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Abstract

In this paper we derive new measures of returns to scale based on input distance functions

(IDF) and estimate them using nonparametric regression methods. In contrast to cost func-

tions, IDF dispenses with input prices which are usually unavailable or measured imprecisely.

In addition, we can appropriately account for equity and physical capital in the IDF. These

items are traditionally excluded from the analysis (especially in a cost function approach) or

treated as quasi fixed inputs because their prices are not readily available. Using data for bank

holding companies and large commercial banks in the U.S. from 2000 to 2010, we find that

although some of these institutions enjoy increasing returns to scale, scale economies are eco-

nomically small. Thus, concerns about potential cost increases from breaking up large banking

organizations seem exaggerated, especially from the scale economies viewpoint.
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1 Introduction

More than two years after The Dodd-Frank Wall Street Reform and Consumer Protection Act was

signed into law, regulators, policymakers, and academics in the U.S. are still pondering the possi-

bility and desirability of limiting the size of large banking organizations. Recent speeches by top

Federal Reserve Bank officials in the U.S. and of the Bank of England in the U.K. revived the un-

settled debate on “too big to fail” (TBTF) and the feasibility of limiting the scale and scope of bank

activities, calling for further research on banking industry structure in general and on economies of

scale and scope in particular.1

If large banking organizations enjoy economies of scale, limiting or shrinking their size may

pose substantial losses to the economy. However, recent research focusing on the existence of

economies of scale and on the cost of shrinking or capping the size of banks is still inconclu-

sive. Wheelock and Wilson (2011, 2012) present evidence indicating that all U.S. commercial

banks, bank holding companies (BHC), and credit unions operate under increasing returns to scale

(RTS). Likewise, Hughes and Mester (2011) show evidence of increasing RTS for BHC operating

in 2007. For large U.S. commercial banks, those with assets in excess of $1 billion, Feng and Ser-

letis (2010) present evidence of slightly increasing RTS, Feng and Zhang (2012) find decreasing

RTS, and Restrepo-Tobón, Kumbhakar and Sun (2012) find increasing RTS for about 73% of them

and constant or slightly decreasing RTS for the rest.

Among these studies, only Wheelock and Wilson (2012) and Hughes and Mester (2011) esti-

mate the potential cost of breaking up large BHC. Using a back-of-the-envelope calculation, Whee-

lock and Wilson (2012) estimate that the additional cost of breaking up the four largest U.S. BHC

operating in 2010 into firms with no more than $1 trillion of assets would be around $79.1 billion

per year.2 This value exceeds their combined net income in each year from 2003 to 2006. Hughes

and Mester (2011) conduct a similar calculation to estimate the additional cost of breaking up the

1See Tarullo (2012a,c,b), Haldane (2012), Rosenblum (2011), and the ensuing media coverage and market partici-
pants’ analyses (e.g. Johnson 2012, Wack 2012, Wallison 2012, and Harrison 2012).

2The four BHC are: Bank of America Corporation with $2.268 trillion; J.P. Morgan Chase with $2.118 trillion;
Citigroup with $1.914 trillion; and Wells Fargo with $1.258 trillion.
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17 BHC with assets exceeding $100 billion into firms with assets of no more than $100 billion,

while keeping their output mix unchanged. They find that the additional cost would be around

$990 billion per year. Allowing BHC to change their output mix to a value in line with their new

hypothetical smaller size, however, yields cost savings between $21 and $147 billion per year,

depending on the method used.

Boyd and Heitz (2012) estimates that the potential benefits to the society from economies of

scale of big financial institutions are unlikely to ever exceed the potential costs due to their contri-

bution to systemic risk. They find that the cost to the economy as a whole due to increased systemic

risk is of an order of magnitude larger than the potential benefits due to any economies of scale.

To contribute to this literature and enhance the policy debate, we derive new measures of returns

to scale (RTS) based on input distance functions (IDF) and estimate them using nonparametric re-

gression methods for the largest U.S. banking organizations. Compared with a cost function-based

approach, an IDF gives a primal representation of the underlying technology and its estimation

requires no information on total costs or input prices. On the other hand, nonparametric methods

circumvent the potential misspecification problem inherent in parametric models and dispense with

assumptions about the true unknown functional form of the underlying production technology.

Conventional economies of scale studies are potentially misleading since they rely on estimated

cost functions that may identify TBTF lower funding costs as evidence of scale economies. RTS

estimates from an IDF however, are partially shielded from this problem since in their estimation

one uses information that is less likely to be driven by TBTF funding advantages embodied in

firms’ costs and the input prices they face.

Using an IDF allows us to appropriately account for equity and physical capital in the esti-

mation. Many studies based on cost functions exclude them from the analysis or treat them as

quasi-fixed inputs given that their associated prices are not readily available (e.g., Wheelock and

Wilson 2012 and Berger and Mester 2003). Output distance functions (ODF) also shares these ad-

vantages with the IDF approach (see Feng and Serletis, 2010 and Feng and Zhang, 2012). However,

estimating an ODF leads to biased and inconsistent estimates when inputs are endogenous; which
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is the case when the assumption of cost minimization is appropriate. In contrast, the estimation of

the IDF does not suffer from this problem, Das and Kumbhakar 2012.

The closest papers to our work are Wheelock and Wilson (2011, 2012) (W&W). However,

our papers differs from theirs along several dimensions. First, while W&W use a cost function,

we use an IDF. As mentioned before, using an IDF instead of a cost function avoids making the

assumptions that physical and financial capital are quasi-fixed factors of production; which seems

not to be the case for the long periods traditionally studied in the literature.

Second, appealing to economic intuition, W&W define two different measures of scale economies

based on the cost function—ray-scale economies (RSE) and expansion-path scale economies (EPSE).

They show that these measures can be used to investigate the nature of scale economies. We gener-

alize the RSE measure by deriving it from the basic properties of the underlying bank technology

for cost, output distance, and input distance functions. Further, we prove that the EPSE measure,

as defined by W&W, is just the ratio between two RSE at two different points and that, contrary to

W&W’s claims, EPSE is not a better measure of RTS; in some cases it may not accurately indicate

the nature and magnitude of RTS. In addition, we show that it is unnecessary to use the slope of the

RSE measure to investigate the nature of RTS, as W&W advocate, since the appropriate measure

is the RSE itself.

Third, we use a more recent dataset which is more relevant for current policy debates and

focus only on banks with assets above $500 million—the existence of scale economies at smaller

banking organizations is not an issue in the literature. In particular, we use data for the period

after deregulation of the banking industry to avoid that differences in regulations across banks

contaminate the estimation of RTS. This strategy allows us to have a smaller sample and avoid the

use of principal components analysis to reduce the dimensionality of the data as is done by W&W.

Finally, W&W avoid using gradient-based measure of RTS based on nonparametric functions

arguing that gradient estimates may be noisy. We compute such measures and find that the con-

clusion derived using the RSE are similar to those derived from gradient-based measures of RTS.

Thus, W&W’s argument in this respect seems to have little empirical support.
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We use annual data for U.S. BHC and the biggest U.S. commercial banks from 2000 to 2010.

Contrary to Wheelock and Wilson (2012), but in line with conventional wisdom, we find that not

all BHC and commercial banks enjoy increasing returns to scale (IRTS). In addition, economies of

scale for those banking organizations operating under IRTS are small. Our RTS estimates are gen-

erally close to unity but are estimated very precisely so that we can distinguish between increasing,

decreasing, and constant returns to scale with enough accuracy. Thus, despite the existence of IRTS

at some of the biggest banking organizations, the cost of breaking up some of these institutions into

smaller and more manageable organizations may pose few costs to the economy.

In the next section we derive our measure of RTS and compared them with those presented in

related studies. Section 3 presents our model of bank production and describes the data. Section

4 discusses the econometric estimation of the model and Section 5 presents the main empirical

results. We conclude by highlighting the policy implications in Section 6.

2 Methodology

In this section we derive our RTS measures based on basic properties of the underlying production

technology for cost, input distance, and output distance functions; and highlight the main differ-

ences with related measures used in the literature.

2.1 Modelling Banks’ Technology

We assume that banks have a production technology T : RN
+×RM

+ → T = {(x,y) : x can produce y}

that transforms input vectors x = (x1, ...,xN) ∈ RN
+ into output vectors y = (y1, ...,yM) ∈ RM

+ . The

output correspondence P : RN
+ → P(x) = {y : (x,y) ∈ T} maps the input vectors (x) into output

sets P(x) which contains all producible output vectors from x ∈ RN
+. The input correspondence

L : RM
+ → L(y) = {x : (x,y) ∈ T} maps output vectors y into input sets L(y) which contains all

input vectors that can produce y ∈ RM
+ . By definition, y ∈ P(x) ⇐⇒ (x,y) ∈ T ⇐⇒ x ∈ L(y).

