Un índice coincidente para la actividad económica colombiana*

Luis Fernando Melo, Fabio H. Nieto[†],
Carlos Esteban Posada, Yanneth Rocío Betancourt y

Juan David Barón

Diciembre de 2001

Resumen

Dentro de la teoría de los ciclos económicos, la metodología de indicadores económicos coincidentes y líderes ha jugado un papel importante en la descripción y pronóstico del estado de la actividad económica. Una forma utilizada para

^{*}Los resultados y opiniones son responsabilidad exclusiva de los autores y su contenido no compromete al Banco de la República ni a su Junta Directiva. Los autores agradecen los comentarios y sugerencias de Enrique López, Luis Eduardo Arango, Martha Misas, Hernando Vargas, Jorge Toro, Adolfo Cobo, Carlos Huertas y de los participantes en el seminario de Economía de la Subgerencia de Estudios Económicos del Banco de la República. Así mismo, reconocen la valiosa colaboración de Andrés González y Julio César Rosas.

[†]Universidad Nacional de Colombia. Los otros coautores son funcionarios del Banco de la República.

calcular índices compuestos de variables indicadoras es el uso de modelos de probabilidad explícitos, en los cuales el índice coincidente corresponde a una variable no observable que representa el estado general de la economía y permite identificar aquello que se busca predecir con el índice líder.

En este documento se calcula un índice coincidente para la actividad económica de Colombia utilizando nuevas técnicas econométricas y corresponde a la primera parte de un proyecto de indicadores para la economía colombiana en el cual se pretende estimar un índice líder.

Palabras claves: Estado de la economía, índice coincidente, modelo de estados.

1 Introducción

Las decisiones económicas individuales y de política dependen principalmente del monitoreo de la economía y de la anticipación de los ciclos económicos; lo cual se puede llevar a cabo mediante el seguimiento de diversos procesos económicos y el análisis de diferentes aspectos de la actividad económica agregada involucrados en las fluctuaciones de series como la producción, el empleo, el ingreso, el comercio, el consumo, etc.

Sin embargo, analizar las variables individualmente puede no ser la mejor forma de estimar el estado general de la economía, debido a la información parcial involucrada en cada una de las series. De esta forma el monitoreo de la actividad económica se debe hacer a partir de indicadores económicos que condensen la mayor información posible para proveer señales acerca de los ciclos económicos. Es así como la construcción de índices coincidentes y líderes ha jugado un papel importante en la descripción y pronóstico del estado de la actividad macroeconómica.

Los trabajos pioneros de Mitchell sobre el ciclo económico de Estados Unidos (reseñados en Burns y Mitchell, 1946) dieron un gran impulso a la construcción de índices generales, 'coincidentes', de la situación económica contemporánea y de índices adelantados o 'líderes' de la situación futura, así como también a índices rezagados. Estos índices son construídos como promedios de otros índices relativos a variables de carácter menos general o, incluso, parcial pero, en todo caso, componentes de aquello que podría representar la situación general.

Hasta el presente ha predominado una metodología de construcción de indicadores contemporáneos y líderes (e incluso rezagados) del ciclo, que

podría denominarse tradicional, aplicada entre otros por el National Bureau of Economic Research (NBER), bajo las pautas iniciales de Mitchell, y con algunas variantes, por la Organización Económica para el Comercio y el Desarrollo (OECD, por sus siglas en inglés). En síntesis, la metodología consiste en seleccionar un conjunto amplio de series, desestacionalizarlas, aislar el componente estríctamente cíclico, y agregar tales componentes en un índice compuesto.

De particular importancia para el avance metodológico fue el conjunto de trabajos de Stock y Watson (1989, 1991, 1992) conducentes a la elaboración de modelos probabilísticos utilizados para el cálculo de índices coincidentes o líderes de la actividad económica. Esta metodología, comparada con la tradicional del NBER, tiene la ventaja de incorporar no solo información contemporánea sino también histórica, a la vez que tiene en cuenta tanto las propiedades estadísticas de las series individuales (orden de integración, estacionalidad, etc.) como las propiedades conjuntas (cointegración). Por otra parte, este método, a diferencia de otros, utiliza un criterio estadístico de optimización para "extraer" de las series un "factor común" a partir del cual se genera el índice coincidente o estado de la economía.

La tarea de construir indicadores contemporáneos o adelantados del ciclo económico, para el caso colombiano, ha sido abordada en varios trabajos siguiendo la metodología tradicional con diferentes variantes (Melo et al., 1988, Salazar, 1993, Maurer y Uribe, 1996, y Maurer et al. 1996). Otros trabajos han contribuido a establecer las propiedades y relaciones estadísticas entre diferentes indicadores parciales del estado de la economía (López et al., 1994, Ripoll et al., 1995 y Restrepo et al. 2000).

Sin embargo, a pesar de estos intentos, no se dispone actualmente en Colombia de un sistema de indicadores apropiado para monitorear las condiciones de la economía. Es así como con los actuales documentos se pretende emprender varias investigaciones con el fin de obtener un sistema completo de índices coincidentes y líderes de la actividad económica colombiana, suministrando una herramienta de análisis que permita observar con mayor precisión las condiciones actuales y prever su evolución futura.

A diferencia de los anteriores trabajos, esta investigación se inscribe dentro de la metodología desarrollada por Stock y Watson, con algunos cambios, a partir de la cual se busca obtener el índice de indicadores económicos coincidentes, en primer lugar, y el índice de indicadores económicos líderes, en segunda instancia. La primera etapa de la investigación, presentada en este documento, corresponde a la aplicación empírica del modelo modificado de Stock y Watson (SW) desarrollado en Nieto y Melo (2001), para generar el índice coincidente de la actividad económica colombiana, utilizando series mensuales durante el período comprendido entre enero de 1980 y agosto de 2001. La segunda etapa de la investigación, que corresponde al cálculo del índice líder, se presentará en documentos posteriores.

En la segunda sección del presente documento se hace una breve descripción del marco teórico; en la tercera se presenta la descripción del modelo (que se encuentra expuesto en detalle en Nieto y Melo 2001) utilizado para estimar el índice coincidente; en la cuarta se hace un análisis de las series utilizadas para la estimación del modelo, se presentan los resultados de la estimación y se discuten las implicaciones del ejercicio desde el punto de vista económico; por último se presentan las conclusiones.

2 Marco teórico

La metodología de indicadores se inscribe dentro de la teoría de los ciclos, la cual está basada en la visión según la cual las economías de mercado experimentan fluctuaciones compuestas por secuencias repetitivas. En palabras de Burns y Mitchell (1946):

"Los ciclos económicos son un tipo de fluctuación que se encuentra en la actividad económica agregada....Un ciclo consiste de expansiones que ocurren al mismo tiempo en muchas actividades económicas, seguidas por recesiones, contracciones y recuperaciones igualmente generalizadas que surgen en la fase de expansión del próximo ciclo; esta secuencia de cambios es recurrente pero no períodica..."

Dado que el ciclo económico, o ciclo de referencia como se conoce comunmente en la literatura, refleja los comovimientos de diferentes actividades económicas agregadas, la mejor forma de medirlo es a partir de los movimientos comunes de las diferentes series de tiempo agregadas, ya que las series individuales miden conceptos específicos, como el valor de la producción en un período de tiempo, que tienen en cuenta solamente algunos aspectos de la actividad económica y no el estado general de la economía.

Además, el comportamiento de las series individuales puede variar dependiendo de los factores que las afecten y de la forma como actuan sobre cada una de ellas, haciendo que algunos indicadores sean más operativos y útiles bajo unas condiciones y otros lo sean bajo otras. Esto, unido al riesgo de tener errores en la medición de las diferentes series y al riesgo de que las señales sean dadas por cambios particulares y no generadas por fluctuaciones cíclicas, hace que las variables individuales por sí solas no sean buenos

indicadores.

De esta forma, para incrementar las probabilidades de tener señales verdaderas acerca del ciclo y reducir las falsas, se deben combinar las series indicadoras en un índice compuesto, el cual puede ser más suave que cualquiera de sus componentes, permitiendo así monitorear de una manera más adecuada y con menos distorsiones los cambios cíclicos de la actividad económica agregada¹.

La aproximación de indicadores busca, de esa forma, encontrar las secuencias repetitivas comunes para usarlas en la identificación y pronóstico de los estados emergentes del ciclo económico, mediante la construcción de índices compuestos coincidentes y líderes². Dado que el estado de la economía no es observable directamente se debe estimar primero, de tal forma que se tenga alguna medida de lo que se quiere anticipar. Es por eso que esta metodología parte del cálculo de un índice que coincida con el ciclo de referencia³, para luego obtener un índice líder, cuyo objeto es pronosticar este índice coincidente.

La metodología seguida por Stock y Watson formaliza la idea de que el ciclo de referencia se mide mejor a partir de los comovimientos de las diferentes variables agregadas, de manera que el índice coincidente es una estimación del valor de la variable no observable denominada 'el estado de la economía', la cual se obtiene a partir del supuesto que hay una variable (no observada)

¹Este argumento se aplica tanto para los índices compuestos de indicadores coincidentes y líderes así como para los rezagados.

²De tal forma que se puedan identificar posibles recesiones o recuperaciones y se suministre algún tipo de señal a los agentes económicos para la toma de decisiones.

³Es decir que se aproxime al estado de la actividad económica agregada

común a las diferentes series de tiempo económicas. El problema planteado aquí consiste en estimar ese elemento común de las variables importantes, para lo cual se formula un modelo de probabilidad que provee una definición matemática del estado no observable de la economía. De esta forma queda definido el ciclo de referencia de la economía y se responde la pregunta: ¿Qué es lo qué predicen los indicadores líderes?.

3 Especificación y supuestos básicos del modelo estadístico

En esta sección se presenta una breve descripción del modelo estadístico de Stock y Watson (SW: 1989,1991) utilizado para estimar el índice coincidente de la actividad económica. Este modelo es una versión paramétrica de los modelos de 'índices simples' discutidos por Sargent y Sims (1977), en los cuales la variable no observada es común a múltiples variables observadas. Dicha metodología se basa en modelos probabilísticos de estados que permiten estimar variables no observables, como el estado de la economía, utilizando el Filtro de Kalman para construir la función de verosimilitud y estimar los paramétros del modelo ⁴.

Nieto y Melo (2001) realizaron una modificación del modelo de estados desarrollado por SW. Algunos de estos cambios buscan obtener la propiedad de estado de equilibrio del modelo, ya que el propuesto originalmente no la alcanza. Además se permite que las variables coincidentes estén cointegradas y se involucra la estacionalidad dentro del modelo.

⁴Dada la linealidad en las variables no observadas.

Esta metodología parte de la hipótesis de que existe un grupo de n variables económicas observables $X_{1t},...,X_{nt}$, integradas de orden uno, que están relacionadas contemporáneamente con las condiciones generales de la economía y que además pueden tener otros movimientos que no están asociados con esta variable. Por lo que cada serie coincidente, además de tener un componente atribuible a la variable común, tiene un componente único o idiosincrático que no está correlacionado con los componentes idiosincráticos de las otras variables ni con el factor común.

En el modelo, las variables X_{it} tienen dos componentes estocásticos: la variable común no observada o estado de la economía, definida como un proceso estocástico latente⁵ denotado por $\{C_t\}$, y un componente u_{it} que representa los movimientos idiosincráticos de las series. De esta forma, la relación coincidente entre las variables y el índice está dada por la siguiente ecuación:

$$X_{it} = \beta_{it} + \gamma_i C_t + u_{it}, \tag{1}$$

para todo t=1,...,N, y para todo i=1,...,n, siendo N la longitud del período muestral y n el número de variables coincidentes. Donde β_{it} es una componente determinística que puede incluir componentes estacionales, γ_i es una constante que representa la ponderación de C_t en X_{it} y u_{it} es la componente estocástica específica de X_{it} , independiente de C_t , y que obedece al proceso autoregresivo estacionario:

$$D_i(B)u_{it} = \epsilon_{it} , \qquad (2)$$

⁵En el sentido de Sargent y Sims (1979), Singleton (1980) y Geweke y Singleton (1981).

donde $D_i(B)=1-d_{i1}B-...-d_{ik}B^k$, con B el operador de retraso y ϵ_{it} ruido blanco Gaussiano de media cero y varianza σ_i^2 . Los procesos $\{\epsilon_{it}\}$ se suponen mutuamente independientes, lo cual a su vez implica la independencia mutua de los procesos $\{u_{it}\}$.

