straightforward to allow for a different cost function for each firm.
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the entire realization of their costs. Also, critical for identification in their setting is

the linear functional form for (1).

Similarly, for fringe bidder j at auction t we have

(2) Cjt = cf (C̃jt, Yt,Wt).

From now on I drop the subscript t for simplicity. The cost of a regular bid-

der i is drawn from the continuous conditional distribution FC|YWs(·|·) with support

[C(Y,W, s), C̄(Y,W, s)], and the cost of a fringe bidder is drawn from the continuous

distribution function F f
C|YW (·|·), with support [Cf (Y,W ), C̄f (Y,W )].

The only restriction I require on (1) (and an analogous one for fringe firms) is the

following

Assumption 5.1 E[Ci|y,W = l, s] < E[Ci|y,W = m, s] for l < m, all i, y, s.

The previous assumption is a stochastic monotonicity condition on the unobserv-

able. This is a reasonable assumption if we think of the unobserved factor as some

measure of the project’s quality. Sufficient conditions (omitting dependence on ob-

served variables for simplicity) are, for example, that the conditional distributions

of the private costs satisfy FCi|W (x|W = l) > FCi|W (x|W = m) for l < m, all x;

or the assumptions in Krasnokutskaya (2011), namely, C̃ ⊥ W and C = c(C̃,W )

strictly increasing in both arguments. These assumptions are stronger than 5.1 and

not necessary in my setting.

5.1 The stage game

The stage game is based on the actual procurement process in California. At every

period t the buyer offers a single contract for sale. The timing of the stage game is

as follows:

1. Advertising period: firms observe (Y A,WA) where Y A is a subset of Y and WA

is a noisy signal of W .

2. Based on (Y A,WA) and backlogs, firms simultaneously decide to request the

documents containing the full details of the project. I assume that the number

of planholders and their identities is not public information.

3. If the firm has requested the documents, it learns (Y,W ) and gets a draw of the

bid preparation cost, κBi , which I assume is iid across firms and time. The bid

preparation cost is private information.
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4. Based on (Y,W ), κBi , and backlogs, the firm decides whether to prepare a bid

(before learning its private project cost).

5. If the firm decides to prepare a bid, it learns its private project cost, ci. I

assume that while learning the private cost, the firm also learns the identity of

its rivals.20 The firm then submits a bid (no reserve price).

6. The buyer awards the contract to the low bid firm at a price equal to its bid.

Consistent with the data, in the advertising period firms do not observe the com-

plete set of characteristics but just the few characteristics that are advertised and a

noisy signal about the unobserved project level factor.21 In this setting, κBi is a signal

acquisition cost as in Levin and Smith (1994) (which has been used in empirical appli-

cations in Bajari and Hortacsu (2003), Athey, Levin, and Seira (2011), Athey, Coey,

and Levin (2011), Krasnokutskaya and Seim (2011), and Groeger (2010)) and not a

bid preparation cost as in Samuelson (1985). In the latter case, firms first observe

their project cost and then decide whether to incur the cost to prepare their bid.22

5.2 Participation Decisions

In my model, participation is endogenous in the sense that I allow project characteris-

tics (observed and unobserved) to affect the number of bidders.23 That is, firms may

decide to participate in an auction after learning the project characteristics but prior

to learning their private cost. Although taking to the data a full structural model

that includes individual participation decisions (such as the one described in Section

5.1) jointly with the bidding decision would improve the efficiency of my estimates,

it is beyond the scope of this paper. Instead, I follow HHS and use reduced form

20The same assumption has been used in Krasnokutskaya (2011), Krasnokutskaya and Seim (2011),
Athey, Levin, and Seira (2011), and Athey, Coey, and Levin (2011).

21For example, if the unobserved factor is the quality of the existing road, firms may know that
in general the quality of the road to be repaired is “bad,” but they do not know the exact quality
level for the specific section of the road involved in the project.

22Li and Zheng (2009) jointly model the entry and bidding decisions under both Levin and Smith-
and Samuelson-type of models. Using highway procurement data, they find that the Levin and
Smith model fits the data better. Roberts and Sweeting (2010) and Marmer, Shneyerov, and Xu
(2011) take an alternative route, and instead of considering the two polar cases they allow bidders to
have an imperfectly informative signal about their value prior to deciding whether to pay the entry
cost. As signals become more (less) informative, the model approaches the assumption in Samuelson
(Levin and Smith).

23Although I will use the term participation equations for both the decision to become a planholder
and the decision to submit a bid, hereafter when I say that a firm participates in an auction I am
referring to a firm that has payed the signal acquisition cost and becomes an active bidder.
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equations which are based on the structure of the model described in the previous

section. This is enough to allow me achieve identification of the objects of interest.

As mentioned earlier, endogenous participation is one chief deviation that I make

from JP. In their model, the number of bidders is exogenously determined: regular

firms always bid, and fringe firms’ participation is taken as exogenous. They also make

the assumption that the researcher may not observe all bids from regular bidders due

to a reserve price. That is, bids that are above the reserve price are rejected and

not recorded.24 In extensive conversations with engineers at Caltrans, they confirmed

that there is no reserve price (publicly announced or not), and that all bids received

are recorded.25 This is consistent with the no reserve price assumption made by other

studies that use Caltrans data (see Section 4 for references).

The setup and assumptions in this section closely follow HHS with two differ-

ences. I consider two participation equations, one for the number of planholders and

the other for the number of bidders. Additionally, I relax the structural assumption

that requires the observable variables in each of the equations to be a “sufficient”

statistic for the unobservable, W . In the auction literature, Campo, Perrigne, and

Vuong (2003) and Guerre, Perrigne, and Vuong (2009) also use the latter assumption

to solve the unobserved heterogeneity problem. This may be a strong assumption

on the structure of the model, and there are at least two reasons why it might not

hold in many applications. First, other unobservable factors may enter into the en-

dogenous outcome determination. Second, if the unobservable factor is realized after

the endogenous outcome decision that the researcher is exploiting, the endogenous

outcome may rely only on a noisy signal of the unobserved heterogeneity.

Let NA denote the number of planholders, i.e., the number of firms that show

interest in the advertising period and request the documentation, and let NB denote

the number of bidders. According to the timing of the stage game, I write

(3) NA = φA(Y A,WA, s)

(4) NB = φB(Y,W,κB, s)

where WA = ωA(W,u) is a noisy signal of W , u is an unobserved (both to the firms

and the econometrician) error,26 κB is the vector of signal acquisition costs, and

24JP claim that they observe that 12% of all bids are above the reserve price. They consider that
as erroneous and exclude them from their analysis.

25Caltrans may reject a bid if it considers that the firm is not responsive or that it has not met
the qualification requirements. Even in this case, the bid is recorded and marked as rejected.

26Since W is a discrete random variable, u is in fact a misclassification error, and WA is said to
be a misclassified measurement of W .
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both φA(·) and φB(·) are unknown functions. Note that I use the term reduced form

in a very precise way. Equations (3) and (4) represent the relationships between the

respective participation outcomes and auction characteristics and firms’ types implied

by the underlying structural model.

I further assume that the vector of signal acquisition costs, κB and W enter (4)

as a scalar index WB = ωB(W,κB). This may be a restrictive assumption but it is

typical in the literature to reduce the dimensionality of the unobservables to a scalar.

Nevertheless, there is a sense in which the scalar assumption here is weaker than in

the traditional control function approaches used in auctions. This stems from the fact

that I am allowing the unobserved factor WB to differ from the unobserved factor

entering the bidding decision (i.e., the outcome equation).

Then I can rewrite the equation for the number of bidders as

(5) NB = φB(Y,WB, s).

I make the following assumptions:

Assumption 5.2 WA is independent of (Y A, s); and WB is independent of (Y, s).

Assumption 5.3 For all (yA, s), the support of NA|(yA, s) is a finite convex subset

of Z+; for all (y, s), the support of NB|y, s is a finite convex subset of Z+

Assumption 5.4 φA is strictly increasing in WA; φB is strictly increasing in WB.

Assumption 5.2 is not necessary but greatly simplifies the proofs that follow.27

Assumption 5.3 seems harmless since the number of firms in the market is bounded

from below by zero and from above by the total number of firms, for example, in the

country. On the other hand, the strict monotonicity of the functions φA(·) and φB(·)
on WA and WB, respectively, is a strong restriction since it requires that both WA

and WB be discrete.28 This assumption is key in my procedure since I rely on it to

invert the relationships and recover the unobserved WA and WB, and is a typical

assumption in other nonparametric control function strategies (see Chesher (2003),

Imbens and Newey (2009)). Although the discreteness of WA and WB is a strong

27The proofs still hold conditional on (Y A, s) and (Y, s)
28The same kind of discreteness of the unobservable arises in Campo, Perrigne, and Vuong (2003)

for the same reasons I articulate.
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assumption, it is common in practice to assume a discrete support for unobserved

factors to nonparametrically approximate its distribution.2930

Since WA is a misclassified measurement of W , both variables share the same sup-

port, which will be denoted by {wk}Kk=1 with K unknown but finite from Assumption

5.3. The support of WB is denoted by {wBk }K
B

k=1 where, again, KB is unknown but

finite. Let the associated probabilities be {pAk }Kk=1 and {pBk }K
B

k=1, respectively. The

identification result in Section 6.2 requires that K ≤ KB. In what follows, for ease

of exposition and without loss of generality, I assume KB = K.31

Discussion. Although I have started from a structural model of participation

decisions (Section 5.1) and based the reduced form equations on it, the procedure

developed in this paper does not require it. In fact, one can replace equations (3)

and (4) by any other two endogenous outcome equations, for example, the number

of regular bidders and the number of fringe bidders. The identification proof does

not rely on the structural participation model. It just requires that the researcher be

able to obtain two potentially noisy measurements of W . This is an advantage of the

procedure, but at the same time there is a limitation. By relying on reduced form

equations, I cannot analyze some kinds of counterfactuals like changes in the auction

rules not captured by changes in the variables entering equations (3) and (5). This

criticism is also shared by other control function approaches that rely on a reduced

form equation (e.g., HHS and Roberts (2011)).32 Nevertheless, there are interesting

and important questions that can still be answered such as the ones raised in this

paper.