Thus, T, P, and L are equivalent representations of the production technology.
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The cost, output, and input distance functions are defined, respectively, as follows:3

C(y,w) =min
x
{px : x ∈ L(y)},y ∈ Dom L(y),w > 0. (1)

Do(x,y) = inf
θ
{θ > 0 : (y/θ) ∈ P(x)} for all x ∈ RN

+. (2)

DI(y,x) =sup
λ

{λ > 0 : (x/λ ) ∈ L(y)} for all y ∈ RM
+ . (3)

Under minimal standard assumptions, the cost function is a dual representation of the underlying

technology. Moreover, the output and input distance functions are themselves representations of

the underlying production technology. The properties of the cost function are well known and those

of the ODF and IDF are detailed in Färe (1988). For our purposes, we highlight some important

properties of the IDF. The IDF is nondecreasing and linear homogeneous in x; and nonincreasing

and, in general, not homogeneous in y. We exploit these properties to derive our measures of RTS

based on the IDF.

The literature shows that the production technology exhibits nonincreasing returns to scale

(NIRTS) if and only if for all γ ≥ 1, the following (subhomogeneity) conditions hold:

I. P(γ x)⊆ γP(x)

II. L(γ y)⊆ γL(y)

For λ ∈ (0,1] the signs in I and II have to be reversed. If the opposite (superhomogeneity)

conditions hold, the technology exhibits nondecreasing returns to scale (NDRTS). In addition, the

technology exhibits constant returns to scale (CRTS) if the signs in I and II are changed for equality

signs (homogeneity conditions).

Under NIRTS and for γ ≥ 1, conditions I and II imply the following relations for the cost,

3See Färe and Primont (1995).
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output, and input distance functions:

γ C(y,w)≤C(γ y,w) (4)

(1/γ)Do(x,y)≤Do(γ x,y) (5)

(1/γ)DI(y,x)≥DI(γ y,x) (6)

For γ ∈ (0,1) the signs in (4) - (6) have to be reversed. The conditions for NDRTS are obtained

by reversing the inequality signs. Likewise, the conditions for CRTS are obtained by substituting

for equality signs.

We prove (6) for γ ≥ 1. From (3)

DI(γ y,x) =sup
λ

{λ > 0 :
x
λ
∈ L(γ y)}≤ sup

λ

{λ > 0 :
x
λ
∈ γ L(y)}= sup

λ

{λ > 0 :
x

λγ
∈ L(y)}

=
1
γ

sup
λ

{λγ > 0 :
x

λγ
∈ L(y)}= 1

γ
sup

φ

{φ > 0 :
x
φ
∈ L(y)}= 1

γ
DI(y,x)

(7)

where the inequality follows from condition II. Conditions (4) and (5) are proved analogously.

The economic intuition underlying the condition (4) is easy to understand. Under NIRTS, if

outputs were increased by a factor γ > 1, total costs would increase by a factor greater than γ .

Otherwise, with fixed output prices, it would be profitable to expand production since revenues

would increase by a factor γ but total costs would increase by a factor less than γ . The economic

intuition of conditions (5) and (6), on the other hand, is less evident and requires familiarity with

the concepts of output and input distance functions—we return to this issue in the next subsection.

For this reason, only some versions of (4) has been used in the literature to measure the nature of

scale economies using discrete changes in outputs and inputs.

2.2 Measuring Returns to Scale (RTS)

Eliminating the inequalities in conditions (4)–(6), we can define the following measures of RTS

based on the cost and the output and input distance functions as follows:
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RTS based on the cost function:

Scost(γ|y,w) = C(γ y,w)
γC(y,w)

(8)

For γ > 1, the technology exhibits NIRTS, CRTS, or NDRTS as Scost(γ|y,w)T 1, respectively. For

γ ∈ (0,1], the signs need to be reversed.

RTS based on the ODF:

SODF(γ|y,x) = Do(γ x,y)
(1/γ)Do(x,y)

(9)

For γ > 1, the technology exhibits NIRTS, CRTS, or NDRTS as SODF(γ|y,w)T 1, respectively. For

γ ∈ (0,1], the signs need to be reversed.

RTS based on the IDF:

SIDF(γ|y,x) = DI(γ y,x)
(1/γ)DI(y,x)

(10)

For γ > 1, the technology exhibits NIRTS, CRTS, or NDRTS, as SIDF(γ|y,x)S 1, respectively. For

γ ∈ (0,1], the signs need to be reversed.

Since the IDF is linear homogeneous in x, (10) can be rewritten as:

SIDF(γ|y,x) = DI(γ y,γ x)
DI(y,x)

(11)

which makes it clear that SIDF(γ|y,x) measures how the distance function changes when all outputs

and inputs are scaled up or down by a factor γ . If the IDF does not change, it means that the tech-

nology exhibits CRTS: an equiproportional increase of all inputs leads to an equal equiproportional

increase in all outputs. If the technology exhibits NDRTS, then scaling up (down) all outputs and

inputs leads to an increase (decrease) of the IDF. Likewise, if the technology exhibits NIRTS, then

scaling up (down) all outputs and inputs leads to a decrease (increase) of the IDF.

We can use (8)–(10) to quantify the magnitude of RTS. Using the cost based RTS measure

in (8), an increase in output quantities by a factor γ > 1 leads to an increase in cost by a factor

Scost(γ|y,w)× γ . Conversely, a decrease in output quantities by a factor γ−1 leads to a decrease in
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cost by a factor (Scost(γ|y,w)× γ)−1. Likewise, using the IDF based measure of RTS in (10), an

increase in output quantities by a factor γ > 1 requires an increase in input quantities by a factor

γ/SIDF(γ|y,x). Conversely, a decrease in output quantities by a factor γ−1 requires a decrease in

input quantities by a factor SIDF(γ|y,x)/γ . An analogous interpretation applies for (9).

As we later show, the relation in (12) allows us to interpret IDF-based measures of RTS in terms

of cost and vice versa. However, the IDF based measure is more general since it does not require

the cost minimization assumption upon which (8) is defined.

Using the especial two-inputs one-output case, figures 1 and 2 illustrate how our proposed

RTS measure based on the IDF, (10), can identify the nature and quantify the magnitude of scale

economies. Figure 1 illustrates the concept of the IDF. The IDF, DI(y,x), is given by the ratio

between β/α and represents the maximum factor by which one needs to divide an arbitrary vector

of inputs x = (x1,x2) ∈ L(y) along the ray through x, so that the resulting vector x∗ still belongs to

L(y). By definition of the IDF, x/DI(y,x) is contained in L(y), but no point southwest of it is in

L(y).

In Figure 2, we draw several isoquants for different output levels. For simplicity, we consider

only RTS along the ray R0 for which x1 = x2, but any other ray can be considered. It is clear that

up to y = 3, the technology exhibits increasing RTS; from y = 3 to y = 4.5 it exhibits constant RTS;

and after y = 4.5 it exhibits decreasing RTS. Now, for any arbitrary x ∈ L(y), we can compute our

scale economy measure in (10) along the ray R0. Note that along R0, β and α are easily computed

and so is DI(y,x).

Consider x = (8,8). Along R0, the IDF associated with y = 1 is DI(y = 1,x) = 8. Likewise,

DI(y = 2,x) = 16/3. Thus, in this case, SIDF(γ = 2|y = 1,x) = (16/3)/(1/2×8) = 4/3, indicating

IRTS as expected. Thus, doubling y from y = 1 to y = 2 requires only an increase of 50% in all

inputs. Similarly, DI(y = 3,x) = 4. Thus, considering increasing y from y = 2 to y = 3 yields

SIDF(γ = 3/2|y = 2,x) = (4)/(3/2×4/3) = 2, indicating IRTS since this only requires an increase

of 1/3 in inputs. For y = 3.75, DI(y = 3.75,x) = 16/5. Thus, increasing y from y = 3 to y = 3.75

yields SIDF(γ = 1.25|y = 3,x) = (16/5)/(4/5×4) = 1, indicating CRTS. The same results follows
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for SIDF(γ = 1.2|y = 3.75,x) = 1. For y = 5, DI(y = 5,x) = 2. Thus, SIDF(γ = 10/9|y = 4.5,x) =

(2)/(9/10×8/3) = 5/6 < 1, indicating DRTS. Then, increasing y from y = 4.5 to y = 5 requires

an increase in inputs of γ/SIDF(γ = 10/9|y = 4.5,x) = (10/9)/(5/6) = 4/3 which is greater than

the increase in output of 10/9. An analogous reasoning yields DRTS around y = 5.5 and y = 7.