En contraste con la metodología de SW, estos supuestos implican que las variables X_{1t}, \cdots, X_{nt} están cointegradas. La ecuación 1 expresa que una variable coincidente observable X_{it} es una transformación lineal del estado de la economía C_t , perturbada aleatoriamente por un ruido intrínseco a ella u_{it} . A diferencia también del enfoque original, en este modelo se incluyen eventuales componentes estacionales de las variables observables dentro de la especificación de la relación entre X_{it} y C_t ; de esta manera no es necesario desestacionalizar las variables antes de incluirlas en el algoritmo de cómputo del índice. Para datos mensuales se postula:

$$\beta_{it} = b_i + \omega_{1,i} S_{1t} + \dots + \omega_{11,i} S_{11,t} \tag{3}$$

siendo $b_i, \omega_{1,i}, ..., \omega_{11,i}$ parámetros fijos para la variable i y $S_{j,t}$, j=1,...,11, denota la j-ésima variable dummy estacional.

La dinámica estocástica de $\{C_t\}$ se describe por medio del modelo:

$$\phi(B)\Delta C_t = \delta + \eta_t , \qquad (4)$$

siendo $\phi(B)$ un operador estacionario autorregresivo de orden p, δ una constante y $\{\eta_t\}$ un proceso ruido blanco con media cero y varianza σ_η^2 . Esta ecuación refleja otro supuesto esencial en la metodología desarrollada: $\{C_t\}$ es un proceso integrado de orden 1 [I(1)].

Definiendo $X_t=(X_{1t},...,X_{nt})'$, $\boldsymbol{\beta}_t=(\beta_{1t},...,\beta_{nt})'$, $\boldsymbol{\gamma}=(\gamma_1,...,\gamma_n)'$, $u_t=(u_{1t},...,u_{nt})'$ y $\boldsymbol{\epsilon}_t=(\epsilon_{1t},...,\epsilon_{nt})'$, las ecuaciones anteriores pueden ser reescritas

en la siguiente forma vectorial:

$$X_t = \beta_t + \gamma C_t + u_t \tag{5}$$

$$\phi(B)\Delta C_t = \delta + \eta_t \tag{6}$$

$$D(B)\mathsf{u}_t = \boldsymbol{\epsilon}_t \tag{7}$$

donde $D(B)=I-D_1B-...-D_kB^k$, con I la matriz identidad de orden n, y $D_i=\mathrm{diag}\{d_{1i},...,d_{ni}\}$.

El problema estadístico a resolver consiste en estimar (o predecir) C_t con base en la información observada hasta el tiempo t; técnicamente esto significa calcular: $E(C_t|\mathbf{X}_1,...,\mathbf{X}_t)$. Para obtener esta esperanza condicional, podemos usar el filtro de Kalman y en esa dirección las ecuaciones (5)-(7) deben ser transformadas en un modelo de estados⁶. Para tal fin, sean $C_{t+j|t} = E(C_{t+j}|C_0,C_1,...,C_t); j=1,...,p; <math>\bar{C}_{t|t-1}=C_{t|t-1}-\delta; C_0=100$.

El modelo de estados se específica mediante la ecuación del sistema o de transición⁷ (8) y la ecuación de observación o de medida⁸ (9):

$$\alpha_t = \mu \delta + T \alpha_{t-1} + R \zeta_t \tag{8}$$

$$X_t = \beta_t + Z\alpha_t \tag{9}$$

donde α es el vector de estados del modelo y está especificado de la siguiente

 $^{^6}$ La representación del proceso $C_{\rm t}$ dentro del modelo de estados se realiza de acuerdo con Gómez y Maravall (1994).

 $^{^{7}}$ La ecuación del sistema describe la evolución del vector de estado no observado , el cual consiste de $C_{\rm t}, u_{\rm t}$ y sus rezagos.

⁸La cual relaciona las variables observadas con los elementos del vector de estado.

forma:.

$$\alpha_t = (C_t, \bar{C}_{t+1|t}, C_{t+2|t}, ..., C_{t+p|t}, \mathsf{u}_t^0, \mathsf{u}_{t-1}^0, ..., \mathsf{u}_{t-k+1}^0)^0, \tag{10}$$

y donde el proceso C_t , que constituye el índice coincidente buscado, corresponde a la primera componente del vector de estado α_t ⁹.

Con el fin de lograr convergencia y robustez a valores iniciales de los parámetros¹⁰, la estimación final del modelo se basa en la transformación propuesta por Nieto y Melo (2001), la cual corresponde a la ecuación (6) y a una diferenciación en cada miembro de las ecuaciones (5) y (7). Es importante anotar que la función de verosimilitud del modelo transformado es equivalente a la del modelo original, en virtud de que la transformación realizada es lineal y el Jacobiano de la misma es igual a 1. Por lo tanto, la información que contienen los datos originales sobre el modelo probabilístico y en particular sobre los parámetros es equivalente a la de las ecuaciones diferenciadas.

Siguiendo la metodología de SW, en este modelo el vector de estados y en particular $C_{t|t}$ se puede descomponer en función de rezagos de X_t y en otros términos¹¹. Por lo tanto, para cada variable observable se tiene una sucesión de ponderaciones indexada por el retardo j=1,...,p, que se asemeja a una función de impulso respuesta; así, un análisis similar al de este tipo de funciones permite determinar la influencia de cada una de las variables en el

 $^{^{9}}$ La especificación del modelo (8)-(9) y el cálculo de $C_{\rm t}$ es explicado en detalle en Nieto y Melo (2001).

¹⁰El número relativamente grande de hiperparámetros y el empleo de las variables en niveles causa problemas de convergencia y sensibilidad a valores iniciales en los algoritmos númericos de maximización de la función de verosimilitud Gaussiana de los datos.

¹¹Esta descomposición se encuentra explicada en detalle en Nieto y Melo (2001).

índice coincidente a través del tiempo.

4 Aplicación del modelo y resultados empíricos

El primer paso para el cálculo del índice coincidente de la actividad económica colombiana es la selección de las series incluídas en el modelo. Dicha selección fue realizada a partir de todas aquellas variables de índole agregada o sectorial que pudieran estar asociadas con el ciclo de la actividad económica. Dentro de un amplio grupo de variables, aproximadamente cien (Apéndice 1), se escogieron aquellas que cumplían con las características de periodicidad (mensual), disponibilidad (desde enero de 1980) y oportunidad o rezago en la información (no más de dos meses).

Estas series fueron analizadas de acuerdo con el cumplimiento de diferentes criterios económicos y estadísticos para el período muestral enero de 1980 - agosto de 2001. En primer lugar, se tuvo en cuenta la importancia económica de las series; posteriormente, se realizaron pruebas de raíz unitaria (Dickey-Fuller y KPSS) para determinar su orden de integración¹² (Apéndice 2). Debido a la frecuencia mensual de los datos también se utilizó la prueba de Franses y Hobijn (1997) para contrastar la hipótesis de existencia de raíz unitaria estacional (Apéndice 3). Por último, se analizó la función de correlación cruzada entre cada una de las series y el índice de producción real de la industria manufacturera (IPR)¹³, para examinar la relación existente

¹² Dado el supuesto del modelo de SW de que el logaritmo de las series debe ser integrado de orden uno.

¹³Esta serie se utiliza en varios estudios para representar la actividad económica mensual del sector real y las condiciones del ciclo de los negocios tal como lo señalan Andreou et

con una proxy de la actividad agregada (Apéndice 4).

A partir de las características y criterios anteriores se escogieron las siguientes nueve series: 1) situación económica actual de la industria (f_p1), 2) volumen actual de pedidos por atender de la industria¹⁴ (f_p6), 3) índice de producción real de la industria manufacturera sin trilla de café (lpr), 4) índice de empleo de obreros de la industria (iem_ob), 5) producción de cemento (prcem), 6) demanda de energía más consumo de gas residencial e industrial (energa), 7) importaciones reales exceptuando las de bienes de capital y duraderos (impres), 8) cartera neta real en moneda legal (cart_sbr)¹⁵ y 9) saldo de efectivo en términos reales (efecrc)¹⁶ (Ver Cuadro 1 y Figura 1).

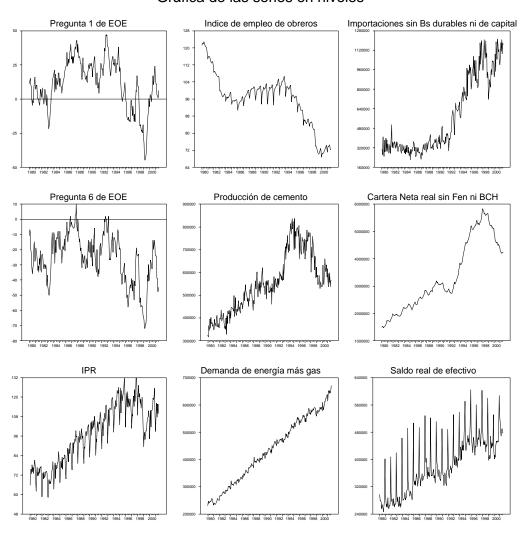
al. (2000) y Altissimo et al. (2000).

¹⁴Las dos primeras variables corresponden a indicadores de la Encuesta de Opinión Empresarial (EOE) de Fedesarrollo tomados como el balance entre porcentajes positivos y negativos de las respuestas individuales.

¹⁵Exceptuando la cartera de la Financiera Eléctrica Nacional (FEN) y la del Banco Central Hipotecario (BCH).

¹⁶Esta serie se corrige por el efecto del impuesto a las transacciones financieras.

Descripción de las series seleccionadas


Nombre	Serie	Descripción	Fuente	Rezago de	
				disponibilidad	
fp1	Situación	Balance de la pre-	Fedesarrollo	Cuatro semanas	
	económica actual	gunta número uno			
		de la EOE			
fp6	Volumen actual	Balance de la pre-	Fedesarrollo	Cuatro semanas	
	de pedidos por	gunta número seis			
	atender	de la EOE			
ipr	Indice de produc-	Muestra Mensual	DANE	Seis semanas	
	ción real de la in-	Manufacturera			
	dustria manufac-	(MMM)			
	turera sin trilla de				
	café				
iem_ob	Indice de empleo	Muestra Mensual	DANE	Seis semanas	
	de obreros total	Manufacturera			
	de la industria sin	(MMM)			
	trilla				
prcem	Producción de	Corresponde a	DANE	Cuatro semanas	
	cemento	la producción			
		nacional			

Cuadro 1

Nombre	Serie	Descripción	Fuente	Rezago de	
				disponibilidad	
energa	Demanda de	Las dos series se	ISA y	Dos semanas para	
	energía más	encuentran en las	Ecopetrol	energía y seis para	
	consumo de gas	mismas unidades		gas	
	residencial e	MBTU/día			
	industrial				
impres	Importaciones	La serie en	DIAN-DANE	Siete semanas	
	reales totales de-	dolares se pasa			
	scontando las de	a pesos y se de-			
	bienes de capital	flacta con el IPP			
	y duraderos	de importados			
cart_sbr	Cartera neta real	La serie nominal	Banco de la	Dos semanas	
	en moneda legal	se deflacta con el	República		
	sin FEN ni BCH	IPC			
efecrc	Saldo real de efec-	La serie nominal	Banco de la	Dos semanas	
	tivo corregido por	se deflacta con el	República		
	dos por mil	IPC y se cor-			
		rige con un mod-			
		elo arima			

...continuación Cuadro 1

Gráfica de las series en niveles

Figura~1

Las dos primeras series dan información acerca de la percepción que tienen los empresarios sobre la situación en la que se encuentra la industria actualmente y sobre el nivel de demanda existente según los pedidos que tienen por atender. El IPR permite conocer el nivel de la actividad industrial en términos de su producción y el índice de empleo de obreros registra la ocupación de la mano de obra no calificada en dicho sector. Por su parte, la producción de cemento se toma como un indicador de la actividad constructora al representar la oferta de un insumo básico para esta actividad¹⁷; y la demanda de energía y gas indica el uso de un insumo general de la producción y el consumo de un bien de uso masivo¹⁸. Las importaciones de bienes diferentes a los durables y a los de capital permiten tener una aproximación del comportamiento de la demanda de bienes de origen externo, sobretodo de aquella que puede reaccionar rápidamente ante cualquier cambio en las condiciones internas. Variables como el saldo de efectivo¹⁹ y la cartera del sistema financiero se pueden tomar como indicadores del financiamiento interno del consumo y de la inversión, así como del comportamiento del sector financiero.