5.3 Bidding Decision

Conditional on participation, bidders have to optimally choose their bids. Let N
denote the set of bidders at the auction. It is enough that N includes the identities

of the regular bidders and just the number of fringe bidders (not their identities).

29In fact, it is not obvious that specifying a know parametric distribution for a continuous unob-
served factor, is better than assuming a discrete support, since economic theory offers little guidance
on the actual functional form of the distribution. In fact, the choice of a particular distribution of
unobservables is usually justified on the grounds of familiarity, ease of manipulation, and consid-
erations of computational cost. See Heckman and Singer (1984) for a discussion in the context of
duration models.

30In the application, I consider 20 points in the supports of WA and WB .
31The identification proof still holds, but I need to replace the matrix inverse operator with

generalized inverses for non-square matrices.
32Although Roberts does not use a participation reduced-form equation, he uses a reserve price

reduced form equation subject to the same criticism. Changes affecting the way the reserve price is
set cannot be considered in counterfactuals.
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Consistent with the timing of the stage game and equation (5), the set of bidders N
is a function of (Y,W, s,κB), and |N | = NB. At the bidding stage (y, w,N , s) is

observable to all bidders. Let bi denote bidder i’s bid.

Let x = (z, τ) be the size and duration of the project (which is in fact a subset

of the vector y) with finite support SX . Let S denote the support of s. Then, the

transition function of the regular firms’ state variable ω : SX×S×{1, . . . , n} → S is a

deterministic function of the contract size, length, the state variables and the identity

of the winner. This function updates the backlogs of each of the regular firms as

follows. Since I do not observe the pace at which projects are completed, I assume a

constant progression over time.33 That is, at every point in time, an equal share of

the project is completed. As time advances one period, for each firm all previously

won and uncompleted projects decrease their size proportionally, and the length is

reduced by one unit. If firm i is the current winner, then the project size and length

is added as the first element of si, otherwise (0, 0) is added. Mathematically, I can

write the i-th component of the transition function as

ωi(x, s, j) =


(

(z, τ),
(

max(τ li−1,0)

τ li
zli,max(τ li − 1, 0)

)τ̄−1

l=1

)
if j = i(

(0, 0),
(

max(τ li−1,0)

τ li
zli,max(τ li − 1, 0)

)τ̄−1

l=1

)
if j 6= i

where τ̄ is the maximum length of a project.

Bidders discount the future with a common discount factor β ∈ (0, 1). The dis-

count factor is known to the econometrician and bidders and constant over time.

Conditional independence of contract characteristics and cost realizations is a cru-

cial assumption that allows me to adopt a Markov dynamic decision process. I con-

sider a Markov-perfect equilibria concept (and restrict to symmetric strategies). This

means that the equilibrium strategies do not depend on time. Let b(ci, y, w,N , si, s−i)
be i’s strategy, and let b−i denote the strategy profile of rivals.

Since the outcome of the auction affects not only current profits but also the firm’s

backlog, firms choose their bids so as to maximize the expected discounted value of

future profits. The discounted sum of future expected payoffs for regular bidder i can

33The same assumption is used in JP, Porter and Zona (1993), Li and Zheng (2009), and Bajari,
Houghton, and Tadelis (2006).
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be written in value function form as

Mi(y, w,N , s, c, b−i) = 1{i ∈ N}max
b

{
(b− c)Pr(i wins|b, y, w,N , si, s−i)(6)

+β
∑
j∈N

Pr(j wins|b, y, w,N , si, s−i)

×EYWN

[ ∫
Mi(y

′, w′,N ′, ω(x, s, j), c′, b−i)

×f(c′|y′, w′,N ′, ωi(x, s, j))dc′
]}

+1{i 6∈ N}β
∑
j∈N

Pr(j wins|y, w,N , s)

×EYWN

[ ∫
Mi(y

′, w′,N ′, ω(x, s, j), c′, b−i)

×f(c′|y′, w′,N ′, ωi(x, s, j))dc′
]

Let G(·|y, w,N , si, s−i) denote the distribution function of equilibrium bids of

bidder i with state (y, w,N , si, s−i) with associated density g(·|y, w,N , si, s−i). In

the same way, I write the distribution function of equilibrium bids of a fringe bidder

with state (y, w,N , s) by Gf (·|y, w,N , s) (with associated density gf (·|y, w,N , s)).

In an abuse of notation, I will write G(·|y, w,N , si, s−i) where i can take value f (and

it is understood that we refer to Gf (·|y, w,N , s)). Doing so, allows me to write the

probability that bidder i wins when she submits a bid equal to b as

Pr(i wins|b, y, w,N , si, s−i) =
∏

j∈N ,j 6=i

[1−G(b|y, w,N , sj, s−j)].

The probability that bidder i assigns to the event that bidder j wins when i bids b,

is given by

Pr(j wins|b, y, w,N , si, s−i) =

∫ b

b

g(x|y, w,N , sj, s−j)
∏

l∈N ,l 6=i,j

[1−G(x|y, w,N , sl, s−l)]dx.

Finally,

Pr(j wins|y, w,N , s) =

∫ b̄

b

g(x|y, w,N , sj, s−j)
∏

l∈N ,l 6=j

[1−G(x|y, w,N , sl, s−l)]dx

is the probability that bidder i assigns to the event that bidder j wins when i does

not participate in the auction.

It is convenient to write the maximization problem at the beginning of a period,
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prior to the realization of the private cost and prior to the realization of the contract

characteristics. Therefore, I define the ex ante value function as the value function

evaluated before Y , W , N , and private costs are realized. I write it as

(7) Vi(s, b−i) = EYWN

[ ∫
Mi(y, w,N , s, c, β−i)f(c|y, w,N , si)dc

]
.

Due to the Markov structure of the problem, equation (7) can be written recur-

sively as follows, dropping the dependence on rivals’ bidding strategies for notational

simplicity,

Vi(s) = EYWN

[
1{i ∈ N}

∫
max
b

{
(b− c)Pr(i wins|b, y, w,N , si, s−i)

+β
∑
j∈N

Pr(j wins|b, y, w,N , si, s−i)Vi(ω(x, s, j))
}
f(c|y, w,N , si)dc(8)

+1{i 6∈ N}β
∑
j∈N

Pr(j wins|y, w,N , s)Vi(ω(x, s, j))
]

Remember that fringe bidders enter in an auction and then die, therefore for fringe

bidder i the ex ante payoff is equal to the ex ante expected period payoff,

(9) EYWN

[ ∫
max
b

{
(b− c)Pr(i wins|b, y, w,N , s)f f (c|y, w,N )dc

]
.

It should be clear from the previous equation that fringe bidders assign no value to

the future.

Equilibrium existence. The equilibrium existence discussion in JP still applies to

the present model. Note that the realizations of both W and N are observed by the

firms at the time of bidding.

6 Nonparametric Identification

In this section I show the nonparametric identification of the structural elements of

the model. My underlying identification strategy is similar in spirit to the control

function approach (see Chesher (2003) and Imbens and Newey (2009), and HHS or

Roberts (2011) for applications to auctions). The control function approach relies on

an equation that relates an endogenous observed outcome to the unobserved factor.

With a strict monotonicity assumption, one can invert the relationship and use it

to control for the unobserved factor directly. I depart from this method by allowing

for an “imperfect” control function. That is, I do not require the observables in the
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relationship to be a sufficient statistic for the unobserved heterogeneity. Rather, I

exploit features of the procurement setting that provide a second “imperfect” control

function. The information obtained from these two noisy controls then resembles a

measurement error problem where we have access to multiple measurements. I attain

identification of the distribution functions of equilibrium bids using the result in Hu

(2008) for nonlinear models with misclassification error. The control functions I use

are derived from the reduced-form participation equations (3) and (5) in Section 5.2.

The main result states that FC|YWs(·|·), F f
C|YW (·|·), and FW (·) are nonparamet-

rically identified. The proof proceeds in three parts. First, I show that the reduced

form participation equations are identified. Second, I show that the conditional dis-

tribution functions of equilibrium bids are identified. Finally, I show that the value

function is identified and, using the first order condition at the bidding stage, I show

that the conditional distribution functions of private costs are identified.

6.1 Participation Decisions

Here I show that the participation equations are nonparametrically identified. The

results in this section follow from HHS.

First, it is useful to note that under assumptions 5.2-5.4 I can rewrite the reduced

form equations without loss as

NA = ζA(Y A, s) +WA

NB = ζB(Y, s) +WB

where ζA(·) and ζB(·) are unknown integer valued functions (see HHS for a proof).

In the data there are a few auctions that attracted zero bidders. For those auc-

tions, I do not observe the characteristics Y , and hence discard them from the esti-

mation. This results in sample selection, in particular, truncation from below at 1

in the reduced form equation for the number of bidders. HHS provide conditions for

identification when the sample is truncated both from below and from above. The

conditions I need for one-sided truncation are weaker. In particular, I require that

there is enough variation in the observables so that sometimes NB is not truncated:

Assumption 6.1 ∃(y, s)′ such that min supp{NB|(y, s)′} = 2

Theorem 6.1 Under assumptions 5.2-5.4 and 6.1, from the joint distribution of the

selected sample of observables the following objects are identified
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(i) ζA(·) and ζB(·) up to a location normalization,

(ii) the number of points in the support of WA and WB, i.e., K and KB,

(iii) the joint distribution of WA and WB.

Proof Let (ÑA, ÑB, Ỹ ) denote the selected sample. That is, (ÑA, ÑB, Ỹ ) = (NA, NB, Y )

is observed only if NB ≥ 1. Remember that the support of WA is given by {wk}Kk=1

and the support of WB is given by {wBk }K
B

k=1.

Without loss, I impose the following normalization: wk = k for k = 1, . . . , K and,

similarly, wBk = k for k = 1, . . . , KB.

From the joint distribution of (ÑA, ÑB) conditional on (y, s)′, K and KB are

identified and are equal to the number of points in the support of ÑA|(yA, s)′ and

of ÑB|(y, s)′, respectively. Also, the joint distribution of WA and WB, denoted by

pABij = Pr(WA = i,WB = j), is identified.