Figure 2 also illustrates how our measure differs from the cost-based measured in (8). The cost-

based measure assumes that isocost lines are tangent to the isoquant curves at each level of output

y. Thus, it assumes that the firm is cost minimizing at the observed output level y and at all the

hypothesized scaled output levels γ y. In addition, one needs input price and total cost information

to determine the nature and magnitude of RTS using the cost-based measure. In contrast, using

the IDF-based measure one can dispense with the assumption of cost minimization at each level

of output. In particular, the IDF-based measure is robust to the presence of technical inefficiency

since it is well define even when DI(y,x)> 1.

To our knowledge, neither the measure of RTS we propose based on the IDF nor the preceding

analysis have appeared previously in the literature. In general, our measure of RTS based on the

IDF can be used to compute RTS along any ray from the origin through any input vector. In

particular, note that no cost minimizing assumption is involved in the analysis. Thus, measuring
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scale economies using the IDF is more general than using a cost function. Moreover, the technology

may exhibit varying degrees of RTS along different rays and our measure based on the IDF will

still be able to identify them. Another advantage of our approach is that we can measure RTS when

outputs are scaled up or down by discrete factors and not at infinitesimal changes as traditional

elasticity-based measures of RTS do.

Under the assumption of cost minimization the cost and IDF are related through wx=C(y,w)DI(y,x)

(see Färe, 1988, p. 152). Thus, the following equality holds4

Scost(γ|y,w) = 1
SIDF(γ|y,x)

(12)

Wheelock and Wilson (2012) refer to Scost(γ|y,w) in (8) as ray-scale economies. However,

instead of using (8) directly, W&W based their analysis on how (8) changes when γ changes.

This procedure is unnecessary since (8) itself is the appropriate measure of RTS in this context.

In addition, W&W define an alternative measure of scale economies, viz., expansion-path scale

economies (EPSE). We show that this latter measure is nothing new; in fact it is a ratio of two

ray-scale economies defined in (8). The EPSE in Wheelock and Wilson (2011, 2012) is defined as

SW&W (θ |y,w) = C(θ(1− γ)y,w)
θC((1− γ)y,w)

(13)

where θ = (1+ γ)/(1− γ) is 1.105 because they set γ = 0.05 . Thus,

SW&W (θ |y,w) = C(θ(1− γ)y,w)
θC((1− γ)y,w)

=
C((1+ γ)y,w)

1+γ

1−γ
C((1− γ)y,w)

=
C((1+ γ)y,w)
(1+ γ)C(y,w)

× (1− γ)C(y,w)
C((1− γ)y,w)

= Scost((1+ γ)|y,w)× 1
Scost((1− γ)|y,w)

(14)

Thus, the EPSE measure of W&W is nothing but the ratio of two ray-scale economies. According

4If RTS is measured based on elasticity formula, the relationship in (12) can be obtained directly from the duality
between cost and transformation functions (see Caves, Christensen and Swanson, 1981). We come to this in Section
5.2.
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to W&W, it gives an indication of RTS for a particular bank moving along the path from the origin

through its observed output vector y, starting at (1−γ) of y and continuing to (1+γ) of y. However,

the correct interpretation of (13) is that it measures RTS when outputs are scaled up by θ > 1,

starting at (1− γ) of the observed output level. So, it measures RTS when outputs are scaled up by

θ from (1− γ)× y to (1+ γ)× y which is different than measuring RTS at or around y. That is, it

does not measure RTS at or around the observed output level. The reason is that if from (1− γ)×y

to (1+ γ)× y the technology uniformly exhibits NIRTS, NDRTS, or CRTS this measure is well

defined. However, it is possible that when y is scaled up by (1+ γ) the technology might exhibit

NDRTS (NIRTS or CRTS) but when y is scaled down by (1−γ) it might exhibit NIRTS (NDRTS).

In this case, the EPSE measure is not well defined to determine the nature of RTS since it does not

measure RTS around the observed output level y. For instance, suppose we want to measure RTS

around an hypothetical observed output level y = 3 with γ = 1/3. In this case, θ = 2. Measuring

RTS using the EPSE implies going from y = 2 to y = θ × 2 = 4. As Figure 2 shows, in this case

we will conclude that the technology exhibits NDRTS. However, the main interest is about what

happens around y = 3, the observed output level. From Figure 2, it is clear that the technology

exhibits NDRTS above y = 3 and CRTS below y = 3. So, the EPSE measure gives an indication of

the nature and magnitude of RTS going from y = 2 to y = 4 but not around y = 3. That is, it gives

an indication of RTS between two hypothetical points above and below the observed output level

y = 3 but not at or around it.

Our RTS measures are based on global properties of the underlying technology. Thus, they

can be readily extended to other available methods for estimating distance functions. For instance,

directional distance function along a particular direction vector can also be used. Our estimated

measures are local in the sense that they measure RTS at the chosen value of γ . Choosing different

values of γ allows us to make inferences about the robustness of our procedure. If for a given ob-

servation, ŜIDF(γ|x0) changes wildly as γ changes, it may indicate that the nonparametric estimate

of the IDF is unstable and unable to estimate RTS precisely. We check the stability of our results

in the empirical section.
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Under the assumption of cost minimization, the ray-scale economies measure of RTS based

on IDF is equivalent to measures based on cost functions. This allows us to infer returns to scale

and investigate how changes in the level of outputs will change total costs for a given banking

organization even if input prices are unavailable. Further, our measure is also valid if the cost

minimization assumption fails to hold in the data. Therefore, our results are more general than

those presented in the recent literature.

In the next section, we present our model of bank production, describe our strategy to estimate

(10) nonparametrically, and show how to make inferences about scale economies.

3 A Model of Bank Production

Consistent with the widely used intermediation approach of Sealey and Lindley (1977), we assume

that banks’ balance-sheets capture the essential structure of banks’ core business: (i) liabilities,

together with physical and financial (equity) capital, and labor, are inputs into the bank production

process and (ii) assets, other than physical assets, are outputs. In addition, we define off-balance

sheet activities as an additional output. Liabilities include core deposits and purchased funds while

assets include loans and trading securities. Off-balance sheet activities include all revenue sources

other than lending and securities trading. Therefore, banks use labor, physical capital, financial

capital, and liabilities to produce loans, invest in financial assets, and facilitate other financial ser-

vices.

To keep our results comparable with the literature and, in particular, to those of Wheelock and

Wilson (2012), we define the following output variables: consumer loans (y1), real estate loans

(y2), business loans (y3), securities (y4), and off-balance sheet activities (y5). The input variables

are: purchased funds (x1), core deposits (x2), and number of full- time equivalent employees (x3).

In addition, we include physical (x4) and financial (equity) capital (x5) as inputs for the IDF or

quasi-fixed inputs for the cost function. We also include time as an extra variable to account for

shifts in the technology and possible variations in RTS estimates over time.
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We use three different samples for the estimation covering the period between 2000 and 2010.

We obtain data for BHC from the Federal Reserve end-of-year FR Y-9C reports and for commercial

banks from end-of-year Call reports. Except for employees’ information, all our variables are nom-

inal stock variables. We use the U.S. GDP implicit price deflator to transform all nominal variables

to 2010 prices. Table 1 reports summary statistics for the three samples. Sample I includes 8,265

observations for 1,418 top-tier BHC with assets above $500 million. Sample II includes 10,229 ob-

servations for 1,640 commercial banks with assets above $500 million. Sample III includes sample

I plus 1,287 observations for 262 independent commercial banks not owned by a reporting BHC

with assets above $500 million.

4 Returns to Scale Estimation

To compute our measure of RTS given by (10), we need estimates for the input distance functions

DI(y,x) and DI(γy,x). Following Wheelock and Wilson (2012, 2011), we assume away inefficiency

and use nonparametric kernel estimation methods to avoid making arbitrary assumptions about the

functional form of the underlying technology. After imposing the linear homogeneity property (in

inputs) on the IDF and including time into DI(y,x) = 1, the estimating equation becomes:

− lnx1 = lnDI(y, x̃, t)+ εit (15)

where x̃= {ln(x2/x1), ln(x3/x1), ..., ln(x5/x1)}, y= {lny1, lny2, ..., lny5}, t = {1,2, ...,11} indexes

time periods from 2001 to 2010, and the random error term, εit , captures the stochastic nature of

the IDF.

