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Abstract. We combine a Diamond and Dybvig (1983) banking system with a

Lagos and Wright (2008) dynamic general equilibrium monetary model. Equi-

librium bank-runs are driven by sunpots and shocks to fundamentals. The

expected frequency of these shocks affects ex ante bank portfolio decisions: in-

vestment is low in unstable economies. The Friedman rule does not eliminate

bank-runs. A narrow-banking regime eliminates bank-runs, but at a welfare

cost that may be worth paying in unstable regimes. Suspension of withdrawals

eliminates bank-runs when they are driven by sunspots, but not when they are

driven by fundamentals. When bank-runs are driven by fundamentals, mon-

etary injections to the banking sector replaces a bank-run with an orderly

partial default.

1. Introduction

As far as we know, this is the first attempt to build a model of bank runs with

in an explicit monetary economy. As you will see, the paper below is incomplete

and highly preliminary. We welcome the comments and criticisms of seminar par-

ticipants at the Banco de la Republica.

2. The environment

Time, denoted , is discrete and the horizon is infinite,  = 0 1 2 ∞ Each

time period  is divided into three subperiods: the morning, afternoon and evening.

There are two permanent types of agents, each of unit measure, which we label

investors and workers. All agents discount flow utility payoffs across periods with

an identical subjective discount factor 0    1

Investors have preferences defined over three goods: a morning good,  ∈ R
(transferable utility), an afternoon good 1 ≥ 0, and an evening good 2 ≥ 0

Investors have identical preferences for the morning good but have state-contingent

preferences defined over the afternoon and evening goods. Let  ∈ {0 1} denote an
investor’s type—an idiosyncratic shock realized at the beginning of each afternoon.

The expected utility payoff over afternoon and evening consumption is given by

 [(1 + 2)]  where  is an increasing and strictly concave function satisfying

−00()0()  1
Let {1() 2(); ∈ {0 1}} denote a state-contingent afternoon and evening

allocation for an investor. Assume that the preference shock  is an i.i.d. random
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variable, where  = Pr[ = 0] Then an investor’s expected utility (flow) payoff can

be written as,

(2.1) +  [1(0)] + (1− ) [1(1) + 2(1)]

Assume that  also measures the known fraction of investors who want afternoon

consumption only (there is no aggregate uncertainty).

Investors produce new capital goods in the morning. An investment of  units of

capital yields  units of nonstorable output in the evening. We assume that   1

and that capital depreciates fully at the end of the evening. An investor bears the

utility cost − (measured in morning output) associated with an investment level
 An investment undertaken in the morning can be interrupted in the afternoon,

in which case  units of investment yields  units of afternoon output (0   

1  ) and zero units of evening output.1

Workers have linear preferences defined over the morning good  ∈ R (transfer-
able utility) and produce nonstorable output  ≥ 0 in the afternoon. The utility
cost associated with producing  units of output is given by 

An efficient allocation has the following properties. First, since   1 it is

never efficient to scrap investment. Second, since type  = 0 investors do not value

consumption in the evening, efficiency dictates ∗2(0) = 0 Third, since type  = 1
investors view consumption in the afternoon and evening as perfect substitutes,

  1 implies that it is never efficient to satisfy their consumption in the afternoon:

∗1(1) = 0 An efficient allocation will therefore satisfy the resource constraints

1(0) =  and (1− )2(1) =  Consider the following welfare problem:

max


½
−−  + 

³ 


´
+ (1− )

µ


1− 

¶
: −  ≥ 

¾
where  denotes the minimum utility delivered to workers necessary to induce their

participation. For simplicity, assume  = 0 so that  =  In this case, the optimal

allocation is completely characterized by a pair (∗ ∗) satisfying,

0(∗) = 1(2.2)

0 [∗(1− )] = 1(2.3)

3. A monetary economy

Assume that investors cannot commit to any promises made to workers, so that

workers must be paid quid-pro-quo for output they produce in the afternoon. The

lack of commitment implies a demand for an exchange medium, assumed here to

take the form of a zero-interest-bearing government debt instrument (money), the

total supply of which is denoted  at the beginning of date  Assume that the

initial money supply 0  0 is owned entirely by workers. New money is created

(destroyed) at the beginning of each morning at the constant rate    New

money  = [ −−1] is injected (withdrawn) as lump-sum transfers (taxes)

bestowed (imposed) on workers.2

1Later on we should consider replacing this scrapping technology with a market in which the

bank liquidates the investment for cash.
2Note that we could alternatively have held fixed and paid interest on money in the afternoon

(financed by a real lump-sum tax on workers) and also pay interest on money maturing the next
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Trade of money-for-goods is assumed to take place in a sequence of competi-

tive morning and afternoon spot markets, at prices  and   respectively. We

anticipate a sequence of spot trades that consist of investors selling their morning

production for money, using the cash proceeds to purchase output in the afternoon.