Now, the distribution of ÑA|(yA, s) reveals ζA(·) for all (yA, s) in the support

Ỹ A×S, just set ζA(yA, s) = max supp{ÑA|(yA, s)}−K. By the same argument, the

distribution of ÑB|(y, s) reveals ζB(·) for all (y, s) in the support Ỹ × S. �

6.2 Distributions of Equilibrium Bids

In this section I show that, despite the fact that the econometrician does not observe

W , the conditional distribution of equilibrium bids, G(·|y, w,N , si, s−i), and the dis-

tribution of unobserved heterogeneity, FW (·), are nonparametrically identified. In my

setting, the underlying problem is a finite mixture problem.34 This section relies on

recent results for nonlinear models with misclassification error by Hu (2008). All the

results in this section hold conditional on the project’s observable characteristics and

state variables. Thus, for notational simplicity I omit conditioning on them.

Contrary to previous studies, the obstacle to identifying the distribution of equi-

librium bids in my model stems from fact that neither control function (3) or (5)

allows me to recover the latent unobserved factor W . If one were able to do so,

one can just directly control for W in the bid distribution functions after inverting

the control function. This is the strategy followed, for example, by HHS, Campo,

Perrigne, and Vuong (2003), and Guerre, Perrigne, and Vuong (2009). The reason I

34Some recent work on nonparametric identification of finite mixture models includes Mahajan
(2006), Lewbel (2007), Chen, Hu, and Lewbel (2008a), Chen, Hu, and Lewbel (2008b), Chen, Hu,
and Lewbel (2009), Hu (2008), Chen, Hong, and Tamer (2005), Hall and Zhou (2003), Kitamura
(2003), and Henry, Kitamura, and Salanie (2011).
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cannot recover the latent unobserved factor W is the existence of other unobserved

factors, namely u and the vector κB, that contaminate the control functions.

In the production function estimation context,35 Ackerberg, Benkard, Berry, and

Pakes (2007) relax the scalar unobservable assumption. For expositional simplicity,

they proceed by assuming that a 2-dimensional unobservable enters in the endoge-

nous outcome equation (the investment equation in their case). One of the unobserved

factors is the one that needs to be controlled for in the outcome equation (the pro-

duction function) and the other is treated as a nuisance parameter. More structure

is required, so they add a second observed endogenous outcome equation, which also

depends on the two unobserved factors. Assuming that the system of endogenous

outcome equations is a bijection in the unobserved factors, they can invert the sys-

tem and recover the unobserved factor of interest. In that case, the traditional control

function approach still applies. My approach requires a second equation too, but I

cannot assume that the latent unobserved factor can be recovered by inverting the

system of equations. Instead, I just assume that I can recover two noisy measures of

it (where the measurement errors have to satisfy certain assumptions) and apply the

results from Hu (2008) to identify the distributions of equilibrium bids conditional

on the unobserved heterogeneity. In particular, I make the following assumptions

regarding WA and WB:

Assumption 6.2 Conditional on (Y,W, s), (C,U,κB) are jointly independent.

Define the K-dimensional square matrix36 gWB,WA ≡ [Pr(WB = i,WA = j)]i,j

i, j = 1, . . . , K.

Assumption 6.3 Rank(gWB,WA) = K

A first implication of assumption 6.2 is that WA and WB do not contain any useful

information on the private values C beyond that of the true value of W . In particular,

the signal acquisition costs are assumed to be independent of the project completion

cost. A second implication is that I require the misclassification error in WA, U , to

be independent of the bid preparation costs once I condition on W and the state

variables. Assumption 6.3 requires some statistical dependence between WA and WB

although it does not necessarily require correlation. This is natural since both are

meant to be informative signals of W . An advantage of the latter assumption is that

it can be tested from the data.
35See Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg, Caves, and Fraser

(2004)
36The identification result requires K ≤ KB . Remember that without loss of generality I assumed

K = KB .
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Theorem 6.2 Under assumptions 5.1-5.4 and 6.1-6.3, G(·|y, w,N , si, s−i) and FW (·)
are nonparametrically identified

Proof See the Appendix. �

6.3 Distributions of Private Values

I start by deriving the first-order condition (FOC) at the bidding stage. For a regular

bidder i with private project completion cost ci, the FOC corresponding to the optimal

bid is given by

ci = b− 1∑
j 6=i h(b|y, w,N , sj, s−j)

(10)

+β
∑
j 6=i

h(b|y, w,N , sj, s−j)∑
l 6=i h(b|y, w,N , sl, s−l)

[Vi(ω(x, s, i))− Vi(ω(x, s, j))]

≡ ξ(b|y, w,N , si, s−i, h, Vi)

where h(·|y, w,N , si, s−i) = g(·|y,w,N ,si,s−i)
1−G(·|y,w,N ,si,s−i) is the hazard function of bids. The

FOC relates firm i’s private information37 ci to its bid, the distribution and density

functions of equilibrium bids, and the value function. The first two terms on the right-

hand side are the usual terms from the static bidding model. They say that the bid

equals the private cost plus a mark-up term that accounts for the level of competition

in the current period. In the dynamic model, I have a second mark-up term that

accounts for the incremental effect on the future discounted stream of payoffs that

arises when firm i wins the contract instead of another firm. In other words, this

term accounts for the inter-temporal trade-off faced by the firm: winning an auction

today implies higher profits in the current period, but also an increase in the firms’s

backlog which leads to lower profits in the future (a higher backlog worsens the firm’s

strategic position and profits in future auctions).38 These forgone future profits are

taken into account by the firm when making its bidding decision.

In the pioneering approach of Guerre, Perrigne, and Vuong (2000) one would use

the FOC to infer the distribution of private values. Take, for example, the FOC

corresponding to the static model (first line of equation (10)). In that case bids are

observed, and I have shown in the previous section that the conditional distribution

function of equilibrium bids is identified. Therefore, all the objects on the right-hand

37This is in fact an abuse of language since the cost ci actually contains some common knowledge
components like Y and W .

38If instead we think that there is learning-by-doing then winning a project today would involve
higher profits in the future.
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side are identified which means that the conditional distribution of private values is

also identified.39 But with the FOC given in (10) we cannot proceed in this way since

there is an extra term including the value function. The problem is that the value

function given in equation (8) involves costs that are unobserved and equilibrium

decisions which are endogenous.

In the following Lemma, I derive a result that allows me to express the value func-

tion as a recursive equation in terms of the distribution of equilibrium bids only. This

is an extension of the result in JP without unobserved heterogeneity and exogenous

firm participation. The proof is given in the Appendix.

Lemma 6.1

Vi(s) = EYWN

{
1{i ∈ N}

(∫ 1∑
j∈N ,j 6=i h(·|y, w,N , sj, s−j)

dG(i)(·|y, w,N , s)

+β
∑

j∈N ,j 6=i

[
Pr(j wins|y, w,N , si, s−i)(11)

+

∫
h(·|y, w,N , si, s−i)∑

l∈N ,l 6=i h(·|y, w,N , sl, s−l)
dG(j)(·|y, w,N , s)

]
Vi(ω(x, s, j))

)
+1{i 6∈ N}β

∑
j∈N

Pr(j wins|y, w,N , s)Vi(ω(x, s, j))

}

where G(i)(b|y, w,N , s) is the ex-ante probability that i wins with a bid of b or less.

The representation given in Lemma 6.1 is a linear system of equations, with the

following solution

(12) Vi = [I − β(Bi +Di)]
−1Ai

where Ai, Bi, and Di are functions of the distribution of equilibrium bids and distri-

butions of observable and unobservable characteristics. Ai is the vector of expected

current period profits and (Bi +Di) is the matrix of transition probabilities. See the

Appendix for the derivation of (12) and expressions for Ai, Bi, and Di.

From Theorem 6.2 and Lemma 6.1, all the objects on the right-hand size of the

FOC are identified from the joint distribution of the observables. This implies that

39There is a difference between the approach in Guerre, Perrigne, and Vuong (2000) and the one
I introduce here when I allow for unobserved heterogeneity. I can no longer recover the private cost
c associated with every bid as they do, because I cannot recover the value of W for any particular
auction. But this does not pose a problem, since I can still recover the distribution of private values
conditional on any given value of W .
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the distribution of private values is also identified. I summarize this result in Theorem

6.3.

Theorem 6.3 Suppose Assumptions 5.1-5.4 and 6.1-6.3 hold. Suppose β is fixed

and known to the econometrician. Then the conditional cost distribution functions,

FC|YWs(·|·, ·) and F f
C|YW (·|·, ·) are nonparametrically identified.

7 Estimation

In this section I describe the estimation procedure I take to the data. Although a

nonparametric estimator is possible in principle, to avoid the curse of dimensionality

I implement a parametric version. The estimator follows from the identification proof

and it involves four steps. The first step estimates the control functions, i.e., I estimate

the participation equations and recover estimates of wA and wB. The second step

estimates the distribution functions of equilibrium bids conditional on observable

characteristics, state variables and WB. The third step implements the method from

Hu (2008) using the estimates from the first two steps to estimate the distribution of

equilibrium bids conditional on W . Finally, the last step estimates the value function

and uses the FOC to recover the conditional distribution of private costs.

7.1 Estimation of the Control Functions

The estimation of the control functions follows HHS. I specify a parametric form for

ζA(·) and ζB(·) and estimate the two participation equations via maximum likelihood.

Here I describe how I estimate (5) and estimation of (3) follows the same procedure.

The model is nonstandard due to the discreteness and the truncation from below at

NB = 1. Suppose ζB(Y, s) = byγBy +sγBs c where b·c is the floor operator.40 No further

assumption is made on WB, which therefore has a multinomial distribution with

probabilities pB ≡ (pB1 , . . . , p
B
K) on wB1 , . . . , w

B
K . Imposing pBK = 1 −

∑K−1
k=1 p

B
k and a

median zero restriction on WB, the likelihood function for the sample {(nBt , yt, st)}Tt=1

is given by

(13) L(p, γB) =
T∏
t=1

∑K
i=1 pi1{bytγBy + stγ

B
s c+ wi = nBt }∑K

i=1 pi1{nB ≤ bytγBy + stγBs c}

40For x ∈ R, bxc = max{ι ∈ Z : ι ≤ x}.
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subject to

(14) w1 ≤ nt − bytγBy + stγ
B
s c ≤ wK , ∀t.

The estimation is performed via maximum likelihood. The objective function is

non-differentiable in some of the parameters and presents multiple local maxima. The

computational details on how to overcome both issues in practice are given in Balat

and Haile (2011).