Advances in nonparametric econometrics allows us to estimate (15) by smoothing both the con-

tinuous (y and x̃), and the ordered (t) variables. To do this, we use a generalized kernel estimation

along the lines of Li and Racine (2004) and Racine and Li (2004). Specifically, we use a Local

Linear Least Squares (LLLS) estimator which performs weighted least-squares regressions around

a point x0 with weights determined by a kernel function and a bandwidth vector. Observations
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closer to x0 receive more weight as a function of their associated bandwidth. We use a second order

Gaussian kernel and Least Squares Cross-Validation (LSCV) to choose the bandwidths. We use the

Wang and Van Ryzin (1981) bandwidth for the ordered variable. Hall, Li and Racine (2007) show

that LSCV has desirable properties like the ability to smooth away irrelevant variables or to detect

if some variables enter linearly in the estimation.

After estimating (15), we obtain D̂I(x0), an estimate of DI(y, x̃, t) evaluated at an arbitrary vec-

tor of regressors x0. To compute our measure of RTS, SIDF(γ|y,x), given in (10), we evaluate

D̂I(γ y, x̃, t) for γ = {0.95,0.97, ...,1.05}, where (y, x̃, t) corresponds to the vector of original re-

gressors. For γ = 1, we obtain the estimated values of DI(y, x̃, t) which enter in the denominator of

(15). Use of different values of γ ∈ [0.95,1.05] allows us to estimate RTS between the 95% and the

105% of the observed output vector for each banking organization. The special case considered by

W&W corresponds to computing the ratio between SIDF(1.05|x0) and SIDF(0.95|x0), as we showed

before.

To determine if a given observation show evidence consistent with increasing, decreasing, or

constant RTS, we need to compute confidence intervals for each point estimate of our RTS mea-

sures. A given value of ŜIDF(γ|x0) indicates increasing RTS (IRTS) if it exhibits NDRTS and not

CRTS. It indicates decreasing RTS (DRTS) if it exhibits NIRTS and not CRTS. It indicates constant

RTS (CRTS) if it exhibits neither NIRTS nor NDRTS.

To construct bias-corrected confidence interval (CI), we use the wild bootstrap procedure. We

bootstrap SIDF(γ|x0) for each observation 399 times. This involves estimating D̂I(γ y, x̃, t) for γ =

{0.95,0.97, ...,1.05} 399 times, taking their associated residuals, drawing new residuals from a

two-value distribution, as detailed in Hardle and Mammen (1993), and estimating SIDF(γ|x0) again.

After this, we estimate the standard errors and the bias of ŜIDF(γ|x0) and construct 95% asymptotic

normal CI.

For γ > 1, a given observation exhibits IRTS if the lower bound of its associated CI lies above

1. It exhibits CRTS if the lower bound of its associated CI lies below 1 and its upper bound above

1. It exhibits DRTS if the upper bound of its associated CI lies below 1. For γ < 1, the reverse
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conditions holds. That is, a given observation exhibits IRTS if the upper bound of its associated CI

lies below 1. It exhibits CRTS if the lower bound of its associated CI lies below 1 and its upper

bound above 1. It exhibits DRTS if the lower bound of its associated CI lies above 1.

5 Empirical Results

5.1 Ray-Scale Economies

We estimate the model in (15) as described in Section 4 for samples I, II, and III. We obtain similar

results across the three samples. Table 2 presents the bandwidths estimates, their associated scale

factors, residual standard errors, cross-validation objective functions (CVOF), and R2 values for

the three samples. All variables are treated as continuous variables except for t, which is treated as

an ordered variable.5 The R2 values indicate a good fit of the model in (15) for the three different

samples. The estimated bandwidths differ across the different samples but their variation seems

small. In addition, the estimated bandwidth are small indicating that all variables are relevant in

the estimation.

Using the estimated models for the three different samples, we compute our ray-scale economies

(RSE) measure of RTS based on the IDF using (10) and their corresponding confidence intervals

as described in the previous section. Table 3 reports6 the median values of RSE estimates by size

quartiles based on total assets for γ = {0.95,0.97, ...,1.05}. For γ < 1 a median value of RSE

less (greater) than 1 indicates IRTS (DRTS). For γ > 1, a median value of RSE greater (less) than

1 indicates IRTS (DRTS). If the median value equals 1, it indicates CRTS. Thus, according with

the median values of RSE for each quartile and each value of γ in Table 3, the median banking

organization for each sample exhibits IRTS.

To determine if a given observation shows evidence consistent with IRTS, CRTS, or DRTS, we

5We use the parallel implementation of the np-package in R , Hayfield and Racine 2008, for our estimations. The
R2 values are computed as the squared of the correlation coefficient between the left-hand-side variable in (15) and its
nonparametric estimate.

6We dropped 9 observations from sample I, 14 observations from sample II, and 20 observations from sample III
for which the estimated RSE were highly implausible.
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construct bias corrected confidence intervals for RSE as described in the previous section. The last

three columns for each sample show the percentage of observations in each size quartile (based on

total assets) for which the bias corrected wild bootstrap confidence intervals indicate IRTS, CRTS,

or DRTS. For instance, for Sample I and γ = 0.95, 47% of the observations falling within the first

quartile show evidence consistent with IRTS, 40.84% with CRTS, and 12.16% with DRTS. For the

fourth quartile, the corresponding values are 43.51%, 26.89%, and 29.60%. Overall, for γ = 0.95,

41.40%, 37.49%, and 29.60% of the observations show evidence consistent with IRTS, CRTS, and

DRTS, respectively. An important result shown in Table 3 is that the commercial banks, which are

included in Sample II, show stronger evidence in favor of IRTS compared to the BHC, which are

included in Sample I.

The most salient result in Table 3 is that, contrary to Wheelock and Wilson (2012), not all

banking organizations exhibit IRTS. This results holds across the three different samples. Another

important result is that the number of observations indicating DRTS increase monotonically as total

assets increase. For samples I and III, the number of observations indicating IRTS decreases as total

assets increase up to the third quartile. However, the number of observations indicating IRTS tends

to be higher for the largest banking organizations, those in the 4th quartile. In contrast, for sample

II, which includes commercial banks only, the number of observations indicating IRTS decreases

monotonically as total assets increase.

The results in Table 3 offer a more detailed description of the nature of RTS around the observed

output and input levels. For each banking organization, starting at 95% and continuing until 105%

of its observed output levels, the Table shows that RSE measures change depending on the scaling

factor γ by which outputs are scaled up or down. However, for different values of γ , the number

of observations indicating IRTS, CRTS, or DRTS varies only slightly across all size quartiles. This

indicates that around ±5% of the observed output levels, our measure of RTS is robust and stable.

In Sample I, for γ = 0.95, 41.40% of the observations indicate IRTS while for γ = 1.05 this number

is only 39.51%. Thus, some observations (156) show IRTS when outputs are scaled down to 95%

of their observed level but CRTS or DRTS when outputs are scaled up to 105% of their observed
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level. The same holds true for samples II and III. In these cases, the expansion-path scale economy

measure of W&W shown in (13) will be ill defined and will fail to give a correct indication of the

nature of RTS for some observations.

Table 4 presents summary statistics of the proportion by which input quantities will change

when all outputs are multiplied by a factor γ > 0. Panel A, B, and C, show results for samples

I, II, and III, respectively. For sample I, multiplying all outputs by γ = 1.05 requires an average

increase in all input quantities by a factor of 1.0488 which is less than γ = 1.05, indicating IRTS.

Alternatively, multiplying all output quantities by γ = 0.95 requires an average decrease in all input

quantities by a factor of 0.9511 which is greater than γ = 0.95, indicating IRTS as well. Under

cost minimization, the factors presented in Table 4 represent the factors by which total costs will

increase or decrease when all outputs are scaled up or down by γ .