A pesar de que las anteriores variables seleccionadas pueden sobrerepresentar algunos sectores económicos (e.g., industrial) y dejar por fuera otros²⁰,

¹⁷A la vez que es representativa de la demanda del sector de la construcción por dicho insumo, dado que la mayor parte de su producción se dedica al mercado doméstico.

¹⁸La demanda de energía eléctrica se complementa con la serie de consumo de gas ya que esta última ha cobrado importancia recientemente como sustituto (imperfecto) de aquella.

¹⁹La serie de efectivo se corrigió por el efecto del impuesto a las transacciones financieras mediante un modelo ARIMA con intervención, con el fin de aislar los efectos de este impuesto de aquellos asociados a los cambios de la actividad económica.

²⁰Cuyas series no satisfacen los mínimos requerimientos como variables coincidentes.

éstas permiten tener una idea aproximada del comportamiento económico agregado, dada su estrecha relación con algunas de las principales actividades económicas y con la oferta y la demanda agregadas.

Los resultados de las pruebas de raíz unitaria indican que las series seleccionadas son integradas de orden uno, y no presentan raíz estacional. Por su parte, el análisis de la función de correlación cruzada²¹ muestra que la relación entre dichas variables y el IPR es principalmente contemporánea, ya que los mayores valores se presentan en el rezago de orden cero²² (Apéndice 5).

El grupo óptimo, X_i , de las series que deben ser incluídas en el modelo del índice coincidente se obtiene a partir del análisis de los resultados de las estimaciones para diferentes combinaciones de las nueve series preseleccionadas anteriormente. Debido a que se obtiene un índice coincidente para cada uno de estos grupos, el mejor modelo se selecciona con base en criterios estadísticos. Como paso previo a la estimación del modelo de estados para cada uno de los grupos de variables²³, se verificó la existencia de cointegración mediante la prueba de Johansen²⁴.

Como sucede en el estudio de Altissimo et al. (2000).

²¹El análisis de correlación cruzada se realizó utilizando la metodología de doble preblanqueo. Para más detalles véase: Brockwell y Davis (1991).

²²Sin embargo, a pesar de que las correlaciones contemporáneas no son muy altas para el saldo real de efectivo y la cartera neta real del sistema financiero, estas series se incluyeron en el modelo dada su relación, presumiblemente importante, con la actividad económica.

²³Como se indica en el documento de Nieto y Melo (2001), estas series fueron estandarizadas dividiendo su logaritmo por su desviación estándar.

²⁴Se encontró cointegración en los diferentes grupos de series analizados, a diferencia del trabajo de Stock y Watson (1988) en el cual las series son integradas de orden uno pero no están cointegradas.

Los valores iniciales de los hiperparámetros y el número de rezagos de los polinomios autorregresivos incluídos en el modelo se tomaron según las recomendaciones de Nieto y Melo (2001). En particular, el orden autorregresivo p del proceso estacionario para ΔC_t (la primera diferencia del índice coincidente) se identificó como 13 con base en la aplicación de métodos estándar del análisis de series de tiempo sobre el índice de producción industrial. A partir de la estimación de un modelo ARIMA(13,1,0) para esta misma serie se encontraron los valores iniciales de los parámetros autorregresivos ϕ_i y del intercepto δ . Los valores iniciales para los parámetros γ se tomaron iguales a 1 y los de las componentes estacionales corresponden a los de la estimación del modelo VEC de las series coincidentes.

Debido a que no se conoce el orden autorregresivo k del proceso vectorial de \mathbf{u}_t , se realizaron varias estimaciones del modelo variando k desde 0 hasta 5^{25} , para cada una de las combinaciones de las series 26 . Dado el gran número de hiperparámetros, y siguiendo los resultados de simulaciones del modelo, los parámetros δ, ϕ_l y $\omega_{j,i}$ para $l=1,\ldots,p_i$ $j=1,\ldots,11$, $i=1,\ldots,n$ estimados para k=0 se dejaron fijos para las estimaciones de los modelos con valores para k>0. Finalmente, para cada modelo se estimó el vector de estado $\alpha_{t|t}$ usando el filtro de Kalman, a partir del cual se encontró el índice del estado de la economía $C_{t|t}$ o índice coincidente. La identificación final de k y del grupo óptimo de series, es decir el mejor modelo, se escogieron

 $^{^{25}}$ Debido al gran número de hiperparámetros involucrados en el modelo, el valor de k fue acotado superiormente por 5. Siguiendo los resultados de simulaciones, los valores iniciales para los parámetros autoregresivos d_{ij} fueron especificados como 0.1.

²⁶La estimación del modelo de estados se realizó utilizando un programa en el lenguaje IML de SAS versión 8.1.

de acuerdo con el criterio de información de Akaike (AIC), el análisis del comportamiento de los residuales y la estabilidad del modelo.

De esta forma, el mejor modelo, en términos de los criterios ya mencionados, fue obtenido al incluir todas las nueve variables preseleccionadas utilizando un orden autorregresivo k=1. En el Apéndice 6 se muestran las gráficas de los errores de predicción un paso adelante y de las pruebas CUSUM y CUSUMSQ sobre dichos errores estimados, donde se aprecia, en general, que no existen indicios de mala especificación del modelo.

Los resultados de la estimación son los siguientes (errores estándar en paréntesis):

Componentes de la ecuación (5)²⁷:

$$\begin{aligned} & \text{Fp1}_{t} = \beta_{1} + 0.139 \, \mathcal{O}_{t} + \mathbf{b}_{1t} \\ & (0.023) \end{aligned}$$

$$& \text{Fp6}_{t} = \beta_{2} + 0.109 \, \mathcal{O}_{t} + \mathbf{b}_{2t} \\ & (0.021) \end{aligned}$$

$$& \text{Prcem}_{t} = \beta_{3} + 0.048 \, \mathcal{O}_{t} + \mathbf{b}_{3t} \\ & (0.006) \end{aligned}$$

$$& \text{Ipr}_{t} = \beta_{4} + 0.043 \, \mathcal{O}_{t} + \mathbf{b}_{4t} \\ & (0.005) \end{aligned}$$

$$& \text{Iemob}_{t} = \beta_{5} + 0.069 \, \mathcal{O}_{t} + \mathbf{b}_{5t} \\ & (0.014) \end{aligned}$$

$$& \text{Efecrc}_{t} = \beta_{6} + 0.023 \, \mathcal{O}_{t} + \mathbf{b}_{6t} \end{aligned}$$

 $^{^{27}}$ Las estimaciones de los coeficientes β asociados a la parte determinística de la ecuación no son presentados para mantener simplicidad en los resultados. Sin embargo, estos cálculos se encuentran disponibles a solicitud del interesado.

$$\begin{array}{c} (0.003) \\ \mathrm{Energa}_t = \mbox{\ensuremath{\beta_7}} + 0.022 \mbox{\ensuremath{\mathcal{C}}}_t + \mbox{\ensuremath{\mathfrak{b}}}_{7t} \\ (0.016) \\ \mathrm{Im} \, \mathrm{pres}_t = \mbox{\ensuremath{\beta_8}} + 0.052 \mbox{\ensuremath{\mathcal{C}}}_t + \mbox{\ensuremath{\mathfrak{b}}}_{8t} \\ (0.012) \\ \mathrm{Cart_sbr}_t = \mbox{\ensuremath{\beta_9}} + 0.064 \mbox{\ensuremath{\mathcal{C}}}_t + \mbox{\ensuremath{\mathfrak{b}}}_{9t} \\ (0.021) \end{array}$$

Ecuación (6):

$$\Delta \mathcal{O}_{t} = 0.090 + 1.589 \ \Delta \mathcal{O}_{t-1} - 0.917 \ \Delta \mathcal{O}_{t-2} - 0.064 \ \Delta \mathcal{O}_{t-3} + 0.392 \ \Delta \mathcal{O}_{t-4}$$

$$(0.075) \ (0.382) \ (0.756) \ (0.670) \ (0.622)$$

$$-0.093 \ \Delta \mathcal{O}_{t-5} + 0.144 \ \Delta \mathcal{O}_{t-6} - 0.493 \ \Delta \mathcal{O}_{t-7} + 0.577 \ \Delta \mathcal{O}_{t-8}$$

$$(0.745) \ (0.528) \ (0.334) \ (0.281)$$

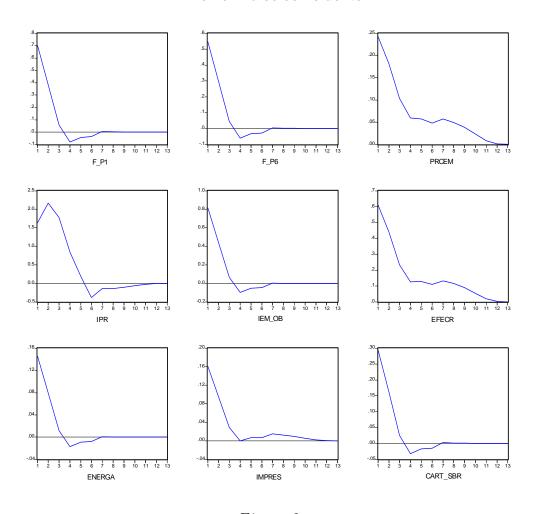
$$-0.304 \ \Delta \mathcal{O}_{t-9} + 0.125 \ \Delta \mathcal{O}_{t-10} - 0.134 \ \Delta \mathcal{O}_{t-11} + 0.273 \ \Delta \mathcal{O}_{t-12}$$

$$(0.288) \ (0.274) \ (0.334) \ (0.281)$$

$$-0.181 \ \Delta \mathcal{O}_{t-13}$$

$$(0.111)$$

Componentes de la ecuación (7):


$$egin{aligned} \mathbf{b}_{1t} &= 0.995 \ \mathbf{b}_{1t-1} \ ; & \mathbf{b}_1^2 &= 0.585 \ & (0.006) \ \mathbf{b}_{2t} &= 0.993 \ \mathbf{b}_{2t-1} \ ; & \mathbf{b}_2^2 &= 0.587 \ & (0.007) \ \mathbf{b}_{3t} &= 0.670 \ \mathbf{b}_{3t-1} \ ; & \mathbf{b}_3^2 &= 0.626 \ & (0.047) \ \mathbf{b}_{4t} &= -0.161 \ \mathbf{b}_{4t-1} \ ; & \mathbf{b}_4^2 &= 0.101 \ & (0.077) \end{aligned}$$

$$egin{aligned} \mathbf{b}_{5t} &= 0.997 \ \mathbf{b}_{5t-1} \ ; & \mathbf{b}_5^2 &= 0.247 \ & (0.003) \end{aligned}$$
 $egin{aligned} \mathbf{b}_{6t} &= 0.712 \ \mathbf{b}_{6t-1} \ ; & \mathbf{b}_6^2 &= 0.117 \ & (0.046) \end{aligned}$
 $egin{aligned} \mathbf{b}_{7t} &= 0.996 \ \mathbf{b}_{7t-1} \ ; & \mathbf{b}_7^2 &= 0.438 \ & (0.003) \end{aligned}$
 $egin{aligned} \mathbf{b}_{8t} &= 0.909 \ \mathbf{b}_{8t-1} \ ; & \mathbf{b}_8^2 &= 0.976 \ & (0.027) \end{aligned}$
 $egin{aligned} \mathbf{b}_{9t} &= 0.992 \ \mathbf{b}_{9t-1} \ ; & \mathbf{b}_9^2 &= 0.642 \ & (0.002) \end{aligned}$

Es importante tener en cuenta que, de acuerdo con lo mostrado en Nieto y Melo (2001), las estimaciones de los parámetros γ_i presentadas anteriormente están ajustadas por la desviación s_i . Esto significa que para obtener estimaciones en términos del modelo original estos valores deben ser multiplicados por s_i ; de manera análoga debemos interpretar las varianzas \mathfrak{b}_i^2 . Por esta razón, y dado que los coeficientes estimados no permiten ver el efecto dinámico de las variables sobre el índice, es más apropiado analizar las gráficas de las sucesiones de ponderaciones para cada una de las variables que determinan el crecimiento del índice coincidente, $\mathfrak{A}C_{t|t}$ (Figura 2). De esta forma se observa que las contribuciones de todas las series involucradas en el modelo tienen un patrón muy similar, el cual muestra que los primeros rezagos tienen el mayor efecto y éste es de carácter positivo. Las mayores contribuciones al crecimiento del índice son aportadas por el índice de la producción industrial (Ipr), el índice de empleo de obreros (Iemob), la situación económica actual (Fp1), el nivel de pedidos (Fp6) y el efectivo real (Efecr),

respectivamente.