Given the parameter estimates γ̂Ay , γ̂
A
s , γ̂

B
y and γ̂By , I then get estimates of the

control functions as follows:

ŵjt = njt − by
j
t γ̂

j
y + stγ̂

j
sc, j = {A,B}

7.2 Distribution Function of Equilibrium Bids

An interim step requires the estimation of the bid distributions functions for regular

and fringe bidders conditional on observed contract characteristics, state variables,

and WB. I follow JP, Athey, Levin, and Seira (2011) and Groeger (2010) by estimating

these distributions parametrically under the assumption that they follow a log-Weibull

distribution. The scale and shape parameters are both positive scalars and depend on

observed contract characteristics, state variables, and WB. Omitting the dependence

on the covariates, the two density functions take the same general form

(15) gj(b|θj) =
1

b

θj1
θj2

(
log(b)

θj2

)θj1−1

e
−
(

log(b)

θ
j
2

)θj1 , j = {regular, fringe}.

The specifications for the parameters θ are given in Section 8.

The estimation is performed via maximum likelihood, where the likelihood func-

tion takes the form

(16) L =
T∏
t=1

∏
i∈Nt,i∈Reg

g(bit|θR)
∏

j∈Nt,j∈Fri

g(bjt|θF ).

7.3 Estimation of g(b|Y,W,N , s), gf(b|Y,W,N , s) and g(W )

For notational simplicity I suppress the dependence on covariates and state variables.

Here I show how I estimate the distribution of equilibrium bids for regular bidders

conditional on W (the estimation for fringe bidders is analogous). The estimators in
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this section closely follow An, Hu, and Shum (2010) with two differences. First, the

estimator for the conditional distribution of equilibrium bids is parametric in my case.

Second, the two noisy measurements of W are estimated in the first stage instead of

being observed in the data.

I begin by estimating the conditional distribution of WB given W , gWB|W, using

the estimates from the previous two steps. My estimators for the matrices (33) and

(35) in the Appendix are given by

(17) ĝWB,WA =

[
1

T

∑
t

1{ŵBt = j, ŵAt = k}

]
j,k

(18) ĝEb,WB,WA =

[
Ê(b|WB = j,WA = k)

1

T

∑
t

1{ŵBt = j, ŵAt = k}

]
j,k

where E(b|WB = j,WA = k) is estimated by numerical integration using an estimate

of the distribution function of equilibrium bids conditional on both WA and WB, and

evaluated at the mean values of the other covariates.

Then, I proceed to estimate gWB|W with

(19) ĝWB|W = ψ(ĝEb,WB,WA ĝ−1
WB,WA)

where ψ(·) is a deterministic analytic function that takes the eigen-vector of the

matrix ĝEb,WB,WA ĝ−1
WB,WA , normalizes each column to sum up to 1, and reorders

them according to the order of the eigen-values given by (38) (which is implied by

Assumption 5.1).

Finally, I estimate g(W ) and g(b|W ) pointwise in b. From equations (46), (47)

and (48) in the Appendix, I propose the following estimators:

(20) ĝ(W ) = ĝ−1
WB|W ~̂g(WB)

(21) ĝ(b|W ) =
e′W ĝ−1

WB|W ~̂g(b,WB)

e′W ĝ−1
WB|W ~̂g(WB)

(22) Ĝ(b|W ) =
e′W ĝ−1

WB|W
~̂G(b,WB)

e′W ĝ−1
WB|W ~̂g(WB)
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where

(23) ~̂g(WB) =

[
1

T

∑
t

1{WB
t = j}

]
j

(24) ~̂g(b,WB) =
[
ĝ(b|WB = j)ĝ(WB = j)

]
j

(25) ~̂G(b,WB) =
[
Ĝ(b|WB = j)ĝ(WB = j)

]
j

7.4 Estimation of FC|Y,W,s and F f
C|Y,W

Remember from the FOC at the bidding stage given in equation (10), that in order

to estimate the distribution of private costs, we need estimates of the distribution

and density functions of equilibrium bids and an estimate of the value function. To

estimate the value function, I follow the procedure in JP, modifying it to include the

new term Di in (12). See the Appendix for details.

With an estimate of the value function at hand, I then fixW at some value (wj) and

draw a sample of bids from Ĝ(b|y, wj,N , s) and Ĝf (b|y, wj,N ) with the value of the

other variables fixed the desired level (e.g., at their observed means or at the values of

a specific project). Using that sample, I then use the FOC (10) to recover the private

cost associated with each bid. Finally, by the monotonicity of the bidding function

in c, I can write F̂C|YWs(c|y, wj, si) = Ĝb|YWsis−i(ξ
−1(c|y, wj, si, s−i)|y, wj, si, s−i) and

a similar expression for the distribution of fringe bidders.

8 Estimation Results

In this section I present the results from the multi-step estimator introduced in the

previous section.

Reduced form participation equations. I start by showing the estimates of the

reduced form equations (3) and (5). I implement the parametric specification as

explained in Section 7.1 and the results are shown in Table 9. To allow for more

flexibility and to improve the performance of the estimators, I use 20 points in the

supports of WA and WB. However, when I take the estimates of WA and WB (i.e.,

estimates of the control functions) to the second step in the procedure, I reduce the

dimensionality by grouping contiguous values so that both control functions have 4

points in their support in the second stage. Note that Assumption 5.1 still holds at

the group level.
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Table 9: Reduced Form Participation Equations

NA NB

constant 8.023 3.201
log(eng) -.245 -.034
log(days) .407 -.019
items .011 -.0001
costindex -.010 -.0001
pot bidders .012 .006
var cty -.572 -.310
sum std bl -.189 -.102

nobs 5164 5164

All regressions include
time, district, and type of
work dummies.

The results show that larger projects attract fewer planholders and result in fewer

number of bidders. While one may expect a positive sign a priori, the result is

consistent with the descriptive regressions in Table 7. A plausible explanation is that

while regular firms do participate more in larger contracts (see Table 8), fringe firms

do not (see Table 17 in the Appendix). Similar results are found by Krasnokutskaya

and Seim (2011). Regarding the effect of backlog, I find as expected that the higher

the level of backlogs, the fewer the number of planholders and bidders.

Bid density estimates. In order to estimate the conditional distribution and cor-

responding density functions of equilibrium bids for regular and fringe firms, several

steps are required. The estimation results for the interim steps are in the Appendix.

One key step, though, is the bid density estimations conditional on the state vari-

ables, observable project characteristics, and WB, a misclassified measurement of W .

I model the scale and shape parameters of the Weibull distributions, denoted θj1 and

θj2, respectively, for j = {regular, fringe} as follows. The parameters of the density

function for a regular bidder are given by

(26) log(θR1 ) = γR1,0 +
K−1∑
k=1

γR1,k1{ŵb = k}
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(27)

log(θR2 ) = γR2,0 +
∑K−1

k=1 γ
R
2,k1{ŵb = k}+ γR2,K log(estimate)

+γR2,K+1 log(days) + γR2,K+2 log(dist)

+γR2,K+3#fringe + γR2,K+4#regular

+γR2,K+5stdbl + γR2,K+6sumstdblin + γR2,K+7sumstdblout

where stdbl denotes (regular) firm i’s standardized backlog, sumstdblin =
∑

j 6=i,j∈Nt stdblj

(i.e., the sum of the standardized backlogs for rival regular firms in the auction) and

sumstdblout =
∑

j 6∈Nt stdblj (i.e., the sum of the standardized backlogs for regular

firms not participating in the auction). The rest of the variables are defined as before.

Similarly, the density function for fringe bidders has parameters given by

(28) log(θF1 ) = γF1,0 +
K−1∑
k=1

γF1,k1{ŵb = k}

(29)

log(θF2 ) = γF2,0 +
∑K−1

k=1 γ
F
2,k1{ŵb = k}+ γF2,K log(estimate)

+γF2,K+1 log(days) + γF2,K+2 log(dist)

+γF2,K+3#fringe + γF2,K+4#regular

+γF2,K+5sumstdblin + γF2,K+6sumstdblout

where now sumstdblin =
∑

j∈Nt stdblj.

Additionally, the two scale parameters, θR2 and θF2 , include district and year dum-

mies. I include the sum of the backlogs and not the individual components because

the model imposes a symmetry condition on the bidding function conditional on the

state variables. Bidders with the same state follow the same bidding strategy. Hence,

the order of the elements of the vector of backlogs should not affect the parameters of

the regular and fringe bidders’ distribution. This implies that the coefficients for the

backlogs should be the same. However, I distinguish between regular firms partici-

pating in the auction and those who are not, and thus I allow for different coefficients

for the two groups.

Table 10 shows the parameter estimates. All signs are as expected. Note that since

WB is correlated with W it should partially control for the unobserved heterogeneity,

but not fully. Nevertheless, when I condition on W using the estimator in Section

7.3 I get the same qualitative results. Note that θ2 is the scale parameter for the

Weibull distributions, thus a positive sign means that the distribution is stretched to

the right, and a negative that it is shrunk to the left. In other words, a positive coef-

ficient indicates that the distribution associated with a higher value of the variable in

question stochastically dominates (in the first-order sense) the distribution associated

with a lower value of the variable. The length of the project and the distance from the
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Table 10: Bid Density Estimates

θR1 θR2 θF1 θF2

constant -2.1206e+00 -1.4539e+00 -1.5195e+00 -1.7622e+00
log(days) 1.0340e-03 1.5216e-03
log(eng) 3.3070e-01 2.1079e-01 2.8545e-01 2.2787e-01
log(dist) 5.8352e-05 3.7980e-05
# fringe -1.2521e-02 -9.3289e-03
# regular -1.2529e-02 -9.5619e-03
std bl 4.4770e-03
sum std bl ∈ N 1.9336e-03 4.1775e-03
sum std bl 6∈ N 1.1832e-03 1.0520e-03
WB = 1 1.6640e-01 -7.3694e-02 1.0149e-02 -2.3398e-02
WB = 2 1.5341e-01 -5.7130e-02 7.2210e-02 -2.2929e-02
WB = 3 1.7491e-01 -2.6712e-02 1.0750e-01 -1.0199e-02

All specifications include time and district dummies.

firm to the work site shift both distributions of equilibrium bids to the right. We also

see that there is a competition effect, in the sense that a higher number of bidders

shift the distributions to the left. More importantly, a firm’s backlog and their rival’s

backlogs enter with a positive sign. This means that a regular firm is more likely to

submit a larger bid the larger its backlog, and also that both regular and fringe firms

are more likely to submit a larger bid when their rivals have larger backlogs.