Table 4 shows that despite the statistical evidence presented in Table 3 indicating the existence

of economies of scale for some of the biggest BHC and commercial banks in the U.S., economies of

scale seems to be economically small for the range of output changes we consider. Regardless of the

value of γ , the median RSE estimate for all three samples is around 1, indicating nearly CRTS for all

observations. Less than 1% of the observations show RSE measures consistent with economically

significant scale economies. For instance, only around 34 observations indicate economies of scale

greater than 1.03, in which case a 10% increase in all outputs will require an increase in all inputs by

approximately 9.7% (1/1.03×10%). For all other observations, an increase of 10% in all outputs

will require an increase in all inputs of approximately the same magnitude.

Our results regarding the economic significance of RTS for the largest U.S. banking organiza-

tions sharply contrast with the findings of Wheelock and Wilson (2012). They find that even the

largest BHC exhibit sizable economies of scale. However, our empirical evidence gives a different

picture. Despite the existence of scale economies for some large BHC and commercial banks, these

economies of scale seem to be economically small. This result is surprising since our methodology

closely follow Wheelock and Wilson (2012) and includes their model of bank costs as a special

case. We use exactly the same definitions for outputs and inputs used in Wheelock and Wilson
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(2012) and our econometric approaches are similar. The main two differences between our work

and theirs is that we use more recent sample periods and avoid using dimension reduction tech-

niques based on principal components analysis (PCA). However, we think our sample period is

more relevant for policy analysis and is sufficiently large to give very precise estimates. Further,

we see data reductions techniques unnecessary in our framework and instead use all the available

information in the raw data. Using PCA transformations may produce noisier estimates. For ex-

ample, PCA reduces the data to the same linear combinations of right-side variables regardless of

their relation with the left-hand side variable. In addition, PCA is only able to find linear rela-

tions among the subject variables and cannot properly account for nonlinearities. Thus, our method

offers several advantages over Wheelock and Wilson (2012) that make our results more compelling.

For completeness, we estimate the cost model of Wheelock and Wilson (2012) using Sample

I for BHC. They consider the same output and input variables we use for the IDF. However, since

no accurate input prices exist for physical and financial capital, they consider them as quasi-fixed

inputs. Table 5 reports the nonparametric regression bandwidth estimates for this model. Table

6 presents the median RSE estimates using (8) and the number of observations exhibiting IRTS,

CRTS, or DRTS. For comparability with our IDF results and unlike Wheelock and Wilson (2012),

we do not use any dimension reduction technique to estimate their model. Thus, the results are

readily comparable with those presented in Table 3 for our IDF based RSE estimates. Using the cost

function, we find more evidence in favor of IRTS. However, we still find observations indicating

constant or decreasing RTS. Overall, about 73% of the observations show evidence of IRTS and

20% indicate CRTS, and the remaining 7% indicate DRTS.

In terms of the economic significance of the RTS estimates from the cost function, our results

indicate that despite the existence of IRTS, economies of scale seems to be small and not as sizable

as those presented in Wheelock and Wilson (2012). Table 7 presents summary statistics of the

proportion by which total costs would change if outputs were scaled up or down by γ . For instance,

multiplying all outputs by γ = 1.05 leads to an average increase in total cost by approximately

4.32% which is less than the 5% increase in all outputs, indicating IRTS. Likewise, multiplying
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all output quantities by γ = 0.95 leads to an average decrease in total cost by about 5.66% which

is more than the decrease in all outputs of 5%, again, indicating IRTS. Overall, the results from

both the IDF and the cost function show that economies of scale in the banking industry seems to

be small and that there are some banking organizations that operate under constant or decreasing

returns to scale.

The differences between our RTS estimates from the IDF and the cost function are not surpris-

ing since these two approaches use different data. Moreover, RTS estimates from the cost function

should be interpreted as short run RTS since the cost model includes physical and financial capital

as quasi-fixed inputs. In contrast, RTS estimates from the IDF assumes that physical and finan-

cial capital are variable inputs; a more appropriate assumption for the long run. In any case, our

evidence does not support the view that all U.S. banking organizations exhibit IRTS and given

that the benefits from scale economies seem to be small, breaking up some of the largest banking

organization may not lead to substantial welfare losses.

5.2 Elasticity-Based Returns to Scale

Traditional measures of RTS involve estimating elasticities of the cost function with respect to each

output. In this case, a measure of RTS is given by:

η(w,y) =

(
∑

l

∂ logC(w,y)
∂ logyl

)−1

(16)

Alternatively, using an input distance function, this measure is equivalent to7

η(x,y) =−

(
∑

l

∂ logD(x,y)
∂ logyl

)−1

(17)

Values of η(·) R 1 indicate increasing, constant, or decreasing RTS, respectively. To compute

(16) ((17)), one needs to estimate the derivatives of the cost function (IDF). Wheelock and Wilson
7This elasticity based formula is a special case of the formula based on the transformation function F(x,y) = 1 for

which RTS is defined as RT S(x,y) =−∑ j
∂ logF(·)
∂ logx j

÷∑l
∂ logF(·)
∂ logyl

(Caves et al., 1981). For IDF, ∑ j
∂ logF(·)
∂ logx j

= 1.
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(2012, 2011) argue that derivative estimates of the nonparametric cost function are noisier than

estimates of the cost function itself and for this reason they estimate RTS using (13) instead of

(16). However, they did not offer any empirical evidence to support their claims. In the following,

we estimate (16) and (17) and compare the results with our previous RSE estimates.

We refer to (16) and (17) as elasticity-based RTS (EB-RTS). To estimate them, we need the es-

timated derivatives of the cost and input distance functions with respect to each output. Fortunately,

since these values are obtained as a by-product of the local linear least squares nonparametric re-

gression approach; the only additional task is to estimate confidence intervals.

We compute (16) for Sample I and (17) for Samples I, II, and III. Tables 8 and 9 report the

results.8 Panel A of Table 8 shows the results for the EB-RTS estimates using the IDF and Panel

B those using the cost function. Again, we report separate results for each size quartile based

on total assets. Overall, the results from the IDF for the three different samples closely mirror

those reported in Table 3 in terms of the proportion of observations for each sample consistent

with IRTS, CRTS, and DRTS. For instance, the results presented for Sample I in Table 3 show

that, on average, 40.39%, 37.74%, and 21.88% of the observations show evidence of IRTS, CRTS,

and DRTS, respectively. Table 8 shows that for Sample I, the corresponding numbers using the

elasticity-based RTS estimates are 39.36%, 40.80%, and 19.84%. The similarities also hold within

each size quartile. In addition, the results are also similar for samples II and III. Thus, using the

EB-RTS estimates, our previous results regarding the nature of economies of scale of the biggest

banking organizations are essentially unchanged.

In terms of the EB-RTS estimates using the cost function, the results are also comparable with

our previous results based on RSE and presented in Table 6. It can be seen from that table that

73%, 20%, and 7% of the observations show evidence consistent with IRTS, CRTS, and DRTS,

respectively. Table 8 shows that we obtain similar results using the EB-RTS estimates—75%, 20%,

and 5%, respectively. Again, our previous results remain unchanged.

8The last column of Table 9 presents the number of observations included in the computations. We exclude values
of RTS estimates below the 0.5% and above the 99.5% percentiles which are outliers or economically implausible. The
presence of outliers partially support the argument in Wheelock and Wilson (2012, 2011) regarding the estimation of
derivatives of nonparametric functions.
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Table 8 shows that the median EB-RTS estimates using the IDF is close to 1 for Sample I and

III, and slightly above 1 for Sample II. These results are consistent with our previous finding that

economies of scale seem to be economically small. Table 9 presents additional summary statistics

for EB-RTS estimates. This table shows that, in general, EB-RTS estimates are higher than their

counterparts derived using (10).

An important difference is that EB-RTS estimated using the cost function seem economically

significant and higher than the corresponding values estimated using (8). Further, they seem to

be higher than those estimated using the IDF. The differences may stem from the fact that the

IDF treats physical and financial capital as variable inputs while the cost function treats them as

quasi-fixed inputs. To make them comparable, we adjust the cost function EB-RTS estimates by

multiplying them by one minus the sum of the elasticities of the cost function with respect to both

physical and financial capital (see Caves et al. 1981). The results of doing this adjustment are

presented in the Panel B of Table 9. This adjustment lowers the median estimate of RTS from 1.17

to 1.05, suggesting that the unadjusted EB-RTS are upwardly biased. Further, adjusted EB-RTS

estimates are closer to those estimated from the IDF.9 Overall, we find that the EB-RTS estimates

favor our earlier results that not all the largest banking organization in the U.S. exhibit increasing

returns to scale and that scale economies, when they are present, are economically small.