Coeficientes de Rezago implícitos en el índice coincidente

Figura~2

El índice coincidente $\mathcal{O}_{t|t}$ obtenido para la actividad económica colombiana durante el período enero de 1980 -agosto de 2001 se muestra en la Figura 3. Como se puede observar, la dinámica del índice coincidente estimado concuerda en general con los "hechos estilizados" de la economía

colombiana. Por ejemplo, para 1983 y 1989-1991 el índice presenta contracciones tal como se reporta en los trabajos de Melo et al. (1988) y Ripoll et al. (1995). Durante 1996 se presenta una caída de la actividad económica, que también se observa en varias series económicas. Finalmente, la mayor contraccción del índice a lo largo de toda la muestra examinada se presenta entre 1998 y 1999, resultado compatible con la observación generalizada entre los analistas acerca de la especial intensidad de la reciente depresión.

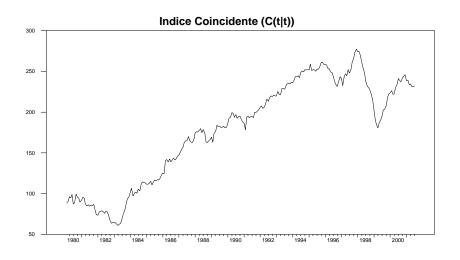
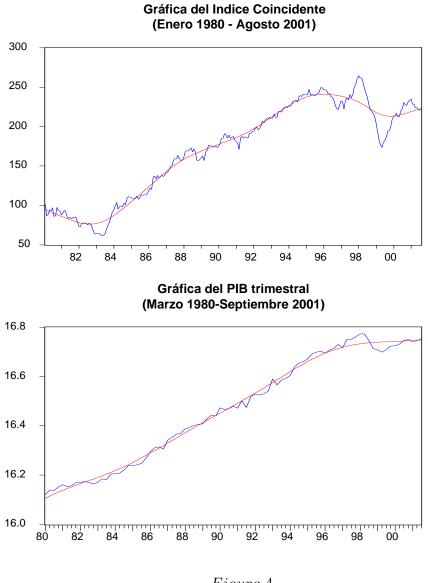


Figura 3

El parecido del índice coincidente con el de producción industrial sugiere que el índice obtenido puede ser una buena proxy de la actividad económica agregada, pues captura la relación que existe entre el sector industrial y el resto de sectores de la economía; así, el nivel de la producción industrial puede ser tomado como variable coincidente de la situación económica general del país²⁸. Sin embargo, el índice coincidente captura mejor el ciclo de referencia


²⁸ Pero no debe ser el único indicador pues existen otras variables indicadoras que podrían llegar a ser tan importantes como el IPR.

de la economía colombiana, al incorporar mayor información y complementar los movimientos de la producción industrial con los de otras variables que capturan diferentes aspectos de la economía en general²⁹, suavizando así los movimientos particulares de las variables.

Adicionalmente, el índice coincidente presenta un comportamiento similar al del Producto Interno Bruto (PIB) trimestral (Figura 4), aunque sus quiebres son más marcados debido tal vez, entre otras razones, a la frecuencia mensual de los datos que permite capturar de forma más detallada los movimientos en períodos de tiempo muy cortos. Esto reitera nuevamente que el índice coincidente es una proxy más general de la actividad económica colombiana, a diferencia del IPR y del PIB, que solo tienen en cuenta el nivel

 $^{^{29}}$ Como se observa, las ponderaciones (γ_i) de las 9 variables en el índice coincidente son significativamente diferentes de cero en todos los casos.

de producción dejando de lado otros aspectos macroeconómicos.

Figura~4

Finalmente, el índice coincidente calculado cumple con una de las características principales de un buen índice económico, la estabilidad a lo largo del tiempo. Esta propiedad se comprobó estimando el modelo para varios

períodos³⁰, encontrándose robustez del modelo ante cambios en el período muestral y ante diferentes longitudes del proceso autorregresivo de ΔC_t .

En resumen, el índice coincidente estimado se presenta como una buena opción para describir de forma adecuada el ciclo de referencia o estado de la economía colombiana³¹, dada la ausencia de otro tipo de índices y la medición menos agregada de las variables de producción. Además, constituye una primera etapa necesaria para la estimación del índice líder.

5 Conclusiones

En este documento se presenta la primera parte del proyecto de investigación de indicadores líderes para la economía colombiana. En esta se aplica una nueva metodología, desarrollada en Nieto y Melo (2001), para calcular el índice coincidente de la actividad económica agregada de un país, la cual difiere del enfoque tradicional del NBER y sigue los lineamientos del de Stock y Watson (SW: 1989, 1991).

La modificación realizada por Nieto y Melo (2001), aplicada aquí, se diferencia de la metodología original de SW en que las variables coincidentes a ser utilizadas en el cálculo del índice están cointegradas, en la inclusión de la estacionalidad de las variables observables directamente dentro del modelo

³⁰El modelo se estimó para los siguientes períodos, comenzando siempre en enero de 1980 y terminando en diciembre de 1999, junio de 2000, diciembre de 2000 y febrero de 2001; de este último período en adelante el índice se ha estimado mensualmente hasta Agosto de 2001.

³¹El cual se puede actualizar con un rezago de dos meses dada la disponibilidad de algunas variables incluídas en el índice.

y en el cumplimiento de la propiedad de estado de equilibrio del modelo de estados.

De esta forma, el índice coincidente de la economía colombiana obtenido a través de esta nueva metodología es el primer paso para encontrar el índice líder de la actividad económica, ya que nos permite conocer aquello que se desea liderar.

6 Bibliografía

Altissimo, F., D.J Marchetti y G.P. Oneto (2000). The Italian Business Cycle: Coincident and Leading Indicators and Some Stylized Facts. Banca D'Italia.

Andreou, E. et al. (2000). A Comparison of the statistical proporties of financial variables in the USA, UK and Germany over the Business Cycle. The Manchester School, Vol 68, 4, pp. 398.

Brockwell y Davis (1991). Times series: Theory and Methods. Springer-Verleg.

Burns, A. F., y W. C. Mitchell (1946). Measuring Business cycles. En NBER, Studies in Business Cycle, Columbia University Press, New York.

Geweke, J.F. y K.J. Singleton (1981). Maximum likelihood "confirmatory" factor analysis of economic time series, International Economic Review, 22, pp.37-53.

Lahiri, K y G. Moore (1991). Leading Economic Indicators: New Approaches and Forecasting Records. Cambridge University Press.

López, E., M. Misas, y M. Ripoll (1994). Un análisis de información cualitativa sobre expectativas de producción. Coyuntura Económica, Vol. XXIV, No. 2.

Maurer M.y M. C. Uribe (1996). El ciclo de referencia de la economía colombiana. Archivos de Macroecnomía, 45, DNP.

Maurer M., M. C. Uribe y J. Birchenal (1996). El sistema de indicadores líderes para Colombia. Archivos de Macroeconomía, 49, DNP.

Melo A., French M. y N. Langebaek (1988). El ciclo de referencia de la economía colombiana. Hacienda, pp 43-61.

Nieto, F. y L.F. Melo (2001). About a coincident index for the state of the economy. Documento no publicado.

Restrepo, J.E. y J. Reyes (2000). Los ciclos económicos en Colombia: evidencia empírica (1977-1998). Archivos de Macroeconomía, 131, DNP.

Ripoll, M., Misas M. y E. López (1995). Una descripción del ciclo industrial en Colombia, Borradores semanales de Economía No. 33, Banco de la República.

Sargent, T.J. y C.A. Sims (1977). Business cycle modeling without pretending to have too much a-priori economic theory, in C. Sims et al., New methods in business cycle research. Minneapolis: Federal Reserve Bank of Minneapolis.

Singleton, K. (1980). A latent time series model of the cyclical behavior of interest rates, International Economic Review, 21, pp.559-575.

Stock, J.H. y Watson, M.W. (1989). New indexes of coincident and leading economic indicators, NBER Macroeconomic Annuals 1989, pp.351-394.

Stock, J.H. y Watson, M.W. (1991). A probability model of the coincident economic indicators. En K. Lahiri and G.H. Moore, eds., Leading Economic Indicators: New Approaches and Forecasting Records, ch. 4, pp.63-85. New York: Cambridge University Press.

Stock, J.H. y Watson, M.W. (1992). A procedure for predicting recessions with leading indicators: econometric issues and recent experience, NBER Working paper No. 4014

Taylor, J. G. (1998). Investment timing and the business cycle. New York: John Wiley & Sons, Inc.

Zarnowitz, V. (1992). Business Cycles: Theory, History, Indicators and

Forecasting. NBER. The University of Chicago Press.

APENDICE 1

El análisis para seleccionar las series que formarían parte del modelo para el índice coincidente y para el índice líder comenzó con la búsqueda exhaustiva de variables informativas que se relacionen con la actividad económica de diversas maneras, tanto del lado de la oferta como del lado de la demanda agregada³².

Las series recopiladas se analizaron según los criterios de disponiblidad, periodicidad y rezago, necesarios para hacer parte del grupo de variables seleccionadas en primera instancia para el índice coincidente. Aquellas series cuya información es posterior a enero de 1980 se descartaron, así como las series cuya periodicidad no es mensual o cuyo rezago de disponibilidad es muy grande.

A continuación se describen las series recopiladas para esta investigación y se presentan los resultados de las diferentes pruebas.

³²La mayoría de series fueron analizadas en términos reales.

	Variables	Abrev.	Fuente	Frec.	Inicio
I	Producción				
1.	Producción de café	prcafe	Fedecafé	Mensual	Ene-1956
2.	Valor cosecha cafetera	pcocafe	Fedecafé	Mensual	Ene-1956
3.	Producción de gasolina	pro_gas	Ecopetrol	Mensual	Ene-1975
4.	Producción de petróleo	prpet	Ecopetrol	Mensual	Ene-1929
5.	Indice de producción in-	ipr	DANE	Mensual	Ene-1980
	dustrial sin trilla de café				
6.	Indice de producción in-	iprcon	DANE	Mensual	Ene-1980
	dustrial de los bienes de				
	consumo ³³				
7.	Indice de producción	iprint	DANE	Mensual	Ene-1980
	industrial, sin trilla				
	de café, de los bienes				
	intermedios.				
8.	Indice de producción in-	iprk	DANE	Mensual	Ene-1980
	dustrial, sin trilla de				
	café, de los bienes de				
	capital.				
9.	Producción de cemento	prcem	DANE	Mensual	Ene-1939
10.	Indice de producción in-	iprusa	FMI	Mensual	Ene-1957
	dustrial de los Estados				
	Unidos				
11.	Productividad	produc	Cálculos SGEE	Mensual	Ene-1980

³³ Indice calculado por la Subgerencia de Estudios Económicos del Banco de la República

11.	Opinión y Expectativas de la Producción ³⁴				
12.	Situación económica	f_p1	Pregunta N°1	Mensual	Ene-1980
	actual		de la EOE de		
			Fedesarrollo		
13.	Actividad productiva	f_p2	Pregunta N°2	Mensual	Ene-1980
	comparada con el mes		de la EOE de		
	anterior.		Fedesarrollo		
14.	Existencias de produc-	f_p3	Pregunta N°3	Mensual	Ene-1980
	tos terminados al fi-		de la EOE de		
	nalizar el mes.		Fedesarrollo		
15.	Pedidos recibidos en	f_p4	Pregunta N°4	Mensual	Ene-1980
	comparación con el mes		de la EOE de		
	anterior.		Fedesarrollo		
16.	Volumen de pedidos al	f_p5	Pregunta N°5	Mensual	Ene-1980
	finalizar el mes		de la EOE de		
			Fedesarrollo		
17.	Volumen actual de	f_p6	Pregunta N°6	Mensual	Ene-1980
	pedidos		de la EOE de		
			Fedesarrollo		

a partir de las cifras de la Muestra Mensual Manufacturera y de la Encuesta Anual Manufacturera. Estos índices se toman para la industria sin trilla de café.