Unobserved heterogeneity. I plot the distribution function of equilibrium bids for

a regular bidder conditional on the true unobserved factor (evaluated at the mean

values of the other variables) in Figure 2. Figure 3 plots the corresponding densities.

Controlling for unobserved heterogeneity significantly affects the distribution of bids.

As W increases, the distribution stretches to the right but also changes in shape. The

effects appear to be nonlinear. It also appears that the dispersion of bids increases

with W . One plausible explanation is as follows. If we think of the unobserved

heterogeneity as the quality of the existing road to be repaired, a road in a very

bad condition (a high W ) will translate in higher repair costs and thus a higher bid.

But it may also introduce a greater dispersion in the repair costs, since bad quality

roads could require nonstandard methods to fix them and firms can differ in their

expertise or experience for fixing bad quality roads. Good quality roads may only

require standard procedures, thus the variance in firms’ ability to fix them may be

smaller.

Table 11 shows the estimated distribution of the unobserved heterogeneity W .

It also shows the expected bid conditional on W (evaluated at the mean of other

42



Figure 2: Distribution Function of Equilibrium Bids for a Regular Bidder
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Figure 3: Density Function of Equilibrium Bids for a Regular Bidder
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Table 11: Unobserved Heterogeneity

Ê[B|W ] Ê[B1|W ] Ê[C|W ]
W P̂r(W )

(in millions)

(b− c)
b

1 .0762 .7305 .3929 .6536 .1446
2 .3516 .8069 .4181 .7440 .1140
3 .3226 .9047 .4450 .8510 .0891
4 .2496 1.0438 .4524 .9911 .0847

variables) in the second column. The expected equilibrium bid for a regular bidder

varies with W in a monotonic but nonlinear way. Changing W from a value of 1 to 2

produces an increase in the expected bid of 8.6%, a change from 2 to 3, an increase of

13%, and lastly, a change from 3 to 4, is associated with an increase of 9.3%. Column

3 shows the expected winning (i.e., lowest) bid, column 4 the expected cost. The

expected cost for a regular firm and the equilibrium price in the auction also increase

with W . In particular, the cost when the unobserved heterogeneity is at its highest

level is 52% higher than when the unobserved heterogeneity is at its lowest level. The

equilibrium price increases by 15% when W goes from 1 to 4.

Distribution of private costs. From the last step in the estimation procedure, I

recover the conditional distributions of private costs. I show the distribution for a

regular bidder in Figure 4. In some cases,41 the inferred cost is negative which is not

possible. In such a situation, I set the cost equal to zero. The same remarks made for

the distributions of equilibrium bids also apply for the distribution of private costs.

Bid Function and Mark-up. Figure 5 shows the bid functions estimated using the

FOC for one of the regular bidders. The bid function is plotted by fixing the state

variables at sample average values and varying the cost. The figure also plots the 45

degree line. Conditional on W , the distance between the bid and the cost decreases

as we increase the cost, but contrary to the usual result in static models, the bid does

not approach the 45 degree line, a result also found by JP. This can be attributed to

the mark-up term involving the value function in (10), i.e., the negative effect on the

future discounted profits if firm i wins the contract instead of another firm. Note that

while the bid functions are increasing in the unobserved heterogeneity, the average

mark-up is decreasing in it (see the last column of Table 11). The reason is that

higher values of W are associated with higher realizations of costs, and the mark-ups

are decreasing in cost as discussed above.

41It depends on the characteristics of the projects, but on average around 5% of the cost predictions
are negative.
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Figure 4: Distribution Function of Private Cost for a Regular Bidder
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Figure 5: Bid Function for a Regular Bidder
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Table 12: The Effect of Backlog

backlogi = −1 backlogi = +1

Ê[B|W ] Ê[B1|W ] Ê[C|W ] Ê[B|W ] Ê[B1|W ] Ê[C|W ]W

(in millions)

(b− c)
b (in millions)

(b− c)
b

1 0.7061 0.3819 0.6293 0.1488 0.7531 0.4023 0.6753 0.1428
2 0.7768 0.4014 0.7133 0.1185 0.8301 0.4256 0.7663 0.1128
3 0.8700 0.4379 0.8157 0.0927 0.9315 0.4552 0.8771 0.0878
4 1.0041 0.4391 0.9510 0.0883 1.0746 0.4570 1.0211 0.0838

Effects of Backlog. To asses the effect of the backlog, I perform the following two

exercises. First, I take one regular firm and compute its expected bid and cost under

the assumption that the firm has a backlog 1 standard deviation above its mean.

Then I perform the same calculations but assume the firm has a backlog equal to

1 standard deviation below its mean. All project characteristics are kept at their

observed means (including backlogs of other firms), and I assume that there are 2

regular firms participating in the auction and 7 fringe firms. I also calculate the

auction equilibrium price in this typical auction, under the two backlog levels for the

regular firm. The effect on the bid of this regular bidder whose backlog I change only

includes the direct channel mentioned earlier, since the backlogs of other firms are

not changing. On the other hand, the auction equilibrium price includes all three

channels, the direct effect, the strategic effect and the competition effect42 since I

allow the other firms to respond to the change in the backlog of the regular firm.

Results are presented in Table 12. As expected, conditional on W , both the mean

bid and cost are higher when the firm has a higher backlog, but the mean mark-

up decreases, indicating that costs increase more than bids. Averaging over W , the

bid increases by 6.9%, and the cost by 7.4%. The equilibrium price in the auction

increases by 4.7% on average.

The second exercise I perform considers a change in the backlogs of all 10 regular

firms from 1 standard deviation below the mean to 1 standard deviation above the

mean. The rest of the setup is similar to the one in the previous exercise. Results

are presented in Table 13. The average bid for the same regular firm as in the

previous exercise increases now by 26.8%. This change now includes the strategic

and competition effects, which in this case have sizable impacts. The equilibrium

42Since the change in backlog we are considering is for only one firm, it is not enough in practice
to alter the number of firms participating in the auction. Thus the competition effect in this exercise
is zero.
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Table 13: The Effect of Backlog

all backlogs = −1 all backlogs = +1

Ê[B|W ] Ê[B1|W ] Ê[C|W ] Ê[B|W ] Ê[B1|W ] Ê[C|W ]W

(in millions)

(b− c)
b (in millions)

(b− c)
b

1 0.6403 0.3577 0.6049 0.0920 0.8036 0.4275 0.6929 0.1772
2 0.7025 0.3794 0.6890 0.0526 0.8878 0.4478 0.7983 0.1370
3 0.7850 0.3997 0.7918 0.0174 0.9993 0.4899 0.9283 0.1010
4 0.9023 0.3999 0.9219 0.0068 1.1456 0.4901 1.0858 0.0857

price in the auction increases by 20.8%.

9 Simulation Results

9.1 The effect of the stimulus package on procurement costs

The key insight of this paper is that the injection of funds into the economy in a short

period of time affects firms’ backlogs, which in turn drives up firms’ costs and prices

paid by the government. In this section, I analyze how much higher were procurement

costs for stimulus funded projects and for projects funded from other sources due to

the effect of stimulus projects on firms’ backlogs.

To answer this question, I use the estimates of the primitives of my structural

model in a counterfactual simulation to eliminate the effect of stimulus projects on

backlogs. I then compare the equilibrium project prices under the counterfactual to

those of the baseline case in which the stimulus projects do affect firms’ backlogs.

Details of how the simulations are performed are presented in the Appendix. The

results are presented in Table 14.

I find that the government paid prices for stimulus funded projects that are,

on average, 6.2% higher than in the counterfactual case. This represents $105.4

million worth of extra projects that the government could have acquired by facing

the lower prices. The effect on prices for other projects not funded by the stimulus

package is sizable. On average, prices for these projects were 4.8% higher than in the

counterfactual, which implies $229.3 million worth of projects the government has

forgone due to the backlog effect of the stimulus projects.43

43These results are in line with the theoretical findings of Saini (2011). He finds that the procurer
faces lower procurement costs by scheduling frequent auctions for small project sizes.

47



Table 14: Effect of the Stimulus on Prices

Projects ∆p ∆$ (M)

ARRA ($1.7B) 6.2% 105.4
Other ($4.8B) 4.8% 229.3

Total 334.7

The way to interpret these results is as follows. Instead of injecting the funds

all-at-once44 the government could have “spread out” the expenditure as much as

needed, potentially infinitely long, so that every project could have been completed

within a period, thus having no impact on firms’ backlogs. Therefore, one can consider

the total dollar value of forgone projects, $334.7 million, as the “cost” of ARRA’s

stimulus effect. The total toll on forgone projects from releasing the stimulus projects

at an accelerated pace represents 19.7% of the stimulus funds received by California.

By no means does this imply that $334.7 million were “lost,” since the money was

actually transferred to the firms, thus serving the government’s stimulus objective.

The result just makes explicit that part of the demand expansion went into higher

prices rather than quantities.

9.2 The effect of the stimulus package on the cost of produc-

tion

The actual cost of completing a project (i.e., the cost of the winning firm) and the

procurement price paid by the government are not the same because of the mark-up

terms involving strategic effects and the option value (see Section 6.3). In this section

I quantify how much higher were firms’ costs due to the effect of the stimulus projects

on backlogs.

From a welfare perspective, if one were to ignore the cost of raising the money

to finance the stimulus package, one would only care about the cost of the resources

used to build or repair the roads. Due to the effect of backlogs on firms’ costs, we

should expect an inefficiency generated by the stimulus funds.