6 Conclusions

The debate over Too-Big-To-Fail banks in the U.S. has brought about a renewed interest in the study

of economies of scale in the U.S. banking industry. If large banking organizations enjoy economies

of scale that benefit society as a whole, breaking up the biggest banks into smaller institutions may

have deleterious consequences for the economy and the development of the banking industry. Our

work sheds light in the nature and existence of scale economies at the biggest banking organizations

9By the LeChatelier Principle, assuming that physical and financial capital are quasi-fixed inputs, total cost will
respond slowly to changes in other variables compared to the case when all inputs are variable. Thus, measured
elasticities are lower than they would be if all inputs were variable. Correspondingly, measured RTS will tend to be
higher since they are computed as the inverse of a sum of elasticities (as shown in equations (16) and (17)).
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in the U.S. We use nonparametric methods to estimate returns to scale for large Bank Holding

Companies (BHC) and Commercial Banks (CB) in the U.S. Our model includes as a special case

the model of Wheelock and Wilson (2012) and offer a robustness check regarding their surprising

finding that all BHC and CB in the U.S. enjoy sizable economies of scale.

Our method offers several advantages over Wheelock and Wilson (2012) that make our evi-

dence more compelling. First, instead of using a cost function, we use an input distance function

(IDF) which requires no information on input prices. Input price data are not readily available and

one needs to construct them based on expenditure and input data; adding additional noise to the

estimation. Second, since our approach dispense from input prices, our model of bank production

can include physical and financial capital as proper input quantities. These items are traditionally

excluded from the analysis or treated as quasi fixed inputs given that their associated prices are not

readily available (e.g., Wheelock and Wilson 2012 and Berger and Mester 2003). Third, our sample

period is more relevant for the current policy debate regarding the existence of economies of scale

at large banking organizations since it covers a more recent time period. Fourth, the shorter sample

period we use allows us to dispense from data dimensionality reduction techniques that may lead to

noisier estimates of returns to scale without sacrificing precision and interpretability of the results.

Contrary to Wheelock and Wilson (2012), but in line with conventional wisdom, we find that

not all BHC and CB exhibit increasing returns to scale (IRTS). In addition, economies of scale

for those banking organizations experiencing IRTS seems small. Thus, breaking up large banking

organizations into smaller institutions is unlikely to pose significant costs to the economy as a

whole.

We find that our results are robust to alternative ways to estimating RTS. Namely, we estimate

nonparametric measures of RTS using the traditional elasticity-based approach and find that our

results are unchanged. In particular, both approaches give essentially the same results concerning

the distribution of RTS for the biggest banking institutions. Thus, claims that elasticity-based

nonparametric return to scale measure are inadequate seem overblown.
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Table 1: Data summary statistics
Percentiles

Mean sd Min 5th 25th 50th 75th 95th Max

Sample I: BHC
TA 16,200,000 115,000,000 500,000 539,000 697,000 1,060,000 2,510,000 39,400,000 2,290,000,000
C 782,000 5,490,000 5,049 23,065 33,122 51,366 120,000 1,920,000 140,000,000
y1 1,460,000 12,200,000 20 2,166 11,677 31,935 93,191 1,620,000 238,000,000
y2 4,320,000 25,600,000 224 217,000 352,000 548,000 1,220,000 11,200,000 553,000,000
y3 2,150,000 13,700,000 7 22,042 64,335 129,000 310,000 4,520,000 232,000,000
y4 6,280,000 55,400,000 8,608 82,488 163,000 283,000 664,000 8,800,000 1,250,000,000
y5 333,000 2,630,000 21 979 2,900 6,179 19,120 545,000 56,700,000
x1 8,740,000 75,700,000 7,056 86,885 166,000 277,000 686,000 13,900,000 1,910,000,000
x2 5,880,000 35,400,000 557 328,000 452,000 683,000 1,510,000 15,900,000 874,000,000
x3 2,834 18,325 33 113 184 276 588 8,026 410,000
x4 169,000 911,000 325 6,160 13,812 23,305 48,774 505,000 18,000,000
x5 1,400,000 9,640,000 374 36,647 59,035 93,168 219,000 3,600,000 234,000,000
w1 0.0370 0.0140 0.0050 0.0170 0.0280 0.0360 0.0460 0.0590 0.2280
w2 0.0200 0.0100 0.0000 0.0060 0.0120 0.0180 0.0260 0.0380 0.2600
w3 66.45 26.56 7.21 43.85 53.18 61.03 73.16 102.18 979.55

Sample II: Commercial Banks
TA 9,080,000 69,000,000 500,000 523,000 649,000 961,000 2,050,000 18,000,000 1,790,000,000
C 389,000 2,860,000 6,000 19,942 28,919 43,208 90,839 791,000 70,200,000
y1 691,000 5,860,000 5.100 1,966 10,843 29,114 80,906 981,000 158,000,000
y2 2,810,000 17,800,000 163.9 195,000 323,000 481,000 955,000 6,120,000 484,000,000
y3 1,780,000 14,100,000 11.10 28,998 71,212 131,000 283,000 3,240,000 395,000,000
y4 3,890,000 36,900,000 18,355 94,204 178,000 296,000 658,000 6,380,000 1,110,000,000
y5 176,000 1,420,000 36.00 1,755 4,851 8,771 22,695 318,000 37,600,000
x1 3,400,000 33,800,000 10,695 65,802 130,000 214,000 465,000 4,320,000 1,000,000,000
x2 5,420,000 40,700,000 11,177 312,000 425,000 626,000 1,300,000 10,900,000 979,000,000
x3 1,741 10,990.20 9.200 91.80 174.2 263.3 505.1 4,311 231,000
x4 98,598.80 559,000.00 0.000 4,231 11,252 19,210 38,820 269,000 14,300,000
x5 867,000.00 6,210,000.00 958.0 41,965 59,080 90,513 196,000 1,780,000 171,000,000
w1 0.0400 0.0190 0.0050 0.0170 0.0280 0.0370 0.0480 0.0700 0.2490
w2 0.0180 0.0090 - 0.0050 0.0110 0.0160 0.0240 0.0350 0.1340
w3 59.5000 23.700 5.800 36.500 46.400 55.200 66.600 95.700 833.300

Sample III: BHC and Independent Commercial Banks
TA 14,900,000 107,000,000 500,000 537,000 690,000 1,050,000 2,480,000 41,300,000 2,290,000,000
C 714,000 5,110,000 5,049 22,124 32,245 49,990 116,000 1,920,000 140,000,000
y1 1,330,000 11,400,000 5 1,783 10,887 30,458 90,745 1,710,000 238,000,000
y2 4,060,000 24,000,000 202 208,000 343,000 531,000 1,150,000 11,800,000 553,000,000
y3 2,020,000 12,800,000 7 22,378 64,822 129,000 316,000 5,160,000 232,000,000
y4 5,820,000 51,700,000 8,608 84,586 166,000 289,000 683,000 10,100,000 1,250,000,000
y5 300,000 2,450,000 21 990 3,071 6,426 19,370 554,000 56,700,000
x1 7,870,000 70,500,000 7,056 81,675 159,000 273,000 681,000 13,300,000 1,910,000,000
x2 5,630,000 33,300,000 557 320,000 446,000 671,000 1,490,000 17,900,000 874,000,000
x3 2,596 17,085 9 103 179 270 571 7,500 410,000
x4 155,000 851,000 0 5,165 13,143 22,454 47,131 476,000 18,000,000
x5 1,330,000 9,010,000 374 37,297 59,214 93,711 225,000 3,900,000 234,000,000
w1 0.0370 0.0150 0.0050 0.0160 0.0270 0.0360 0.0460 0.0610 0.2440
w2 0.0190 0.0100 0.0000 0.0060 0.0120 0.0180 0.0260 0.0370 0.2600
w3 67.08 28.23 6.70 43.24 53.02 61.32 73.91 104.69 979.55
Notes: This table reports summary statistics for the banking organizations used in the estimation. Data cover the period 2001 to 2010 and correspond to
annual values as of end-of-quarter of each year. Sample I includes 8,265 observations for 1,418 top-tier BHC with assets above $500 million. Sample II
includes 10,125 observations for 1,640 commercial banks with assets above $500 million. Sample III includes sample I plus 1,287 observations for 262
independent commercial banks not owned by a BHC with assets above $500 million. Nominal values are in thousands of 2010 dollars. Total assets (TA)
correspond to balance-sheet values. Total costs (TC) equal interest and noninterest expenses from balance sheet data. The output variables are: consumer
loans (y1), real estate loans (y2), business loans (y3), securities (y4), and off-balance sheet output (y5). The input variables are: purchased funds (x1), core
deposits (x2), and labor (x3). x4 and x5 correspond to the value of physical and equity capital, respectively.
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Table 2: Input distance function nonparametric regression estimates
Sample I Sample II Sample III