³⁴Las series de la EOE de Fedesarrollo corresponden al balance entre el porcentaje de empresas que responden positivamente y las que lo hacen negativamente.

18.	Capacidad instalada,	f_p7	Pregunta N°7	Mensual	Ene-1980
	dado el volumen ac-		de la EOE de		
	tual de pedidos o la		Fedesarrollo		
	situación actual de la				
	demanda				
19.	Expectativas de pro-	f_p8	Pregunta N°8	Mensual	Ene-1980
	ducción en los próximos		de la EOE de		
	tres meses.		Fedesarrollo		
20.	Expectativas de precios	f_p9	Pregunta N°9	Mensual	Ene-1980
	en los próximos tres		de la EOE de		
	meses.		Fedesarrollo		
21.	Expectativas de la	f_p10	Pregunta N°10	Mensual	Ene-1980
	situación económica en		de la EOE de		
	los próximos seis meses.		Fedesarrollo		
22.	Capacidad instalada ac-	f_p11	Pregunta N°11	Mensual	Ene-1980
	tual dado el ritmo de		de la EOE de		
	pedidos, o demanda es-		Fedesarrollo		
	perada, para los próxi-				
	mos doce meses.				
23.	Clima de negocios:	clineg	Cálculo SGEE	Mensual	Ene-1980
	situación económica		basado en la EOE		
	actual y en los próximos				
	seis meses.				

		ı			
24.	Indicador de confianza:	incon	Cálculo SGEE	Mensual	Ene-1980
	existencias, pedidos y		basado en la EOE		
	expectativas de produc-				
	ción en los próximos				
	tres meses.				
25.	Existencias de produc-	f_p332	Pregunta N°3 de	Mensual	Ene-1980
	tos terminados del sec-		la EOE textiles		
	tor de textiles.				
26.	Nivel de pedidos del sec-	f_p638	Pregunta N°6	Mensual	Ene-1980
	tor metalmécanico.		de la EOE		
			metalmecánico		
27.	Expectativas de la	f_p1035	Pregunta ${ m N}^{\circ}10$ de	Mensual	Ene-1980
	situación económica en		la EOE químicos		
	los próximos seis meses				
	del sector de químicos.				
28.	Porcentaje de uso de la	-	ANDI	Mensual	Ene-1990
	capacidad instalada en				
	el mes.				
29.	Inventario de productos	-	ANDI	Mensual	Ene-1990
	terminados al finalizar				
	el mes ³⁵				
30.	Volumen de pedidos	-	ANDI	Mensual	Ene-1990
	durante los próximos				
	meses				

111.	Oferta y Demanda				
31.	Indice de ventas sin combustibles.	ivtot	DANE	Mensual	Ene-1985
32.	Venta de automóviles.	v_auto	Fedemetal- Colmotores	Mensual	Ene-1970
33.	Sacrificio de ganado vacuno.	sgan	DANE	Mensual	Ene-1979
34.	Consumo de energía eléctrica total (4 ciudades) 36**	coene	Banco de la República	Mensual	Ene-1966
35.	Consumo de energía por la industria (4 ciudades)**	coenei	Banco de la República	Mensual	Ene-1966
36.	Demanda de energía.	enerd	ISA	Mensual	Ene-1979
37.	Demanda de energía más gas	energa	ISA	Mensual	Ene-1979
38.	Consumo de gasolina	-	Ecopetrol	Mensual	Dic-1987
39.	Pasajeros nacionales por vía aérea.	pnac	Aerocivil	Mensual	Ene-1971
40.	Carga nacional aérea.	cnac	Aerocivil	Mensual	Ene-1968
41.	Salida de pasajeros in- ternacionales por vía aérea.	sapint	Aerocivil	Mensual	Ene-1968

³⁵Balance definido como inventario alto menos inventario bajo.

42.	Entrada de pasajeros internacionales por vía	enpint	Aerocivil	Mensual	Ene-1971
	aérea.				
43.	Area aprobada para	areacon	Camacol-DANE	Mensual	Ene-1978
	construcción.				
44.	Licencias aprobadas	-	Camacol-DANE	Mensual	Ene-1986
	para construcción.				
IV.	Precios, Costos y S	Salarios			
45.	Indice de precios al	ipctot	DANE	Mensual	Ene-1954
	consumidor				
46.	Indice de precios al con-	ipc_sina	DANE	Mensual	Ene-1954
	sumidor sin alimentos				
47.	Indice de precios al pro-	ipp	Banco de la	Mensual	Ene-1970
	ductor (Total)		República		
48.	Indice de precios al pro-	ipp_pyc	Banco de la	Mensual	Ene-1970
	ductor -producidos y		República		
	consumidos				
49.	Indice de precios al pro-	ippx	Banco de la	Mensual	Ene-1970
	ductor -exportados		República		
50.	Indice de precios al pro-	ippm	Banco de la	Mensual	Ene-1970
	ductor -importados		República		

³⁶** Estas series son muy rezagadas y su información corresponde solamente a las 4 principales ciudades.

51.	Indice de precios al productor -material de construcción	ipp_matcons	Banco de la República	Mensual	Ene-1970
52.	Inflación (variación an- ual del IPC base dic 98 = 100).	infla	DANE	Mensual	Ene-1954
53.	Precio del ganado, Feria de Medellín	pr_gan	Feria de Medellin	Mensual	Ene-1960
54.	Precio interno de sus- tentación del café		Fedecafé	Mensual	Ene-1970
55.	Precio externo del café	prec_caf	Fedecafé	Mensual	Ene-1913
56.	Precio internacional del petróleo	pptrol	FMI	Mensual	Ene-1957
57.	Precio internacional del banano	prec_banano	FMI	Mensual	Ene-1957
58.	Precio de vivienda en Bogotá.	-	DNP	Mensual	Ene-1990
59.	Indice de tasa de cambio real (ITCR).	itcr	Banco de la República	Mensual	Ene-1975
60.	Términos de inter- cambio (IPP exporta- dos/IPP importados)	ti	Banco de la República	Mensual	Ene-1970

61.	Relación índice de pre-	-	Banco de la	Mensual	Dic-1988	
	cios de los bienes no		República			
	transables y transables.					
62.	Indice de costos de la	-	DANE	Mensual	Dic-1981	
	construcción pesada.					
63.	Indice de costos de	-	DANE	Mensual	Ene-1972	
	la construcción de					
	vivienda. ³⁷					
64.	Salario real de la indus-	salar	DANE	Mensual	Jul-1970	
	tria manufacturera.					
V.	Empl eo					
65.	Tasa de desempleo	tasades	DANE	Trimestral	Mar-1976	
66.	Tasa de ocupación	tocupacion	DANE	Trimestral	Mar-1976	
67.	Indice de empleo total	iem_tot	DANE	Mensual	Ene-1980	
	de la industria.					
68.	Indice de empleo de la	iem_em	DANE	Mensual	Ene-1980	
	industria -empleados.					
69.	Indice de empleo de la	iem_ob	DANE	Mensual	Ene-1980	
	industria-obreros.					
70.	Indice de empleo del	-	DANE	Mensual	Ene-1989	
	comercio al por menor					

³⁷Esta serie no se utiliza debido a que ha sufrido varios cambios de metodología y de muestra.

\ \ (1	С			
VI.	Sector Financiero			1
71.	Base monetaria (deflac-	baser	Banco de la	Mensual Ene-1980
	tada por IPC)		República	
72.	Base monetaria ajus-	-	Banco de la	Mensual Ene-1984
	tada ³⁸ .		República	
73.	Efectivo real.	efecr	Banco de la	Mensual Ene-1980
			República	
74.	Efectivo real corregido	efecrc	Banco de la	Mensual Ene-1980
	por impuesto a transac-		República	
	ciones financieras.			
75.	M1 (deflactado por	m1r	Banco de la	Mensual Ene-1980
	IPC)		República	
76.	M2 (deflactado por	m2r	Banco de la	Mensual Ene-1980
	IPC)		República	
77.	M3 más bonos (deflac-	m3bipp	Banco de la	Mensual Ene-1980
	tado por IPP)		República	
78.	M3 más bonos (deflac-	m3bipc	Banco de la	Mensual Ene-1980
	tado por IPC).		República	
79.	Dépositos en cuenta	dccr	Banco de la	Mensual Ene-1980
	corriente.		República	
80.	Dépositos en cuenta de	ahor_r	Banco de la	Mensual Ene-1980
	ahorros.		República	

³⁸Se elimina el efecto de los cambios de normatividad asumiendo que no cambian los porcentajes de encaje, dejando los vigentes.

0.1	0 110 1 1 1 1	111	Б 1 1	N 4 1	F 1000
81.	Certificados de depósi-	cdttr	Banco de la	Mensual	Ene-1980
	tos a término (CDT).		República		
82.	Cartera neta sin la del	cart_sbr	Banco de la	Mensual	Ene-1980
	BCH en términos reales.		República		
83.	Crédito al sector pri-	-	FMI	Mensual	Ene-1969
	vado ³⁹ .				
84.	Préstamos reales	rpreap	ICAVI	Mensual	Ene-1973
	aprobados para con-				
	strucción, ICAVI.				
85.	Préstamos reales entre-	rpreen	ICAVI	Mensual	Ene-1973
	gados para construc-				
	ción, ICAVI.				
86.	Cartera real ICAVI.	rcavs	ICAVI	Mensual	Ene-1976
87.	Tasa de interés real.	tir	Banco de la	Mensual	Ene-1980
			República		
88.	Tasa de interés nominal	cdt	Banco de la	Mensual	Ene-1980
	de los CDT.		República		
89.	Tasa de interés inter-	-	Banco de la	Mensual	Ene-1989
	bancaria (TIB).		República		
90.	Indice de la Bolsa de	ibb	Bolsa de Bogotá	Mensual	Ene-1978
	Bogotá (IBB). ⁴⁰				

³⁹Serie incompleta

⁴⁰ Serie descontinuada.

VII	. Comercio Exterior				
91.	Exportaciones totales	expo	DANE	Mensual	Ene-1980
	(FOB) reales.				
92.	Exportaciones no tradi-	expontr	DANE	Mensual	Ene-1980
	cionales (FOB) reales.				
93.	Exportaciones de	ex_ban	DANE	Mensual	Ene-1980
	banano				
94.	Exportaciones de flores	exflo	DANE	Mensual	Ene-1980
95.	Exportaciones de	ex_carb	DANE	Mensual	Ene-1980
	carbón				
96.	Exportaciones de café	expo_caf	Fedecafé	Mensual	Ene-1958
97.	Importaciones totales	imprtot	DANE	Mensual	Ene-1980
	(CIF) reales.				
98.	Importaciones reales de	imprbco	DANE	Mensual	Ene-1980
	bienes de consumo.				
99.	Importaciones reales de	imprbin	DANE	Mensual	Ene-1980
	bienes intermedios.				
100.	Importaciones reales de	imprbca	DANE	Mensual	Ene-1980
	bienes de capital.				