We first consider a monetary equilibrium in the absence of intermediation. Since

   an educated guess tells us that investors will enter the morning with zero

money balances, accumulated money in the morning, and spend all their money in

either the afternoon or evening. Thus, the quantity

(3.1)  =  

represents both the nominal value of cash acquired and held by an investor in the

morning.

For now, we assume that there is no secondary asset market in the afternoon

that would permit patient and impatient investors to trade afternoon output for

claims to evening output. In this set up then, the capital investment associated

with an impatient investor needs to be scrapped or is otherwise lost.

If the investor turns out to be impatient, he faces the expenditure constraint

(3.2)  1(0) ≤  +  

If the investor turns out to be patient, he faces the expenditure constraints

 1(1) ≤ (3.3)

2(1) ≤ (3.4)

Combine (3.1) and (3.2) set to equality to form 1(0) = (

 


 )+  Similarly,

(3.1) and (3.3) imply 1(1) = ( 

 ) Next, set 2(1) =  and define  ≡

( 

 )  An investor’s choice problem at the beginning of a period may then be

stated as,

(3.5) max


{−−  +  (+ ) + (1− ) (+)}

The first-order necessary conditions characterizing an investor’s optimal portfolio

are given by,

0 (+ ) + (1− )0 (+) = 1(3.6)

−0 (+ ) +(1− )0 (+) = 1(3.7)

Consider now a worker who enters the morning with −1 units of money, sup-
plemented with the transfer . For every unit of output a worker sells in the

afternoon, he receives  units of money, which he then sells for 1

+1 units of the

morning good in the following period. Since his preferences in the afternoon and

the following morning are linear, the following condition has to hold:

(3.8)  = Π+1

where Π+1 = +1

 .

morning (financed by a lump-sum tax on investors and workers). I think it would be possible in

this set-up to enhance the rate of return on money heading into the afternoon to the point that

it equals  This would mean equating afternoon and evening consumption for investors AND

eliminate bank-runs. But of course, equating consumption like this is not optimal. So there’s

potentially a nice trade-off here. Inefficient risk-sharing (weird, because consumption is equated)

eliminates bank run equilibria.
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In a stationary monetary equilibrium, all nominal prices grow at the same rate

 as the aggregate stock of money. Thus, Π+1 =  and so from (3.8)  =

. Furthermore, market clearing in the afternoon requires that [1(0) − ] +

(1− ) 1(1) =  =  which implies that  = . Use these expressions to

rewrite equations (3.6) and (3.7) as follows:

0 ( + ) =
1

+ 

µ



− 1
¶

(3.9)

(1− )0 ( +) = 1 +


+ 

µ



− 1
¶

(3.10)

Definition 1. A stationary monetary equilibrium is ( ) that satisfy (3.9) and

(3.10).

4. Market for projects in the afternoon

Suppose that in the afternoon market investors can trade (unmatured) projects

for money. Let  be the afternoon price of a unit of invested capital that ma-

tures in the evening. Impatient investors will want to sell all their investments

in exchange for money, which they can then use to buy consumption goods from

workers. We anticipate (and later verify) that impatient investor do not scrap any

of their investments and that patient investors set 2(1) = 0.

An impatient investor faces the following constraint in the afternoon:

(4.1)  1(0) ≤  +  

Let  be the amount of capital bought by a patient investor in the afternoon. The

patient investor faces the constraints:

  ≤ (4.2)

2(1) ≤ ( + )(4.3)

Note that we still have  =   in the morning. Recall  =  

 and define

 =  

 . Given that expenditure constraints are satisfied with equality, we

obtain

1(0) = (+ )(4.4)

2(1) = ( + )(4.5)

The problem of an investor at the beginning of the morning is

max


{−−  + [(+ )] + (1− )[( + )]}

The first-order conditions imply:

−1 + 
0 [1(0)] + (1− )

0 [1(1)] = 0(4.6)

−1 + ()
0 [1(0)] + (1− )0 [1(1)] = 0(4.7)

Clearly,  = 1. Since   1, we verify that an impatient investor would rather sells

his unmatured project than scrapping it. We also verify that a patient investors

sets 1(1) = 0. To see this note that if he instead buys afternoon consumption

in exchange for money, total consumption in the afternoon and evening equals
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()+, which is less than his consumption in equilibrium, (+), as shown

in (4.5).