I perform the same simulations as in the previous section and calculate the effect

of the stimulus projects on the winning firm’s cost rather than its bid. In terms of the

cost of the resources used, the baseline case involves costs that are, on average, 2.8%

44From the discussion in Section 3, the way the projects were released in practice comes close to
the notion of spending all the money at once, given the administrative and physical constraints.
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Table 15: Effect of the Stimulus on Prices (Lower Backlogs)

Projects ∆p ∆$ (M)

ARRA ($1.7B) 5.68% 96.5
Other ($4.8B) 4.27% 203.9

Total 300.4

Backlogs of all regular firms are
set at 1 standard deviation below
their historical average at the time
the stimulus projects were first re-
leased.

higher than in the counterfactual. This implies that the total cost of projects (from

all funding sources) increased by $151 million, an amount that represents 8.8% of the

stimulus funds received by California. Also this exercise allows us to decompose the

effect on procurement prices in its two components: the change in firms’ costs and

the change in mark-ups. I find that, on average, 45% of the change in price is due to

higher costs and the remaining 55% due to higher mark-ups.

9.3 Was California special?

Here I examine whether there was something special about California that might

drive the results in the previous simulations. This is particularly important if one

wants to extrapolate the results from this paper to other applications.

In Table 1 we do not observe a downturn in the highway procurement sector as a

result of the crisis during 2008. In the case of California, the absence of a downturn

is explained by the fact that in 2006, well before the crisis started, a $20 billion

transportation bond (called Proposition 1B) was approved by voters to support the

funding of highway and road repair projects. As a result, when the stimulus projects

were released, backlog levels were comparable to pre-crisis levels. This is not the

typical scenario we expect to see when implementing a stimulus demand expansion.

Backlog levels. First, I explore the extent to which the “high” backlogs are re-

sponsible for the results in the previous section. In particular, I ask what happens to

the previous results had California experienced a downturn in the highway sector by

the end of 2008. I rerun the previous simulations assuming the backlogs of all regular

firms were arbitrarily set at 1 standard deviation below their historical average at the

time the stimulus projects were first released.
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Table 15 shows the results. I find that stimulus project prices in the new baseline

scenario —although lower than the prices observed in the previous baseline case due to

the lower backlogs— are still 5.68% higher than under the new counterfactual. Prices

for other projects in the baseline case are 4.27% higher than under the counterfactual.

The total forgone projects due to the higher prices totals $300.5 million, or 17.67%

of the stimulus funds.

This is not surprising since the effect of backlogs on procurement prices looks

almost linear. In Figure 6 I plot the price of a project (with characteristics set at

the observed means) in an auction with one regular bidder and 7 fringe bidders as

a function of the (standardized) backlog of the regular firm. I keep the backlogs of

other regular firms fixed. Even if the aggregate level of backlogs changes, I still get

a close to linear relationship. Figure 7 shows the price of the same project but in

an auction with 2 regular firms and 6 fringe bidders. I assume that all regular firms

have the same backlog level, thus while varying the backlog of one firm I also vary

the aggregate backlog level.

Funding levels. The second check I perform on my results is on the budget level

for the highway construction sector. Most of the effect of the stimulus projects, as

measured in terms of forgone projects, comes from higher prices for projects funded

by other sources. Again, Proposition 1B may have kept the funding for those projects

high throughout the crisis.

I analyze what happens to the results in the previous section had California expe-

rienced a higher cut in its budget. I take the case of Texas as a reference point, since

Texas received stimulus funds comparable to California, but total expenditure on

highway and road construction suffered a hefty cut during 2009 and 2010 (compared

to total expenditure in 2008, there was a 18% cut in 2009 and a 35% cut in 2010).

In a back-of-the-envelope calculation, I use the prices changes from Section 9.1,

but change the total budget level in 2009 and 2010. In particular, fixing the stimulus

funds at the observed level, but adjusting the funds from other sources so that the

total level of expenditure matches the cuts observed in Texas, I find that the effect of

the price change for other projects now represents $169 million, and the total effect

considering both stimulus projects and other projects accounts for $274.4 million, or

16% of the stimulus funds.
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Figure 6: The Effect of Backlog on Procurement Prices
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Figure 7: The Effect of Aggregate Backlog on Procurement Prices
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9.4 The effect of a short-term delay in the stimulus on pro-

curement costs

In this section I examine what the effect is on procurement prices from delaying the

release of the stimulus projects by 3 and 6 months, while keeping the pace at which

they were released unchanged.

While the results in Section 9.1 provide a natural way to describe how much prices

were pushed up by injecting funds at an accelerated pace, the counterfactual neglects

any stimulus effect at all. In this section I consider what happens with project prices

by forgoing the stimulus effect only in the short-run. Details on the simulations are

in the Appendix.

The simulation results for the effects of the stimulus package show that the gov-

ernment paid prices for stimulus funded projects that are on average 1.1% higher

compared to those that were delayed 3 months, and 1.7% higher for those delayed 6

months. This represents, respectively, $18.7 and $28.9 million worth of projects the

government had to give up to avoid a delay in the stimulus objective. Prices of other

projects are 0.5% higher, on average, compared to those that result from delaying the

ARRA projects by 3 months, and 0.6% higher for 6-month delay. This accounts for

extra expenditure of $23.9 million and $57.5 million, respectively.

The total amount of public goods the government gave up (in dollar value) reaches

$42.6 for the 3-month delay, and $57.5 million the 6-moth delay alternative. These

values represent 2.5% and 3.4% of the stimulus funds, respectively. Even though no

government would consider neglecting the stimulus effect, especially in the short-run,

the results provide a measure of the opportunity cost of not delaying the projects.

The rationale behind the counterfactuals is that by delaying the start of the stimulus

projects the government lets the backlogs “die off” as previous committed work pro-

gresses, and hence at the time of starting the stimulus projects, faces a lower level of

backlogs.

10 Conclusions

This paper considers the effects of the stimulus package on equilibrium prices paid

by the government for highway construction projects. Using data from California,

I answer (1) How much were the costs of these projects driven up by the acceler-

ated pace of new projects? (2) What was the effect of the demand expansion on

the prices of state funded projects that came afterwards? and (3) What was the
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effect on efficiency?. To this end, I develop a structural dynamic auction model that

builds on three key features: upward sloping marginal costs, auction-level unobserved

heterogeneity, and endogenous participation.

I show that the structural model is nonparametrically identified using concepts

from the control function and measurement error literatures. I use the first order

condition at the bidding stage to express each firm’s private cost as a function of its

bid, the conditional distribution of equilibrium bids, and the value function repre-

senting the discounted sum of future payoffs. The proof combines several key ideas.

First, I show that the value function can be written as a function of the distribution

of equilibrium bids. A second key idea is similar in spirit to the control function

approach, but I allow for an “imperfect” control function. I exploit features of the

procurement setting that provide a second “imperfect” control function. The infor-

mation obtained from these two noisy controls then resembles a measurement error

problem where we have access to multiple measurements. I attain identification of the

conditional distribution functions using the results in Hu (2008) for nonlinear models

with misclassification error.

From a methodological point of view, this paper contributes to the auction liter-

ature in several ways. I improve on the method of JP by controlling for unobserved

heterogeneity, and by relaxing the assumptions on firms’ participation decisions al-

lowing for endogenous participation. To my knowledge, this is the first attempt to

control for unobserved heterogeneity in a dynamic auction model. I also relax the

structural assumptions in the control function approaches used previously in auction

settings. In my model I allow the unobserved heterogeneity to enter nonlinearly in

the firm’s cost and I let the idiosyncratic component of the firm’s cost to be correlated

with the unobserved component.

From a policy perspective, this paper contributes to the discussion about the stim-

ulus package by raising questions that have not been addressed yet. I quantify costs

associated with the stimulus projects that may help in policy decisions. Counter-

factual simulations indicate that the government has paid prices for stimulus funded

projects that were 6.2% higher (and prices for other projects that were 4.8% higher)

due to the effect of the stimulus projects on firms backlogs. These results imply

that the government could have acquired $335 million worth of extra road projects

(or 19.7% of the stimulus money received by California) by forgoing any stimulus

effect from ARRA. Furthermore, I also show that even though California presents

features that may distinguish it from other states, the results are robust and can be

extrapolated to other applications. In a separate set of simulations I find that the
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opportunity cost of delaying the stimulus projects by 3 months reaches $44 million

(or 2.6% of the stimulus funds). If the government delays the projects by 6 months

instead, the opportunity cost totals $62 million (or 3.7% of the stimulus funds).
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Appendices

A Proofs

A.1 Theorem 6.2

Proof Two remarks: (i) the proof holds conditional on observable characteristics and
state variables, so I omit the conditioning variables for simplicity, and (ii) for ease
of exposition, and without loss of generality, I assume KB = K. The identification
proof still holds for K < KB but I need to replace the matrix inverse operator with
generalized inverses for non-square matrices.

Let me first introduce some notation. Let g(·) generally denote a probability mass
or density function. Define the following K dimensional square matrices:

(30) gb,WB,WA ≡ [g(b,WB = i,WA = j)]i,j

(31) gWB|W ≡ [g(WB = i|W = k)]i,k

(32) gW,WA ≡ [g(W = k,WA = j)]k,j

(33) gWB,WA ≡ [g(WB = i,WA = j)]i,j

(34) gb|W ≡

 g(b|W = 1) 0 0
0 . . . 0
0 0 g(b|W = K)


(35) gEb,WB,WA ≡ [E(b|WB = i,WA = j)g(WB = j,WA = j)]i,j

(36) gEb|W ≡

 E(b|W = 1) 0 0
0 . . . 0
0 0 E(b|W = K)


Under assumptions 5.2-5.4 and 6.1 gWB,WA is identified by Theorem 6.1. By a

similar argument, gb,WB,WA and gEb,WB,WA are identified since bids are observable.
The rest of the proof closely follows Hu (2008). It is constructive and provides a

basis for the estimator developed in Section 7.
First, notice that

f(c|W,WA,WB) =
f(c,WA,WB|W )

f(WA,WB|W )

=
f(c|W )f(WA|W )f(WB|W )

f(WA|W )f(WB|W )
= f(c|W )
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where the second equality follows from Assumption 6.2, and

g(WB|W,WA) =
g(WB,WA|W )

g(WA|W )

=
g(WB|W )g(WA|W )

g(WA|W )
= g(WB|W )

again by Assumption 6.2.
By monotonicity of the bidding function in c, it is straightforward that

(37) g(b|W,WA,WB) = g(b|W )

and that

(38) E[b|W = w1] < E[b|W = w2] < . . . < E[b|W = wK ].