Variable Bandwidth Scale Factor Bandwidth Scale Factor Bandwidth Scale Factor
lnx2 1.1292 4.068889 0.9276 3.045643 1.3186 4.596545
lnx3 0.3261 1.059223 0.3607 1.049982 0.3378 1.059479
lnx4 0.4012 1.059223 1.2462 3.087151 0.4194 1.059535
lnx5 0.2874 1.059223 0.2980 1.059223 0.2948 1.059273
lny1 1.8149 2.359051 0.7869 1.071292 0.8230 1.060344
lny2 0.8967 1.950924 1.4508 3.672538 1.7069 3.850792
lny3 0.6171 1.059281 1.7517 3.466948 0.6142 1.059332
lny4 1.5634 3.007355 1.1242 2.351977 0.7378 1.426104
lny5 0.7399 1.059104 0.5949 1.059223 0.7143 1.059382
t 0.5000 1 0.5000 1 0.5000 1
Residual S.E. 0.0041 0.0017 0.0076
CVOF 0.1700 0.0122 3.7996
R2 0.9983 0.9991 0.9969
Observations 8,265 10,125 9,550
Notes: This table shows the Local Linear Least-Squares non-parametric regression bandwidths estimates using
Least-Squares Cross validation. All variables are treated as continuous variables except for t which is treated as an
ordered variable. We use second-order Gaussian kernels for the continuous variables and an ordered categorical
kernel for the ordered variable. Estimations are done using the parallel implementation of the np-package in R,
Hayfield and Racine 2008. S.E. means standard error, CVOF means cross-validation objective function. The R2

values are computed as the squared of the correlation coefficient between the left-hand-side variable in (15) and its
nonparametric estimate.
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Table 4: Summary statistics for the factor by which inputs would increase or decrease when all
output quantities are multiplied by the factor γ > 0.

Percentiles
γ mean sd min 5th 25th Median 75th 95th max

Panel A. Sample I: BHC
0.95 0.9511 0.0066 0.6185 0.9480 0.9498 0.9507 0.9517 0.9550 1.1808
0.97 0.9707 0.0029 0.9178 0.9688 0.9699 0.9704 0.9710 0.9730 1.0572
0.99 0.9902 0.0012 0.9788 0.9896 0.9899 0.9901 0.9903 0.9910 1.0549
1.01 1.0098 0.0011 0.9652 1.0090 1.0097 1.0099 1.0101 1.0104 1.0234
1.03 1.0293 0.0036 0.8668 1.0270 1.0290 1.0296 1.0302 1.0313 1.0521
1.05 1.0488 0.0073 0.6915 1.0449 1.0483 1.0494 1.0503 1.0521 1.0866

Panel B. Sample II: Commercial Banks
0.95 0.9521 0.0042 0.8575 0.9486 0.9507 0.9518 0.9530 0.9556 1.0879
0.97 0.9712 0.0025 0.9124 0.9691 0.9704 0.9711 0.9718 0.9733 1.0305
0.99 0.9904 0.0008 0.9701 0.9897 0.9901 0.9904 0.9906 0.9911 1.0100
1.01 1.0096 0.0008 0.9902 1.0089 1.0094 1.0096 1.0099 1.0103 1.0307
1.03 1.0291 0.0156 0.6327 1.0266 1.0282 1.0289 1.0296 1.0309 1.8444
1.05 1.0482 0.0164 0.6446 1.0443 1.0470 1.0482 1.0493 1.0515 1.8795

Panel C. Sample III: BHC and Independent Commercial Banks
0.95 0.9511 0.0050 0.8850 0.9472 0.9494 0.9505 0.9518 0.9558 1.0518
0.97 0.9706 0.0030 0.9454 0.9683 0.9696 0.9703 0.9711 0.9735 1.0305
0.99 0.9902 0.0010 0.9816 0.9894 0.9899 0.9901 0.9904 0.9912 1.0100
1.01 1.0098 0.0010 0.9903 1.0088 1.0097 1.0099 1.0101 1.0106 1.0186
1.03 1.0294 0.0031 0.9713 1.0265 1.0290 1.0297 1.0304 1.0318 1.0562
1.05 1.0490 0.0054 0.9503 1.0441 1.0483 1.0496 1.0507 1.0531 1.0947
Notes: This table shows the factor by which inputs quantities increase or decrease when all output
quantities are multiplied by the factor γ > 0 appearing in column one. Panel A, B, and C, show results
for samples I, II, and III, respectively. For instance, for sample I, multiplying all outputs by γ = 1.05
requires an average increase in all input quantities by 1.0488 which is less than γ = 1.05, indicating
increasing returns to scale. Likewise, multiplying all output quantities by γ = 0.95 requires an average
decrease in all input quantities by 0.9511 which is greater than γ = 0.95, again, indicating increasing
returns to scale.
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Table 5: Cost function nonparametric regression estimates
Variable Bandwidth Scale Factor

lnw1 3.8656 16.5420
lnw2 1.2083 3.8636
lny1 0.8149 1.0592
lny2 1.4868 3.2350
lny3 0.6164 1.0580
lny4 0.5507 1.0592
lny5 0.7400 1.0592
lnx4 0.4950 1.0592
lnx5 0.5141 1.0592
t 0.5000 1
Residual S.E. 0.0031
R2 0.9982
CVOF 0.0141
Observations 8,265
Notes: This table shows the Local Linear Least-Squares nonparamet-
ric regression bandwidths estimates using least-squares cross valida-
tion for Wheelock and Wilson (2012)’s cost model using data for BHC
(SampleI). The left-hand side variable equals lnC/w3. All variables
are treated as continuous variables except for t which is treated as an
ordered variable. We use second-order Gaussian kernels for the contin-
uous variables and an ordered categorical kernel for the ordered vari-
able. Estimations are done using the parallel implementation of the
np-package in R, Hayfield and Racine 2008. S.E. means standard er-
ror, CVOF means cross-validation objective function. The R2 value is
computed as the squared of the correlation coefficient between the left-
hand-side variable in (15) and its nonparametric estimate.
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Table 6: Cost function ray-scale rconomies (RSE) estimates for Sample I
Quartile Obs. Median IRTS CRTS DRTS Quartile Obs. Median IRTS CRTS DRTS

γ = 0.95 γ = 1.01
1 2066 1.0071 72.17 23.91 3.92 1 2066 0.9933 73.72 22.41 3.87
2 2065 1.0078 79.66 17.53 2.81 2 2065 0.9925 80.48 16.66 2.86
3 2066 1.0073 76.43 18.44 5.13 3 2066 0.9933 76.09 18.39 5.52
4 2065 1.0055 64.02 21.79 14.19 4 2065 0.9949 63.78 21.36 14.87

8262 73.07 20.42 6.51 8262 73.52 19.70 6.78
γ = 0.97 γ = 1.03

1 2066 1.0042 72.60 23.43 3.97 1 2066 0.9959 73.33 22.75 3.92
2 2065 1.0047 79.61 17.48 2.91 2 2065 0.9955 79.61 17.48 2.91
3 2066 1.0043 76.23 18.54 5.23 3 2066 0.9959 75.99 18.30 5.71
4 2065 1.0032 64.02 21.55 14.43 4 2065 0.9969 63.73 21.26 15.01

8262 73.12 20.25 6.63 8262 73.17 19.95 6.89
γ = 0.99 γ = 1.05

1 2066 1.0014 72.80 23.28 3.92 1 2066 0.9933 73.48 22.41 4.11
2 2065 1.0016 79.66 17.48 2.86 2 2065 0.9925 79.56 17.34 3.10
3 2066 1.0014 76.14 18.49 5.37 3 2066 0.9933 76.19 18.05 5.76
4 2065 1.0011 63.92 21.55 14.53 4 2065 0.9949 63.58 21.31 15.11

8262 73.13 20.20 6.67 8262 73.20 19.78 7.02
Notes: This table shows the median values of return to scale (RTS)estimates based on the cost function for different values of γ

by size quartiles based on total assets. IRTS, CRTS, and DRTS stand for increasing, constant, and decreasing returns to scale.
For γ < 1 (γ > 1), a median value of RTS greater (less) than one indicates IRTS. For γ > 1 (γ < 1), a median value of RTS less
(greater) than one indicates DRTS. If the median value equals one, it indicates CRTS. The last three columns for each sample
show the number of observations in each quartile for which the bias corrected wild bootstrap confidence intervals indicates IRTS,
CRTS, or DRTS. We use 99 bootstrap replicates to construct the confidence intervals.