Given  = 1, the investor’s problem can be defined over  ≡  + . From the

worker’s problem, in a stationary equilibrium,  = . Thus,  solves

(4.8) ()0[()] + (1− )0() = 1

Market clearing in the afternoon implies 1(0) =  and (1 − ) = . Thus,

2(1) = (1− ). Therefore,

 = ()(4.9)

 = (1− )(4.10)

Definition 2. A stationary monetary equilibrium with a market for projects in the

afternoon is ( ) that satisfy (4.9) and (4.10) where  satisfies (4.8).

Finally, note that  = .

5. Money and banking

To exploit the gains associated with risk-sharing, we assume that investors co-

alesce to form a “bank.” Investors deposit  units of real money balances and 

units of capital. Money is acquired in the morning spot market,  =  . Cap-

ital is constructed directly with investor labor. The bank uses its deposits of cash

and capital ( ) to issue demandable liabilities.
3 The bank’s “demand-deposit

liabilities” are redeemable for cash in the afternoon (for the moment, we abstract

from bank runs). In the evening, bank liabilities can be spent (redeemed) directly

for evening output (the output generated by the maturing investment).

We conjecture (and later verify) that a bank will enter each period with zero

money balances. Thus, afternoon consumption is limited by  1 (0) ≤ , a

constraint that we anticipate will bind (this will be the case when money is domi-

nated in rate of return). Then, this later constraint and  =   together imply

1 (0) = . In the evening, consumption is limited by (1 − )2(1) ≤ .

Again, this latter constraint will bind because capital depreciates fully at the end

of the period. Since all wealth is consumed within the period, the bank carries zero

wealth into the future, so that the choice problem is static and can be written as

follows,

(5.1) max


½
−−  + 

³


´
+ (1− )

µ


1− 

¶¾
The first-order necessary conditions that characterize the optimal portfolio are given

by,


0
³



´
= 1(5.2)

0
µ



1− 

¶
= 1(5.3)

3Liabilities are made demandable because an investor’s type is private information.
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Note that for workers (3.8) still holds. In a stationary no-run banking equilib-

rium,  = . Furthermore, market clearing in the afternoon requires that

1(0) =  =  which implies that  = . Use these expressions to rewrite

and equations (5.2) and (5.3) as follows:

0 () = (5.4)

0
µ



1− 

¶
= 1(5.5)

Note that  = ∗ and   ∗ for   . Under the Friedman rule,  =   = ∗.4

Definition 3. A no-run banking equilibrium is ( ) that satisfy (5.4) and (5.5).

6. Money and banking: unexpected run allocation

In this section, we derive the allocation that occurs when there is an unexpected

run. Furthermore, we assume that the probability that another run occurs in the

future is zero. The analysis here is an intermediate step before we derive the sunspot

banking equilibrium further below. The analysis of an unexpected run is simplified

by the fact that we can take the allocation in the morning market ( ) as given

and equal to the one derived in the no-run banking equilibrium. In contrast, in the

sunspot banking equilibrium the value of money  and the optimal choice of  are

affected by the probability of a bank run. Thus, to simplify matters, let us first

derive the afternoon allocation after an unexpected bank run.

Assume that an unexpected run occurs in the afternoon. Unexpected means

that the allocation in the morning market ( ) is described in Definition 3. We

assume that the bank in this case liquidates the capital stock. In that process, a

fraction (1− ) is destroyed and the nominal income from selling the reminder for

money is  . Thus, the nominal quantity of money that the bank has is

 +  

We assume a sequential service rule. In the no-run equilibrium, the bank has

promised to hand out units of money to agents that show up in the afternoon.