101.	Importaciones reales resto (sin bienes de	impres	DANE	Mensual	Ene-1980
	capital ni bienes				
	duraderos).				
102.	Reservas interna-	resint	Banco de la	Mensual	Ene-1960
	cionales netas		República		
103.	Balanza de pagos	-	Banco de la	Trimestral	1996
			República	Anual	1938
104.	Balanza de capital.	-	Banco de la	Trimestral	1994
			República		
105.	Deuda externa total.	-	Banco de la	Mensual	oct-1999
			República		
106.	Deuda externa privada.	-	Banco de la	Mensual	Ene-1994
			República		
107.	Registros de inversión	-	Banco de la	Mensual	Dic-1980
	extranjera.		República		

APENDICE 2 Pruebas de Raíz Unitaria

	ADF ⁴¹			KPSS ⁴²		
Variable	Estadística	Valor Crítico	LB	Estadística	Valor Crítico	
		$(\alpha = 5\%)$	(p-value)		$(\alpha = 5\%)$	
prcafe	$\tau_{\mu} = -3.73$	-2.87	0.57	$\eta_{\mu} = 0.26$	0.46	
pcocafe	$\tau_{\mu} = -1.44$	-2.87	0.73	$\eta_{\mu} = 2.39$	0.46	
pro_gas	$\tau_{\tau} = -5.51$	-3.43	0.35	$\eta_{ au} = 0.07$	0.15	
prpet	$\tau_{\mu} = -1.61$	-2.87	0.33	$\eta_{\mu}=2.25$	0.46	
ipr	$\tau_{\mu} = -2.48$	-2.87	0.37	$\eta_{\mu} = 2.19$	0.46	
iprcon	$\tau_{\mu} = -2.27$	-2.87	0.36	$\eta_{\mu} = 2.22$	0.46	
iprint	$\tau_{\mu} = -1.53$	-2.87	0.53	$\eta_{\mu} = 2.25$	0.46	
iprk	$\tau_{\mu} = -1.01$	-2.87	0.38	$\eta_{\mu} = 1.68$	0.46	
prcem	$\tau_{\mu} = -1.83$	-2.87	0.63	$\eta_{\mu} = 1.96$	0.46	
produc	$\tau_{\mu} = -2.28$	-2.87	0.40	$\eta_{\mu} = 0.05$	0.46	
f_p1	$\tau = -0.11$	-1.94	0.35	$\eta_{\mu} = 0.54$	0.46	
f_p2	$\tau = -0.10$	-1.94	0.30	$\eta_{\mu} = 0.60$	0.46	
f_p3	$\tau_{\mu} = -2.82$	-2.87	0.56	$\eta_{\mu} = 0.76$	0.46	
f_p4	$\tau_{\mu} = -3.36$	-2.87	0.56	$\eta_{\mu} = 0.61$	0.46	
fp5	$\tau_{\mu} = -3.56$	-2.87	0.42	$\eta_{\mu} = 0.63$	0.46	
f_p6	$\tau = -0.35$	-1.94	0.70	$\eta_{\mu} = 0.73$	0.46	
f_p7	$\tau_{\mu} = -2.01$	-2.87	0.32	$\eta_{\mu} = 0.64$	0.46	
f_p8	$\tau = -0.30$	-1.94	0.60	$\eta_{\mu} = 0.49$	0.46	

 $^{^{41}}H_0: X_t \sim I_1(1)$ $^{42}H_0: X_t \sim I_1(0)$

	ADF			K	PSS
Variable	Estadística	Valor Crítico	LB	Estadística	Valor Crítico
		$(\alpha = 5\%)$	(p-value)		$(\alpha = 5\%)$
f_p9	$\tau_{\mu} = -0.71$	-2.87	0.55	$\eta_{\mu} = 1.93$	0.46
f_p10	$\tau = -0.21$	-1.94	0.39	$\eta_{\mu} = 0.94$	0.46
f_p11	$\tau = -0.94$	-1.94	0.46	$\eta_{\mu} = 0.71$	0.46
clineg	$\tau = -0.12$	-1.94	0.63	$\eta_{\mu} = 0.70$	0.46
incon	$\tau = -0.35$	-1.94	0.48	$\eta_{\mu} = 0.82$	0.46
f_p332	$\tau_{\mu} = -3.02$	-2.87	0.44	$\eta_{\mu} = 0.53$	0.46
f_p638	$\tau = -0.35$	-1.94	0.32	$\eta_{\mu} = 0.67$	0.46
f_p1035	$\tau = -0.17$	-1.94	0.44	$\eta_{\mu} = 0.65$	0.46
ivtot	$\tau_{\mu} = -1.59$	-2.87	0.39	$\eta_{\mu} = 1.76$	0.46
v_auto	$\tau_{\mu} = -1.92$	-2.87	0.43	$\eta_{\mu} = 1.51$	0.46
sgan	$\tau_{\mu} = -2.13$	-2.87	0.59	$\eta_{\mu} = 1.34$	0.46
enerd	$\tau_{\mu} = -2.49$	-2.87	0.34	$\eta_{\mu} = 2.36$	0.46
energa	$\tau_{\mu} = -2.15$	-2.87	0.34	$\eta_{\mu} = 2.42$	0.46
pnac	$\tau = -0.41$	-1.94	0.70	$\eta_{\mu} = 0.52$	0.46

		ADF		KPSS	
Variable	Estadística	Valor Crítico	LB	Estadística	Valor Crítico
		$(\alpha = 5\%)$	(p-value)		$(\alpha = 5\%)$
cnac	$\tau_{\mu} = -2.20$	-2.87	0.82	$\eta_{\mu} = 1.59$	0.46
sapint	$\tau = -0.29$	-1.94	0.32	$\eta_{\mu} = 0.41$	0.46
enpint	$\tau = -0.36$	-1.94	0.45	$\eta_{\mu} = 0.40$	0.46
areacon	$\tau_{\mu} = -1.81$	-2.87	0.62	$\eta_{\mu} = 0.59$	0.46
ipctot	$\tau = -0.67$	-1.94	0.35	$\eta_{\mu} = 2.48$	0.46
ipc_sina	$\tau = -0.97$	-1.94	0.34	$\eta_{\mu} = 2.48$	0.46
ірр	$\tau = -0.53$	-1.94	0.74	$\eta_{\mu}=2.47$	0.46
ipp_pyc	$\tau = -0.21$	-1.94	0.71	$\eta_{\mu}=2.47$	0.46
ipp_x	$\tau_{\mu} = -1.04$	-2.87	0.42	$\eta_{\mu} = 2.41$	0.46
ipp_m	$\tau_{\mu} = -2.31$	-2.87	0.33	$\eta_{\mu}=2.42$	0.46
ipp_matcons	$\tau_{\mu} = -1.64$	-2.87	0.37	$\eta_{\mu}=2.47$	0.46
infla	$\tau = -0.91$	-1.94	0.45	$\eta_{\mu} = 2.48$	0.46
pr_gan	$\tau_{\mu} = -1.33$	-2.87	0.52	$\eta_{\mu} = 2.44$	0.46
itcr	$\tau_{\mu} = -0.97$	-2.87	0.52	$\eta_{\mu} = 1.55$	0.46
ti	$\tau_{\mu} = -3.27$	-2.87	0.48	$\eta_{\mu} = 0.70$	0.46

		ADF		K	PSS
Variable	Estadística	Valor Crítico	LB	Estadística	Valor Crítico
		$(\alpha = 5\%)$	(p-value)		$(\alpha = 5\%)$
salar	$\tau_{\mu} = -0.62$	-2.87	0.75	$\eta_{\mu} = 2.41$	0.46
iem_tot	$\tau = -0.83$	-1.94	0.99	$\eta_{\mu} = 1.12$	0.46
iem_em	$\tau = -0.45$	-1.94	0.45	$\eta_{\mu} = 0.59$	0.46
iem_ob	$\tau = -1.82$	-1.94	0.30	$\eta_{\mu} = 1.54$	0.46
baser	$\tau_{\mu} = -2.03$	-2.87	0.37	$\eta_{\mu} = 1.33$	0.46
efecr	$\tau_{\tau} = -3.10$	-3.43	0.59	$\eta_{ au} = 0.14$	0.15
efecrc	$\tau_{\tau} = -3.87$	-3.43	0.39	$\eta_{ au} = 0.20$	0.15
m1r	$\tau_{\mu} = -1.39$	-2.87	0.62	$\eta_{\mu} = 1.81$	0.46
m2r	$\tau_{\mu} = -0.93$	-2.87	0.48	$\eta_{\mu} = 2.36$	0.46
m3bipp	$\tau_{\tau} = -3.39$	-3.43	0.65	$\eta_{ au} = 0.25$	0.15
m3bipc	$\tau = -0.57$	-1.94	1.00	$\eta_{\mu} = 1.25$	0.46
dccr	$\tau_{\mu} = -1.62$	-2.87	0.39	$\eta_{\mu} = 0.68$	0.46
ahor_r	$\tau_{\mu} = -1.71$	-2.87	0.44	$\eta_{\mu} = 2.29$	0.46
cdttr	$\tau_{\mu} = -2.99$	-2.87	0.38	$\eta_{\mu} = 0.49$	0.46
cart_sbr	$\tau = -1.83$	-1.94	0.70	$\eta_{\mu} = 2.29$	0.46
rpreap	$\tau = -0.25$	-1.94	0.32	$\eta_{\mu} = 0.40$	0.46
rpreen	$\tau_{\mu} = -2.08$	-2.87	0.51	$\eta_{\mu} = 0.85$	0.46
rcavs	$\tau_{\mu} = -1.61$	-2.87	0.50	$\eta_{\mu} = 2.29$	0.46

		ADF		K	PSS
Variable	Estadística	Valor Crítico	LB	Estadística	Valor Crítico
		$(\alpha = 5\%)$	(p-value)		$(\alpha = 5\%)$
tir	$\tau_{\mu} = -2.99$	-2.87	0.37	$\eta_{\mu} = 0.49$	0.46
cdt	$\tau = -1.02$	2 -1.94 0.30			
expo	$\tau_{\mu} = -0.02$	$ au_{\mu} = -0.02$ -2.87 0.52		$\eta_{\mu} = 2.38$	0.46
expontr	$\tau_{\mu} = -0.14$	=-0.14 -2.87 0.34		$\eta_{\mu} = 2.36$	0.46
ex_ban	$\tau_{\mu} = -2.51$	-2.87	0.33	$\eta_{\mu} = 2.19$	0.46
ex_flo	$\tau_{\mu} = -0.66$	-2.87	0.86	$\eta_{\mu} = 2.41$	0.46
ex_carb	$\tau_{\mu} = -1.86$	-2.87	0.31	$\eta_{\mu} = 2.03$	0.46
expo_caf	$\tau = -0.32$	-1.94	0.44	$\eta_{\mu} = 0.39$	0.46
imprtot	$\tau_{\mu} = -0.16$	-2.87	0.47	$\eta_{\mu} = 2.17$	0.46
imprbco	$\tau_{\mu} = -1.33$	-2.87	0.45	$\eta_{\mu} = 1.70$	0.46
imprbin	$\tau_{\tau} = -3.22$	-3.43	0.30	$\eta_{ au} = 0.19$	0.15
imprbca	$\tau_{\mu} = -0.73$	-2.87	0.40	$\eta_{\mu} = 2.03$	0.46
impres	$\tau_{\tau} = -2.42$	-3.43	0.30	$\eta_{\tau} = 0.43$	0.15
resint	$\tau_{\mu} = -1.48$	-2.87	0.37	$\eta_{\mu} = 1.24$	0.46