Next, I show identification of gWB|W. Note that we can write

E[b|WB,WA]g(WB,WA) =
∑K

w=1 E[b|w,WB,WA]g(WB,WA|w)g(w)

=
∑K

w=1 E[b|w]g(WB|w)g(w,WA)

where in the second equality I used (37), and we can also write

g(WB,WA) =
∑K

w=1 g(WB|w,WA)g(w,WA)

=
∑K

w=1 g(WB|w)g(w,WA)

using (38). In matrix notation,

(39) gEb,WB,WA = gWB|W gEb|W gW,WA

(40) gWB,WA = gWB|W gW,WA .

From (40) it follows that

Rank(gWB,WA) ≤ min{Rank(gWB|W),Rank(gW,WA)}

hence by Assumption 6.3, gWB|W and gW,WA are full rank. Therefore, I can invert
(40) and write

(41) g−1
WB,WA = g−1

W,WA g−1
WB|W.

Postmultiplying (39) by (41) I get

(42) gEb,WB,WA g−1
WB,WA = gWB|W gEb|W g−1

WB|W.

Note that the last equation is an eigenvalue-eigenvector decomposition of the
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identified matrix gEb,WB,WA g−1
WB,WA . This decomposition exists and is unique only

if all the eigenvalues are distinct, which is guaranteed by Assumption 5.1.45 Hence,
gEb|W and gWB|W are identified.

Let eW = (0, . . . , 0, 1, 0, . . . , 0)′, where the 1 is in the W -th entry of the vector,
and define

(43) ~g(b,WB) ≡ [g(b,WB = 1), . . . , g(b,WB = K)]′

(44) ~g(WB) ≡ [Pr(WB = 1), . . . ,Pr(WB = K)]′.

Then

(45) g(b,W ) = e′W g−1
WB|W ~g(b,WB)

and

(46) g(W ) = e′W g−1
WB|W ~g(WB)

hence g(W ) and g(b,W ) are identified.
Finally, identification of g(b|W ) and G(b|W ) is straightforward since

(47) g(b|W ) =
e′W g−1

WB|W ~g(b,WB)

e′W g−1
WB|W ~g(WB)

(48) G(b|W ) =
e′W g−1

WB|W
~G(b,WB)

e′W g−1
WB|W ~g(WB)

�

A.2 Derivation of equation (12)

Recall that the state space is finite. Let m be the number of points in the support of
state vector s, and denote each point with a superindex: s1, . . . , sm. Define

(49) Ai(s) = EYWN1{i ∈ N}
∫

1∑
j∈N ,j 6=i h(·|y, w,N , sj, s−j)

dG(i)(·|y, w,N , s)

(50)

Bi(s) = EYWN1{i ∈ N}
×
∑

j∈N ,j 6=i
∫ [

1 + h(·|y,w,N ,si,s−i)∑
l∈N ,l 6=i h(·|y,w,N ,sl,s−l)

]
dG(j)(·|y, w,N , s)

× (1{ω(x, s, j) = s1}, . . . , 1{ω(x, s, j) = sm})

(51)

Di(s) = EYWN1{i 6∈ N}
×
∑

j∈N
∫
dG(j)(·|y, w,N , s)

× (1{ω(x, s, j) = s1}, . . . , 1{ω(x, s, j) = sm})
45Assumption 5.1 also provides an ordering of the elements of the diagonal of gEb|W and columns

of gWB|W accordingly. Note that the elements of gWB|W are probabilities and each column should
add to 1, hence I rescale the columns appropriately.
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Let Vi = (Vi(s
1), . . . , Vi(s

m))′, Ai = (Ai(s
1), . . . , Ai(s

m))′, Bi = (Bi(s
1), . . . , Bi(s

m))′,
and Di = (Di(s

1), . . . , Di(s
m))′. Then I can write equation (11) in matrix form

(52) Vi = Ai + β(Bi +Di)Vi

and then solve for Vi to get

(53) Vi = [I − β(Bi +Di)]
−1Ai

B Estimation of the Value Function

I follow the procedure in JP, and approximate the value function, given in equation
(12), on a grid of state vectors. Denote the grid of state vectors Ŝ = (s1, . . . , sl), and
restrict the transition function ω to Ŝ by defining a transition function ω̂(x, s, j) =
{s ∈ Ŝ|s is closest to ω(x, s, j)}. I select the grid by drawing 200 states from the
distribution of observed states.

For every regular bidder, I solve for the value function using (53) on the grid
Ŝ. To do so, I numerically evaluate the terms Ai, Bi and Di given in (49)-(51). In
all three expressions, the first expectation is with respect to contract characteristics.
Remember that contract characteristics are iid and Y ⊥⊥ W , so we can approximate
the expectation with respect to Y using a sample average taking a sample of Y from
the observed characteristics (I draw a sample of 500 characteristics). The expectation
with respect to W is easy to compute since W is discrete and we have an estimate
of its distribution, FW , from (20). On the other hand, the expectation with respect
to N is more involved. Since I do not estimate a structural model for individual
participation decisions, in order to compute the expectation with respect to N I use
the following approximation shortcut. Given Y , W and s, I predict the number of
bidders in the auction using the estimate of (5) and (19). Using the observed average
ratio of the number of regular bidders to the number of total bidders I get a prediction
of the number of regular and fringe firms. To select which regular firms participate in
the auction, I use a probit model of individual participation and select the required
number of regular firms with the highest predicted probability.

Finally, I evaluate the expectation with respect to the bid distribution func-
tions by numerical integration using the estimated derivatives dĜ(i)(·|y, w,N , s) and
dĜ(j)(·|y, w,N , s).

To evaluate the value function at points outside the grid Ŝ, I use a quadratic
polynomial approximation.
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C Density Estimation: Additional Results

ĝWB,WA =


0.0283 0.0349 0.0109 0.0021
0.0377 0.1794 0.0954 0.0385
0.0047 0.0792 0.1497 0.0714
0.0001 0.0059 0.0978 0.1642



ĝWB|W =


0.6391 0.0798 0.0001 0.0001
0.3485 0.8681 0.0638 0.0078
0.0068 0.0521 0.8282 0.0541
0.0057 0.0001 0.1080 0.9381



Table 16: Bid Density Estimates

θR1 θR2 θF1 θF2

constant -2.1126e+00 -1.4539e+00 -1.5251e+00 -1.7549e+00
log(days) -4.9912e-03 1.2950e-03
log(eng) 3.2961e-01 2.1089e-01 2.8586e-01 2.2781e-01
log(dist) 5.9775e-05 3.7945e-05
# fringe -1.2843e-02 -9.5630e-03
# regular -1.3156e-02 -9.6571e-03
std bl 4.3193e-03
sum std bl ∈ N 1.8067e-03 4.1775e-03
sum std bl 6∈ N 1.1059e-03 1.0170e-03
WA = 1 -1.5315e-02 -1.3095e-02
WA = 2 -6.8367e-03 -3.7954e-03
WA = 3 -2.6212e-03 -5.4175e-03
WB = 1 1.7492e-01 -6.9788e-02 8.2094e-03 -2.0289e-02
WB = 2 1.6193e-01 -5.5952e-02 7.4023e-02 -2.2030e-02
WB = 3 1.8858e-01 -2.6665e-02 1.0775e-01 -9.6095e-03

All specifications include time and district dummies.

D Simulation Details

D.1 The effects of the stimulus package on procurement costs

Instead of modifying the projects themselves, as proposed in Section 9.1 (i.e., splitting
them in tiny bit parts), one way to get the results under the counterfactual is by
changing the firms’ beliefs about the effect of the projects on their backlogs. The
strategy I follow in practice is to “kill” the backlog effect on the regular firms’ FOC. To
do so, I compute the equilibrium strategies for regular firms in the static game. Under
this new equilibrium regular firms do not take into account the effect of the current
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project on the future stream of payoffs. Even though fringe firms are already myopic, I
also have to compute their equilibrium strategies as their beliefs regarding the regular
firms change. In the asymmetric case, the equilibrium strategies of the static game are
the solution to a system of first-order ordinary differential equations with boundary
conditions. Bajari (2001) shows the existence and uniqueness of the equilibrium
and also provides three algorithms to compute the equilibrium. Furthermore, to be
consistent with the firms’ beliefs about the effect of stimulus projects on backlogs I
do not update regular firms’ backlogs when they win a stimulus funded project.

Note that the winning bids in this static game will give me the procurement prices
for the stimulus projects as if they did not have any effect on backlogs.

For the ARRA funded projects, and for a fixed value of the unobservable, I use
the estimates of the distribution of costs functions obtained from the dynamic model
and then solve the FOC of the (asymmetric) static game given by

1 +
∑
j 6=i

fj(φj(b))φ
′
j(b)(b− φi(b))

(1− Fj(φj(b)))
= 0, i = 1, . . . , N(54)

where φi(b) is the inverse bid function (in the static game). The subscript i is a
shorthand to denote that the inverse bid function depends on the backlogs of all
regular firms from the point of view of firm i. Equation (54) shows that the inverse
bid functions can be characterized as a system of N ordinary differential equations.
To solve for them I use a polynomial approximation to the inverse bid functions (see
Bajari (2001) for details). This algorithm has also been used in Bajari and Ye (2000).

Once the bid functions are recovered, I simulate bids for the ARRA projects
as follows. For each project I observe Y , an estimate of WB, and s. I also have
an estimate of the conditional distribution Pr(W |WB), and so I draw W from this
distribution. Then I draw a sample of costs from the estimated (conditional) cost
distributions and obtain the equilibrium bids for each bidder. Note that these bids
will not incorporate the effect of the backlog on future profits as they are coming
from the static model. The only effect that is accounted for is the effect that previous
backlogs have on the distribution of costs, which is the source of the asymmetry
between firms. I determine the price for the project by taking the low bid. I repeat
these steps 400 times for each ARRA project and then take the average price.

For projects funded by other sources, I obtain their equilibrium prices and firms’
costs using the full dynamic model with the counterfactual series of backlogs by
drawing bids from the estimated (conditional) distribution of equilibrium bids.

D.2 Delaying the Stimulus

The exercise I carry out in the simulations is as follows. I compare the low bid (i.e.,
the equilibrium price paid by the government) and the cost of the winning firm, for all
projects (those funded with the stimulus money and those funded from other sources)
under three situations. First, the baseline takes the timing of the stream of stimulus
projects as observed in the data. Then, I perform two counterfactuals that delay the
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start of the stream of stimulus projects (while keeping the pace of the projects within
the stream as observed in the data) by 3 and 6 months, respectively. The timing of
projects funded from other sources is kept unchanged.