A sequential service rule means that the bank continues to honor this promise until

it runs out of money.5 Accordingly, it can pay out units of money to ̃ agents,

where ̃ satisfies

(6.1)

̃ =
 +  


=  [1 + ( )] = 

∙
1 +

µ
 








¶


¸
= 

∙
1 +





¸
These ̃ agents face the budget constraint

 ̃1 ≤ 

4In order to show that a non-run equilibrium exists, we have to show that an investor is willing

to work in the CM in order to acquire  units of money and  capital and then deposit at the

bank in exchange for the contract specified above. The alternative is self-insurance. That is, the

investor can work in order to produce  capital and acquire  units of money and hold on to

it. The utility of doing so depends of what we assume about the market structure.
5The bank has a contractual obligation to pay out  to every agent that shows up in the

afternoon. So any attempt to pay out less than  while the bank has still some money in its

vault results in the immediate execution of the bank manager. If the bank manager stops paying

out money because the vault is empty, he is celebrated.
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Accordingly, production in the afternoon is

 = ̃̃1 −  = ̃ (

 )  −  = ̃ − 

Using (6.1) to replace ̃ and the first-order condition of the sellers  = , we

can write this expression as follows

 = 

Thus, sellers work the same hours as in the no-run equilibrium since  solves (5.4).

The intuition for this result is that the sellers’ linear production technology allows

for no price level effects in the afternoon. Note also ̃1 = 1 (0); that is consumption

for the ̃ agents that are able to redeem their deposits is equal to the consumption

of impatient agents in the no-run equilibrium. The intuition for this finding is

again that there are no price effects of a run in the afternoon because of the linear

production technology of the sellers. Finally, such an run equilibrium exists since

running yields expected utility ̃ (̃1)+(1− ̃) (0) while non-running yields  (0).

7. Sunspot banking equilibrium

Suppose sunspots determine whether there is a run or not. Denote  the prob-

ability that in a period no run takes place. The potential of runs will affect the

ex-ante choice of capital and money. The bank takes this into account when deriving

the optimal allocation ( ) as follows

max


½
−−  + 

∙

³



´
+ (1− )

µ


1− 

¶¸
+ (1− )

h
̃
³



´
+ (1− ̃) (0)

i¾
The first-order necessary conditions that characterize the optimal portfolio are given

by6


0
³



´
+ (1− ) (̃) 

0
³



´
= 1(7.1)

0
µ



1− 

¶
= 1(7.2)

Note that for workers (3.8) still holds. In a stationary sunspot equilibrium, then

 = . Thus, we can write (7.1) and (7.2) as follows:

[ + (1− ) (̃)]0
∙
()



¸
= (7.3)

0
µ



1− 

¶
= 1(7.4)

Definition 4. A sunspot banking equilibrium is ( ) that satisfy (7.3) and (7.4).7

There are many interesting results. First, note that optimal capital stock  ()

is independent of  since it is determined by (7.4). Furthermore,  () is increasing

in  since



=



Ω
 0

6Here we assume that the bank does not take into account how its choices of  and  affect

the probability ̃.
7Here, I deviate from the previous definitions by defining the equilibrium in terms of ( ).

We should switch to define all equilibria in terms of ( ).
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where Ω =
−00()
0() is relative risk aversion.

Second, if  = 0, then ̃ = 1 and the first-condition (7.3) yields 0
h
()



i
=

 which is equal to (5.4) since market clearing in the afternoon implies  =

(). Note that



 ()
=

 (1−Ω)
Ω

Thus, the effect of inflation on the real value of money that is deposited in the bank

depends on relative risk aversion and can be positive or negative. Since this is the

same expression as in the banking equilibrium, the result also applies there.

Third, if   0, then ̃  1 and  and  interact as follows½
 + (1− )

∙
1 +



()

¸¾
0
∙
()



¸
= (7.5)

0
µ



1− 

¶
= 1(7.6)

Suppose  increases. Then,  increases. A larger  then implies that  increases:

money and capital are complements. The same is true for an increase in .

8. Sunspot banking equilibrium (refinement)

In the previous formulation, we assumed that the bank took ̃, the measure of

investors that could be serviced in the event of a run, parameterically. Consider

now the case when the bank internalizes the effects of its decisions on this measure.

To simplify exposition define ∆() = () − (0)  0. The problem of the

bank can be written as

max


½
−−  + 

∙

³



´
+ (1− )

µ


1− 

¶¸
+ (1− )

∙
1 +





¸
∆()

¾
where we dropped the constant term (1−)(0) from the objective. After imposing
 = , the first order conditions imply

{() + (1− ) [1 + ()]}0
µ
()



¶
− (1− )()[∆()] = 1

0
µ



1− 

¶
+ (1− )()[∆()] = 1

Clearly, from the second condition, the bank invests more capital relative to the

case when it takes ̃ parameterically. The intuition is simple: more capital provides

better insurance in case of a run, as more investors get serviced. Similarly, the

demand for money is lower, so that its real value  drops.
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9. Government intervention

Government intervention: lender of last resort. The benefits of providing liquid-

ity in the afternoon.
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