APENDICE 3
Pruebas de Raíz Unitaria Estacional

		FRA	NSES - HOBIJN		
Variable	Estadística	Valor Crítico	Estadística	Valor Crítico	LB
	$H_o = X_t \sim I_{12}(1)$	$(\alpha = 5\%)$	$H_o = X_t \sim I_{1,12}(1,1)$	$(\alpha = 5\%)$	(p-value)
prcafe	$t(\pi_2) = -8.64$	-5.63	$F(\pi_1, \pi_2) = 54.20$	19.70	0.42
pcocafe	$t(\pi_2) = -9.27$	-5.63	$F(\pi_1, \pi_2) = 55.72$	19.70	0.31
pro_gas	$t(\pi_2) = -8.96$	-5.63	$F(\pi_1, \pi_2) = 47.92$	19.70	0.34
prpet	$t(\pi_2) = -8.31$	-5.63	$F(\pi_1, \pi_2) = 42.48$	19.70	0.33
ipr	$t(\pi_2) = -6.02$	-5.64	$F(\pi_1, \pi_2) = 21.03$	20.97	0.47
iprcon	$t(\pi_2) = -6.35$	-5.64	$F(\pi_1, \pi_2) = 26.09$	20.97	0.67
iprint	$t(\pi_2) = -9.21$	-5.63	$F(\pi_1, \pi_2) = 50.95$	19.70	0.39
iprk	$t(\pi_2) = -8.71$	-5.63	$F(\pi_1, \pi_2) = 44.56$	19.70	0.37
prcem	$t(\pi_2) = -8.59$	-5.64	$F(\pi_1, \pi_2) = 50.15$	20.97	0.42
produc	$t(\pi_2) = -7.99$	-5.63	$F(\pi_1, \pi_2) = 38.56$	19.70	0.57
f_p1	$t(\pi_2) = -16.37$	-5.63	$F(\pi_1, \pi_2) = 143.51$	19.70	0.58
f_p2	$t(\pi_2) = -7.62$	-5.63	$F(\pi_1, \pi_2) = 32.03$	19.70	0.74
f_p3	$t(\pi_2) = -13.35$	-7.90	$F(\pi_1, \pi_2) = 116.66$	36.87	0.75
f_p4	$t(\pi_2) = -6.62$	-5.63	$F(\pi_1, \pi_2) = 33.71$	19.70	0.42
f_p5	$t(\pi_2) = -7.60$	-7.90	$F(\pi_1, \pi_2) = 30.57$	36.87	0.86
f_p6	$t(\pi_2) = -9.84$	-5.63	$F(\pi_1, \pi_2) = 59.26$	19.70	0.31
f_p7	$t(\pi_2) = -8.62$	-5.63	$F(\pi_1, \pi_2) = 43.82$	19.70	0.46
f_p8	$t(\pi_2) = -15.85$	-5.63	$F(\pi_1, \pi_2) = 152.80$	19.70	0.39
f_p9	$t(\pi_2) = -5.52$	-5.63	$F(\pi_1, \pi_2) = 30.14$	19.70	0.66
f_p10	$t(\pi_2) = -8.95$	-5.63	$F(\pi_1, \pi_2) = 53.86$	19.70	0.31

		FRA	NSES - HOBIJN		
Variable	Estadística	Valor Crítico	Estadística	Valor Crítico	LB
		$(\alpha = 5\%)$		$(\alpha = 5\%)$	(p-value)
f_p11	$t(\pi_2) = -13.53$	-5.63	$F(\pi_1, \pi_2) = 101.89$	19.70	0.59
clineg	$t(\pi_2) = -15.03$	-5.63	$F(\pi_1, \pi_2) = 143.49$	19.70	0.43
incon	$t(\pi_2) = -10.96$	-7.90	$F(\pi_1, \pi_2) = 74.93$	36.87	0.41
f_p332	$t(\pi_2) = -15.54$	-5.63	$F(\pi_1, \pi_2) = 146.66$	19.70	0.31
f_p638	$t(\pi_2) = -5.18$	-5.63	$F(\pi_1, \pi_2) = 16.31$	19.70	0.36
f_p1035	$t(\pi_2) = -8.10$	-5.63	$F(\pi_1, \pi_2) = 37.07$	19.70	0.45
ivtot	$t(\pi_2) = -7.16$	-7.90	$F(\pi_1, \pi_2) = 29.00$	36.87	0.31
v_auto	$t(\pi_2) = -10.79$	-5.63	$F(\pi_1, \pi_2) = 66.96$	19.70	0.30
sgan	$t(\pi_2) = -9.42$	-7.90	$F(\pi_1, \pi_2) = 49.05$	36.87	0.36
enerd	$t(\pi_2) = -8.72$	-7.90	$F(\pi_1, \pi_2) = 42.36$	36.87	0.84
energa	$t(\pi_2) = -9.42$	-5.64	$F(\pi_1, \pi_2) = 60.04$	20.97	0.44
pnac	$t(\pi_2) = -14.21$	-5.63	$F(\pi_1, \pi_2) = 111.66$	19.70	0.34
cnac	$t(\pi_2) = -12.08$	-5.63	$F(\pi_1, \pi_2) = 85.80$	19.70	0.32
sapint	$t(\pi_2) = -7.12$	-5.63	$F(\pi_1, \pi_2) = 33.93$	19.70	0.35
enpint	$t(\pi_2) = -10.48$	-5.63	$F(\pi_1, \pi_2) = 62.93$	19.70	0.44
areacon	$t(\pi_2) = -8.27$	-7.90	$F(\pi_1, \pi_2) = 41.05$	36.87	0.42
ipctot	$t(\pi_2) = -7.32$	-5.63	$F(\pi_1, \pi_2) = 26.98$	19.70	0.39

		FRA	NSES - HOBIJN		
Variable	Estadística	Valor Crítico	Estadística	Valor Crítico	LB
		$(\alpha = 5\%)$		$(\alpha = 5\%)$	(p-value)
ipc_sina	$t(\pi_2) = -6.57$	-5.63	$F(\pi_1, \pi_2) = 21.61$	19.70	0.38
ipp	$t(\pi_2) = -8.91$	-5.64	$F(\pi_1, \pi_2) = 41.76$	20.97	0.38
ipp_pyc	$t(\pi_2) = -9.25$	-5.64	$F(\pi_1, \pi_2) = 45.47$	20.97	0.30
ipp_x	$t(\pi_2) = -9.96$	-5.64	$F(\pi_1, \pi_2) = 63.38$	20.97	0.37
ipp_m	$t(\pi_2) = -11.27$	-7.90	$F(\pi_1, \pi_2) = 66.54$	36.87	0.56
ipp_matcons	$t(\pi_2) = -15.48$	-5.63	$F(\pi_1, \pi_2) = 22.96$	19.70	0.58
infla	$t(\pi_2) = -7.48$	-5.63	$F(\pi_1, \pi_2) = 27.99$	19.70	0.48
pr_gan	$t(\pi_2) = -15.83$	-5.63	$F(\pi_1, \pi_2) = 134.39$	19.70	0.54
itcr	$t(\pi_2) = -11.58$	-7.90	$F(\pi_1, \pi_2) = 71.73$	36.87	0.33
ti	$t(\pi_2) = -10.44$	-5.63	$F(\pi_1, \pi_2) = 65.82$	19.70	0.34
salar	$t(\pi_2) = -6.48$	-5.63	$F(\pi_1, \pi_2) = 31.35$	19.70	0.75
iem_tot	$t(\pi_2) = -10.34$	-5.63	$F(\pi_1, \pi_2) = 57.22$	19.70	0.40
iem_em	$t(\pi_2) = -9.87$	-5.63	$F(\pi_1, \pi_2) = 50.02$	19.70	0.39
iem_ob	$t(\pi_2) = -10.40$	-5.63	$F(\pi_1, \pi_2) = 61.44$	19.70	0.44
baser	$t(\pi_2) = -15.82$	-5.63	$F(\pi_1, \pi_2) = 133.27$	19.70	0.38

		FRA	NSES - HOBIJN		
Variable	Estadística	Valor Crítico	Estadística	Valor Crítico	LB
		$(\alpha = 5\%)$		$(\alpha = 5\%)$	(p-value)
efecr	$t(\pi_2) = -3.73$	-5.63	$F(\pi_1, \pi_2) = 15.96$	19.70	0.59
efecrc	$t(\pi_2) = -9.05$	-7.90	$F(\pi_1, \pi_2) = 52.50$	36.87	0.47
m1r	$t(\pi_2) = -12.80$	-7.90	$F(\pi_1, \pi_2) = 91.79$	36.87	0.32
m2r	$t(\pi_2) = -8.67$	-5.63	$F(\pi_1, \pi_2) = 42.69$	19.70	0.30
m3bipp	$t(\pi_2) = -13.37$	-7.90	$F(\pi_1, \pi_2) = 96.07$	36.87	0.42
m3bipc	$t(\pi_2) = -1.11$	-5.63	$F(\pi_1, \pi_2) = 0.62$	19.70	1.00
dccr	$t(\pi_2) = -9.68$	-7.90	$F(\pi_1, \pi_2) = 53.02$	36.87	0.39
ahor_r	$t(\pi_2) = -12.77$	-7.90	$F(\pi_1, \pi_2) = 93.85$	36.87	0.30
cdttr	$t(\pi_2) = -15.25$	-5.63	$F(\pi_1, \pi_2) = 149.19$	19.70	0.37
cart_sbr	$t(\pi_2) = -11.90$	-5.63	$F(\pi_1, \pi_2) = 76.24$	19.70	0.36
rpreap	$t(\pi_2) = -7.43$	-5.63	$F(\pi_1, \pi_2) = 34.18$	19.70	0.32
rpreen	$t(\pi_2) = -9.65$	-5.63	$F(\pi_1, \pi_2) = 56.67$	19.70	0.31
rcavs	$t(\pi_2) = -12.48$	-5.63	$F(\pi_1, \pi_2) = 78.99$	19.70	0.45
tir	$t(\pi_2) = -15.25$	-5.63	$F(\pi_1, \pi_2) = 149.16$	19.70	0.37
cdt	$t(\pi_2) = -8.68$	-5.63	$F(\pi_1, \pi_2) = 44.55$	19.70	0.31
expo	$t(\pi_2) = -8.72$	-5.63	$F(\pi_1, \pi_2) = 42.14$	19.70	0.33
expontr	$t(\pi_2) = -9.68$	-5.63	$F(\pi_1, \pi_2) = 51.91$	19.70	0.57
ex_ban	$t(\pi_2) = -7.89$	-5.63	$F(\pi_1, \pi_2) = 40.84$	19.70	0.31
ex_flo	$t(\pi_2) = -10.55$	-5.63	$F(\pi_1, \pi_2) = 70.80$	19.70	0.30

		FRA	NSES - HOBIJN		
Variable	Estadística	Valor Crítico	Estadística	Valor Crítico	LB
		$(\alpha = 5\%)$		$(\alpha = 5\%)$	(p-value)
ex_carb	$t(\pi_2) = -10.19$	-5.64	$F(\pi_1, \pi_2) = 72.41$	20.97	0.45
expo_caf	$t(\pi_2) = -7.92$	-5.63	$F(\pi_1, \pi_2) = 52.78$	19.70	0.66
imprtot	$t(\pi_2) = -8.99$	-7.90	$F(\pi_1, \pi_2) = 46.38$	36.87	0.37
imprbco	$t(\pi_2) = -6.75$	-5.63	$F(\pi_1, \pi_2) = 25.53$	19.70	0.47
imprbin	$t(\pi_2) = -9.57$	-5.63	$F(\pi_1, \pi_2) = 51.73$	19.70	0.32
imprbca	$t(\pi_2) = -9.21$	-7.90	$F(\pi_1, \pi_2) = 47.60$	36.87	0.52
impres	$t(\pi_2) = -9.35$	-5.63	$F(\pi_1, \pi_2) = 45.92$	19.70	0.43
resint	$t(\pi_2) = -7.48$	-5.63	$F(\pi_1, \pi_2) = 34.36$	19.70	0.70