Even though I do not observe and cannot recover the true unobserved characteris-
tic associated with any project, I do have an estimate of WB for each project and an
estimate of the conditional probability distribution Pr(W |WB). I draw W from the
latter conditional distribution and then I simulate bids from the estimated distribu-
tion of equilibrium bids. For each project, starting on April 2009 (which is when the
first stimulus project was offered), I compute the equilibrium price, recover the cost
of the winning firm, and update the backlogs according to the identity of the winner.
I repeat this exercise 400 times, and compute average prices and actual costs for each
project. It is important to note that changes in the backlogs may generate changes
in the number of bidders. I take this into account using the estimated reduced form
equation for the number of bidders. For the counterfactual, I do the same exercise
but delay the stimulus funded projects by 3 or 6 months.

E Additional Participation Results

Table 17: Number of Regular and Fringe Bidders

# Regular # Fringe

constant -2.118*** 18.377***
(.220) (.835)

log(eng) .260*** -1.003***
(.017) (.063)

log(days) -.073** .288***
(.026) (.099)

items .0005 .017***
(.0005) (.001)

potential firms .0005* -.0003
(.0002) (.0009)

sum std bl -.030*** -.214***
(.005) (.021)

nobs 5164 5164
R2 0.25 0.19

Dependent variable is the number of bid-
ders. All regressions include time, dis-
trict, and type of work dummies. Stan-
dard errors in parenthesis. ***, **, * de-
note significance at the 1%, 5% and 10%
level.

61



References

Ackerberg, D., L. Benkard, S. Berry, and A. Pakes (2007): “Economet-
ric Tools for Analyzing Market Outcomes,” in Handbook of Econometrics, ed. by
J. Heckman, and E. Leamer, vol. 6, chap. 63. Elsevier.

Ackerberg, D., K. Caves, and G. Fraser (2004): “Structural identification of
production functions,” working paper, UCLA.

An, Y., Y. Hu, and M. Shum (2010): “Estimating first-price auctions with an un-
known number of bidders: A misclassification approach,” Journal of Econometrics,
157, 328–341.

Athey, S., D. Coey, and J. Levin (2011): “Set-Asides and Subsidies in Auctions,”
Working paper.

Athey, S., and P. Haile (2007): “Nonparametric Approaches to Auctions,” in
Handbook of Econometrics, ed. by J. Heckman, and E. Leamer, vol. 6, chap. 60.
Elsevier.

Athey, S., J. Levin, and E. Seira (2011): “Comparing Open and Sealed Bid
Auctions: Evidence from Timber Auctions,” The Quarterly Journal of Economics,
126, 207–257.

Bajari, P. (1997): “The First-Price Auction with Asymmetric Bidders: Theory and
Applications,” University of Minnesota Ph.D. thesis.

(2001): “Comparing Competition and Collusion: a Numerical Approach,”
Economic Theory, 18, 187–205.

Bajari, P., and A. Hortacsu (2003): “The Winner’s Curse, Reserve Prices and
Endogenous Entry: Empirical Insights From eBay Auctions,” Rand Journal of
Economics, 34, 329355.

Bajari, P., S. Houghton, and S. Tadelis (2006): “Bidding for Incomplete
Contracts: An Empirical Analysis,” NBER working paper.

Bajari, P., and S. Tadelis (2001): “Incentives Versus Transaction Costs: A The-
ory of Procurement Contracts,” Rand Journal of Economics, 32, 287–307.

Bajari, P., and L. Ye (2000): “Sealed-bid Auctions with Asymmetric Bidders:
Computation, Identification and Estimation,” Working paper.

(2003): “Deciding Between Competition and Collusion,” The Review of
Economics and Statistics, 85, 971–989.

Balat, J., and P. Haile (2011): “Participation Model Estimation: Technical
Appendix,” Technical note.

62



Campo, S., I. Perrigne, and Q. Vuong (2003): “Asymmetry in First-Price
Auctions with Affiliated Private Values,” Journal of Applied Econometrics, 18,
197–207.

Cantillon, E. (2008): “The Effect of Bidders’ Asymmetries on Expected Revenue
in Auctions,” Games and Economic Behaviour, 62, 1–25.

Chen, X., H. Hong, and E. Tamer (2005): “Measurement Error Models with
Auxiliary Data,” Review of Economic Studies, 72, 343–366.

Chen, X., Y. Hu, and A. Lewbel (2008a): “Nonparametric identification and es-
timation of nonclassical errors-in-variables models without additional information,”
Economics Letters, 100, 381384.

(2008b): “A note on the closed-form identification of regression models with
a mismeasured binary regressor,” Statistics and Probability Letters, 78, 1473–1479.

(2009): “Nonparametric identification of regression models containing a
misclassified dichotomous regressor without instruments,” Statistica Sinica, 1, 1–3.

Chesher, A. (2003): “Identification in Nonseparable Models,” Econometrica, 71,
1405–1441.

DeSilva, D., T. Dunne, and G. Kosmopoulou (2003): “An Empirical Analysis
of Entrant and Incumbent Bidding in Road Construction Auctions,” The Journal
of Industrial Economics, LI(3), 295–316.

Einav, L., and I. Esponda (2008): “Endogenous Participation and Local Market
Power in Highway Procurement,” working paper.

Flambard, V., and I. Perrigne (2006): “Asymmetry in Procurement Auctions:
Evidence from Snow Removal Contracts,” The Economic Journal, 116, 1014–1036.

Goolsbee, A. (1998): “Does Government R&D Policy Mainly Benefit Scientists
and Engineers?,” NBER working paper.

Groeger, J. (2010): “Participation in Dynamic Auctions,” working paper.

Guerre, E., I. Perrigne, and Q. Vuong (2000): “Estimation of a Dynamic
Auction Game,” Econometrica, 68, 525–574.

(2009): “Nonparametric Identification of Risk Aversion in First-Price Auc-
tions Under Exclusion Restrictions,” Econometrica, 77, 1193–1227.

Haile, P. A., H. Hong, and M. Shum (2006): “Nonparametric Tests for Common
Values In First-Price Sealed-Bid Auctions,” working paper.

Hall, P., and X.-H. Zhou (2003): “Nonparametric identification of component
distributions in a multivariate mixture,” Annals of Statistics, 31, 201–224.

63



Heckman, J., and B. Singer (1984): “A Method for Minimizing the Impact of
Distributional Assumptions in Econometric Models for Duration Data,” Economet-
rica, 52, 271–320.

Henry, M., Y. Kitamura, and B. Salanie (2011): “Identifying Finite Mixtures
in Econometric Models,” working paper.

Hong, H., and M. Shum (2002): “Increasing Competition and the Winner’s Curse:
Evidence from Procurement,” The Review of Economic Studies, 69, 871–898.

Hu, Y. (2008): “Identification and Estimation of Nonlinear Models with Misclas-
sification Error Using Instrumental Variables: A General Solution,” Journal of
Econometrics, 144, 27–61.

Hu, Y., D. McAdams, and M. Shum (2011): “Identification of First-Price Auc-
tions with Non-separable Unobserved Heterogeneity,” working paper.

Hu, Y., and S. Schennach (2008): “Instrumental Variable Treatment of Nonclas-
sical Measurement Error Models,” Econometrica, 76, 195–216.

Imbens, G. W., and W. K. Newey (2009): “Identification and Estimation of
Triangular Simultaneous Equations Models Without Additivity,” Econometrica,
77, 1481–1512.

Jofre-Bonet, M., and M. Pesendorfer (2003): “Estimation of a Dynamic
Auction Game,” Econometrica, 71, 1443–1489.

Kitamura, Y. (2003): “Nonparametric identifiability of finite mixtures,” Unpub-
lished manuscript.

Krasnokutskaya, E. (2011): “Identification and Estimation in Procurement Auc-
tions under Unobserved Auction Heterogeneity,” Review of Economic Studies,
forthcoming.

Krasnokutskaya, E., and K. Seim (2011): “Bid Preference Programs and Par-
ticipation in Highway Procurement Auctions,” The American Economic Review,
101, 2653–2686.

Levin, D., and J. Smith (1994): “Equilibrium in Auction with Entry,” American
Economic Review, 84, 585–599.

Levinsohn, J., and A. Petrin (2003): “Estimating production functions using
inputs to control for unobservables,” Review of Economic Studies, 70 (2), 317341.

Lewbel, A. (2007): “Estimation of average treatment effects with misclassification,”
Econometrica, 75, 537551.

Li, T., I. Perrigne, and Q. Vuong (2000): “Conditionally Independent Private
Information in OCS Wildcat Auctions,” Journal of Econometrics, 98, 129–161.

64



(2002): “Structural Estimation of the Affiliated Private Values Model,”
RAND Journal of Economics, 33, 171–193.

Li, T., and X. Zheng (2009): “Entry and Competition Effects in First-Price Auc-
tions: Theory and Evidence from Procurement Auctions,” Review of Economic
Studies, 76, 1397–1429.

Mahajan, A. (2006): “Identification and estimation of regression models with mis-
classification,” Econometrica, 74, 631665.

Marmer, V., A. Shneyerov, and P. Xu (2011): “What Model for Entry in
First-Price Auctions? A Nonparametric Approach,” Working paper.

Maskin, E., and J. Riley (2000): “Asymmetric Auctions,” Review of Economic
Studies, 67, 413–438.

Olley, S., and A. Pakes (1996): “The Dynamics of Productivity in the Telecom-
munications Equipment Industry,” Econometrica, 64, 1263–1297.

Porter, R., and D. Zona (1993): “Detection of Bid Rigging in Procurement
Auctions,” Journal of Political Economy, 101, 518–538.

Roberts, J. (2011): “Unobserved Heterogeneity and Reserve Prices in Auctions,”
working paper.

Roberts, J., and A. Sweeting (2010): “Entry and Selection in Auctions,” Work-
ing paper.

Saini, V. (2011): “Endogenous Asymmetry in a Dynamic Procurement Auction,”
Working paper.

Samuelson, W. (1985): “Competitive Bidding with Entry Costs,” Economic Let-
ters, 17, 53–57.

65