Table 7: Summary statistics for the factor by which total costs would increase or decrease when all
output quantities are multiplied by the factor γ > 0

Percentiles
γ mean sd min 5th 25th Median 75th 95th max

0.95 0.9434 0.0076 0.8746 0.9345 0.9407 0.9433 0.9461 0.9525 1.0823
0.97 0.9660 0.0046 0.9247 0.9606 0.9644 0.9659 0.9677 0.9716 1.0508
0.99 0.9887 0.0016 0.9744 0.9868 0.9881 0.9886 0.9892 0.9906 1.0173
1.01 1.0087 0.0016 0.9948 1.0068 1.0081 1.0086 1.0092 1.0106 1.0384
1.03 1.0259 0.0048 0.9781 1.0203 1.0242 1.0258 1.0277 1.0318 1.1212
1.05 1.0432 0.0082 0.8975 1.0338 1.0402 1.0430 1.0461 1.0531 1.2123
Notes: This table shows the factor by which total costs would increase or decrease when all output
quantities are multiplied by the factor γ > 0 appearing in column one. For instance, for sample I,
multiplying all outputs by γ = 1.05 leads to an average increase in total costs by 1.0432 which is less
than γ = 1.05, indicating increasing returns to scale. Likewise, multiplying all output quantities by
γ = 0.95 leads to an average decrease in total costs by 0.9434 which is less than γ = 0.95, again,
indicating increasing returns to scale.
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Table 8: Scale economies from elasticity-based RTS estimates
Panel A: IDF Estimates

Sample I: BHC Sample II: Commercial Banks

Quartile Obs. Median IRTS CRTS DRTS Obs. Median IRTS CRTS DRTS

1 2,041 1.0235 52.13 38.22 9.65 2,521 1.0506 77.67 20.67 1.67
2 2,056 1.0131 39.88 45.43 14.69 2,512 1.0372 73.61 24.32 2.07
3 2,060 1.0059 24.47 49.27 26.26 2,518 1.0257 60.76 35.15 4.09
4 2,024 1.0089 41.11 30.09 28.80 2,465 1.0234 52.94 29.21 17.85

Total 8,181 1.0119 39.36 40.80 19.84 10,016 1.0340 66.31 27.33 6.36

Sample III: CB and BHC

Quartile Obs. Median IRTS CRTS DRTS

1 2,373 1.0154 42.60 39.15 18.25
2 2,377 1.0062 28.44 44.09 27.47
3 2,378 1.0009 23.17 40.45 36.38
4 2,326 1.0044 40.46 26.74 32.80

Total 9,454 1.0060 33.63 37.67 28.71

Panel B: Cost Function Estimates
Sample I: BHC Sample I - Adjusted : BHC

Quartile Obs. Median IRTS CRTS DRTS Obs. Median IRTS CRTS DRTS

1 2,049 1.1718 79.01 19.03 1.95 2,045 1.0546 35.94 56.77 7.29
2 2,062 1.1754 80.26 17.94 1.79 2,057 1.0487 30.77 64.46 4.76
3 2,063 1.1581 76.49 19.39 4.12 2,060 1.0319 25.87 66.21 7.91
4 2,007 1.1152 64.42 22.47 13.10 2,019 1.0154 31.70 49.13 19.17

Total 8,181 1.1614 75.11 19.69 5.19 8,181 1.0401 31.06 59.20 9.74
Notes: This table shows the median values of elasticity-based return to scale (RTS) estimates by size quartiles based
on total assets and the percentage of observation exhibiting increasing, constant, and decreasing returns to scale
(IRTS, CRTS, and DRTS, respectively). Panel A and Panel B report information for elasticity-based RTS estimates
based on the nonparametric input distance function (IDF) and the nonparametric cost function, respectively. The
last three columns for each sample show the percentage of observations in each quartile for which the bias corrected
wild bootstrap confidence intervals indicates IRTS, CRTS, or DRTS.
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Table 9: Summary statistics for elasticity-based RTS Estimates
Percentiles

Quartiles mean sd min 5th 25th Median 75th 95th max N
Panel A: Elasticity-based RTS using the IDF.

Sample I
Total 1.0195 0.0527 0.8127 0.9699 0.9987 1.0119 1.0273 1.0928 1.5708 8,181

1 1.0302 0.0496 0.8194 0.9781 1.0077 1.0235 1.0432 1.1027 1.5214 2,041
2 1.0181 0.0404 0.8773 0.9786 1.0012 1.0131 1.0249 1.0706 1.5136 2,056
3 1.0083 0.0412 0.8127 0.9708 0.9954 1.0059 1.0159 1.0439 1.4854 2,060
4 1.0216 0.0716 0.8127 0.9537 0.9923 1.0089 1.0265 1.1445 1.5708 2,024

Sample II
Total 1.0398 0.0449 0.8833 0.9897 1.0194 1.0340 1.0534 1.0981 1.5415 10,016

1 1.0563 0.0460 0.8833 1.0105 1.0333 1.0506 1.0688 1.1153 1.5045 2,521
2 1.0439 0.0388 0.8851 1.0099 1.0259 1.0372 1.0518 1.0937 1.5231 2,512
3 1.0303 0.0293 0.9034 1.0012 1.0166 1.0257 1.0388 1.0764 1.5088 2,518
4 1.0283 0.0556 0.8909 0.9570 1.0033 1.0234 1.0456 1.0999 1.5415 2,465

Sample III
Total 1.0206 0.0943 0.7694 0.9536 0.9912 1.0060 1.0265 1.1127 2.2334 9,454

1 1.0278 0.0890 0.7769 0.9571 0.9980 1.0154 1.0385 1.1094 2.0604 2,373
2 1.0136 0.0675 0.7694 0.9586 0.9926 1.0062 1.0211 1.0782 2.1560 2,377
3 1.0080 0.0717 0.7715 0.9582 0.9899 1.0009 1.0138 1.0628 2.1596 2,378
4 1.0332 0.1332 0.7726 0.9382 0.9871 1.0044 1.0321 1.2032 2.2334 2,326

Panel B: Elasticity-based RTS using the the cost function.

Sample I: Unadjusted RTS estimates
Total 1.1731 0.1816 0.5613 0.9641 1.0975 1.1614 1.2220 1.3985 3.5603 8,181

1 1.1953 0.1834 0.5656 1.0369 1.1293 1.1718 1.2232 1.3989 3.5603 2,049
2 1.1848 0.1407 0.5786 1.0317 1.1213 1.1754 1.2302 1.3550 3.1433 2,062
3 1.1633 0.1313 0.5842 1.0021 1.0948 1.1581 1.2173 1.3537 2.3761 2,063
4 1.1486 0.2465 0.5613 0.8575 1.0268 1.1152 1.2158 1.5300 3.5067 2,007

Sample I: Adjusted RTS estimates
Total 1.0504 0.1112 0.5602 0.9231 1.0075 1.0401 1.0768 1.1988 2.2932 8,181

1 1.0744 0.1254 0.6164 0.9558 1.0228 1.0546 1.0970 1.2453 2.2932 2,045
2 1.0562 0.0852 0.5707 0.9786 1.0217 1.0487 1.0751 1.1725 2.1336 2,057
3 1.0413 0.0747 0.5602 0.9630 1.0091 1.0319 1.0641 1.1477 1.9407 2,060
4 1.0293 0.1413 0.5685 0.8552 0.9666 1.0154 1.0696 1.2385 2.2364 2,019

Notes: Panel A shows summary statistics for elasticity-based RTS for samples I, II, and III by size quartiles based on total assets.
IDF denotes estimates obtained from the input distance function using (17) and Cost denotes estimates from the cost function
using (16). Panel B shows summary statistics for Technical Change estimates using the derivative of the nonparametric (log) IDF
or (log) Cost function with respect to time. The last column presents the number of observations included in the computation
of the summary statistics. We exclude values of RTS and Technical Change estimates below the 0.5% percentile and above the
99.5% which we considered outliers or economically implausible.
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