APENDICE 4

				Corr	elacióı	า cruz	ada co	n IPF	?	[Corr(IPR _t ,	X_{t-k}		
								k						
Serie (X _t)	Desv. Est.	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
prcafe	0.063	0.15	-0.03	-0.04	0.02	-0.03	-0.06	-0.05	-0.04	0.00	0.04	0.05	-0.04	-0.06
pcocafe	0.063	0.06	-0.05	-0.02	-0.00	0.02	-0.05	0.03	-0.01	0.04	-0.02	0.13	0.05	-0.00
pro_gas	0.063	-0.04	-0.13	0.02	-0.02	-0.04	0.01	0.07	-0.02	-0.09	0.06	-0.03	0.10	-0.00
prpet	0.063	0.00	-0.04	0.06	0.05	-0.07	0.02	0.01	-0.13	0.01	-0.10	-0.08	0.06	0.05
iprcon	0.063	0.04	0.10	0.03	-0.06	-0.06	-0.03	0.62	-0.14	-0.11	0.11	-0.01	-0.05	-0.02
iprint	0.063	-0.02	0.07	-0.01	0.09	-0.04	-0.02	0.51	-0.09	-0.11	0.02	-0.00	0.11	0.07
iprk	0.063	0.06	0.04	-0.04	-0.00	0.06	-0.00	0.49	-0.00	-0.09	0.04	-0.04	0.05	0.01
prcem	0.063	0.14	-0.01	0.05	0.03	0.03	0.07	0.24	0.00	0.02	0.00	0.14	0.05	0.04
produc	0.063	-0.04	0.04	-0.07	0.13	0.01	-0.11	0.83	-0.03	0.00	-0.06	0.02	0.00	0.06
fp1	0.063	-0.02	0.00	-0.11	0.12	0.04	-0.11	0.35	0.22	0.01	0.07	0.10	0.07	-0.01
f_p2	0.063	-0.02	0.00	0.02	-0.09	0.11	-0.17	0.58	0.04	0.02	0.23	0.01	0.06	0.00
f_p3	0.063	0.14	-0.09	0.03	0.01	0.00	-0.00	-0.06	-0.06	0.00	-0.08	0.00	0.12	0.06
f_p4	0.063	-0.00	-0.05	-0.02	0.00	-0.00	-0.17	0.47	-0.06	0.10	0.17	0.08	0.09	0.02
f_p5	0.063	-0.08	0.05	-0.11	-0.03	-0.04	-0.14	0.35	-0.02	0.06	0.15	0.12	0.09	-0.01
f_p6	0.063	-0.07	-0.00	-0.11	-0.03	0.10	-0.18	0.26	0.13	0.01	0.16	0.09	0.03	-0.00
f_p7	0.063	-0.08	-0.02	-0.01	-0.08	-0.10	0.00	-0.07	-0.29	-0.01	-0.13	0.09	-0.07	-0.02
f_p8	0.063	-0.01	-0.06	-0.03	0.01	-0.10	0.10	0.00	0.13	0.17	0.08	0.13	-0.00	-0.05

				Corr	elaciór	n cruz	ada co	n IPF	?	[Corr(IPR _t ,	X_{t-k}		
								k						
Serie (X _t)	Desv. Est.	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
f_p9	0.063	-0.03	-0.05	-0.07	0.06	0.06	0.06	0.01	0.01	0.03	0.10	0.00	0.00	-0.05
fp10	0.063	-0.04	-0.05	-0.01	-0.03	-0.09	0.03	0.10	0.15	0.05	0.14	0.10	-0.00	-0.00
fp11	0.063	0.01	0.10	-0.09	-0.02	-0.03	0.02	0.08	0.01	0.06	0.13	-0.11	-0.01	-0.03
clineg	0.063	-0.04	-0.03	-0.05	0.04	-0.04	-0.03	0.23	0.21	0.04	0.15	0.13	0.06	0.00
incon	0.063	-0.05	-0.01	-0.09	0.00	0.00	-0.06	0.25	0.15	0.05	0.21	0.07	0.03	-0.02
f_p332	0.063	-0.08	0.02	0.08	-0.04	0.00	-0.04	-0.20	-0.13	0.02	-0.04	-0.00	-0.02	0.03
f_p638	0.063	-0.04	-0.07	-0.04	0.01	80.0	0.05	0.16	0.03	0.12	0.06	0.13	80.0	0.00
f_p1035	0.063	-0.08	-0.09	-0.00	-0.03	-0.06	0.07	0.06	0.20	0.08	0.09	0.08	-0.08	0.05
ivtot	0.063	-0.11	-0.01	-0.06	0.12	-0.04	0.04	0.30	0.05	-0.01	0.10	-0.05	0.10	-0.05
v_auto	0.063	0.06	-0.02	0.01	0.13	0.13	0.02	0.22	0.09	0.00	-0.00	-0.01	0.02	0.10
sgan	0.063	-0.09	0.02	-0.11	-0.01	-0.05	-0.11	0.31	-0.07	-0.07	0.14	-0.00	0.01	-0.00
enerd	0.063	-0.04	0.15	0.07	0.03	-0.09	-0.23	0.46	-0.00	-0.03	0.12	0.03	0.05	0.07
energa	0.063	0.09	0.09	0.09	0.06	-0.05	-0.19	0.41	-0.02	-0.04	0.05	0.02	0.07	0.09
pnac	0.063	-0.02	-0.02	-0.07	0.02	0.03	0.03	-0.06	-0.00	-0.01	-0.01	0.02	-0.02	-0.09
cnac	0.063	0.06	-0.03	-0.13	0.03	-0.03	-0.12	0.12	-0.11	-0.10	0.15	0.11	0.03	0.03
sapint	0.063	0.02	-0.10	-0.01	-0.01	0.00	0.04	0.01	-0.00	-0.02	-0.13	-0.00	-0.00	-0.00
enpint	0.063	0.07	-0.01	0.01	-0.08	0.00	0.04	-0.13	0.01	-0.06	-0.15	-0.01	-0.02	-0.05
areacon	0.063	-0.01	0.04	-0.03	0.06	-0.08	0.02	0.12	0.05	0.12	0.00	0.07	0.10	0.04
ipctot	0.063	0.06	-0.06	0.07	0.01	0.01	0.09	0.07	-0.04	0.06	-0.08	0.01	-0.00	-0.06

				Corr	elació	n cruz	ada co	n IPF	?	[Corr(۱PR _t , ک	$(x_{t-k})]$		
								k						
Serie (X _t)	Desv. Est.	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
ipc_sina	0.063	0.00	0.00	0.02	0.03	-0.02	0.02	0.05	-0.01	0.04	-0.03	-0.01	-0.02	-0.02
ірр	0.063	0.02	-0.02	0.09	-0.07	0.08	-0.00	0.04	0.04	-0.00	-0.04	-0.04	0.10	-0.03
ірр_рус	0.063	-0.00	-0.03	0.10	-0.08	0.13	-0.02	0.01	0.05	-0.03	-0.02	-0.10	0.08	-0.03
ipp_x	0.063	-0.11	0.17	0.04	-0.11	-0.10	0.05	0.08	0.11	0.03	0.05	0.13	0.02	-0.05
ipp_m	0.063	-0.03	0.10	-0.06	-0.02	0.07	0.09	0.01	0.06	0.21	-0.03	0.04	0.06	-0.03
ipp_matcons	0.063	-0.02	0.09	0.04	-0.07	0.04	0.16	-0.10	-0.03	0.05	-0.08	0.04	-0.05	0.00
infla	0.063	0.04	-0.05	0.03	0.02	0.05	0.03	0.03	-0.02	0.02	-0.05	-0.01	0.01	-0.05
pr_gan	0.063	0.08	-0.00	-0.01	0.07	-0.05	0.02	0.00	0.04	0.00	-0.07	-0.03	0.11	-0.04
itcr	0.063	0.01	0.07	-0.07	0.03	-0.03	0.01	0.00	-0.07	0.18	0.12	0.03	-0.04	-0.04
ti	0.063	-0.10	0.14	0.04	-0.13	-0.10	-0.01	0.05	0.11	-0.00	0.07	0.08	-0.01	-0.03
salar	0.063	0.02	-0.06	-0.02	-0.02	-0.06	-0.00	0.00	0.09	0.04	0.15	-0.00	-0.07	0.04
iem_tot	0.063	0.15	-0.08	0.07	0.10	0.15	0.13	0.25	0.07	0.02	0.13	0.01	0.03	-0.01
iem_em	0.063	0.13	-0.14	0.08	0.01	0.13	0.06	0.10	-0.00	0.04	0.06	0.05	0.01	-0.03
iem_ob	0.063	0.07	0.02	0.02	0.10	0.14	0.11	0.26	0.13	0.06	0.22	-0.10	0.06	-0.03
baser	0.063	0.07	0.04	0.03	0.02	0.00	0.02	-0.02	0.13	-0.00	0.25	0.04	-0.02	0.05
efecr	0.063	0.03	-0.08	-0.09	0.01	0.13	0.00	0.03	0.09	0.12	0.07	-0.00	0.07	0.11
efecrc	0.063	0.04	-0.04	-0.03	0.05	0.17	0.03	0.02	0.13	0.16	0.09	0.01	0.04	0.06
m1r	0.063	0.07	-0.01	0.01	-0.01	-0.03	0.08	-0.02	0.14	0.13	0.08	0.07	0.04	0.04
m2r	0.063	0.01	0.03	-0.00	0.02	-0.04	0.01	-0.03	0.10	0.04	0.14	0.01	-0.02	-0.03

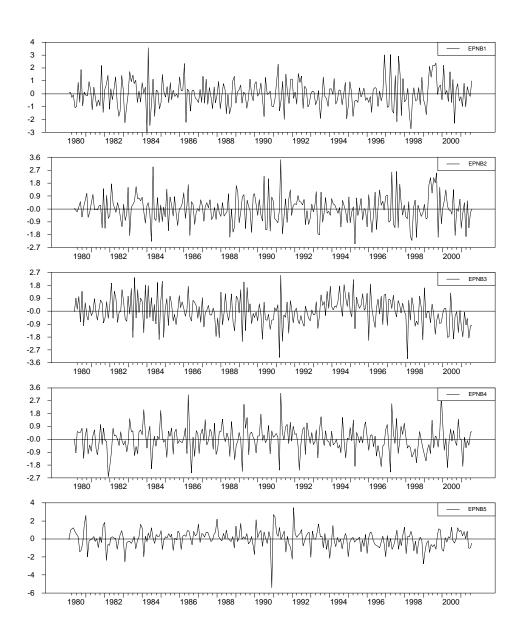
				Corr	elacióı	n cruz	ada co	n IPF	?	[Corr(IPR _t ,	X_{t-k})]		
								k						
Serie (X _t)	Desv. Est.	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
m3bipp	0.063	0.02	0.01	0.01	0.03	-0.08	-0.02	0.08	0.03	0.10	0.04	0.05	-0.10	0.03
m3bipc	0.063	0.00	-0.08	-0.01	-0.02	0.05	-0.05	-0.01	-0.01	0.04	-0.01	-0.05	0.00	0.01
dccr	0.063	0.04	-0.00	0.01	0.02	-0.14	0.06	0.07	0.06	0.06	0.08	0.03	0.06	0.01
ahor_r	0.063	-0.03	0.02	-0.04	-0.01	-0.02	-0.01	0.03	0.09	-0.02	0.12	0.07	0.05	-0.01
cdttr	0.063	-0.11	-0.01	0.01	0.06	0.05	-0.02	-0.07	0.06	0.00	0.05	-0.03	-0.09	-0.05
cart_sbr	0.063	-0.02	0.03	-0.04	0.01	0.02	0.06	0.03	0.12	0.02	0.08	-0.04	-0.00	0.03
rpreap	0.063	0.02	0.03	-0.09	0.12	0.00	-0.01	0.18	0.04	0.00	0.07	-0.00	0.03	0.14
rpreen	0.063	-0.01	-0.00	-0.10	-0.00	0.04	-0.02	0.21	-0.02	0.05	0.15	0.01	-0.01	0.04
rcavs	0.063	-0.02	-0.10	-0.07	0.02	0.11	-0.09	-0.04	-0.05	-0.00	0.11	-0.04	0.05	0.00
tir	0.063	-0.01	-0.02	0.00	0.05	0.05	-0.02	-0.06	0.05	0.00	0.05	-0.03	-0.09	-0.04
cdt	0.063	-0.00	-0.02	0.00	0.13	0.09	0.01	-0.02	0.13	0.01	0.01	0.00	-0.11	-0.08
expo	0.063	0.05	-0.06	-0.06	-0.03	-0.06	-0.06	0.15	0.01	-0.05	0.02	-0.06	-0.02	0.06
expontr	0.063	0.08	-0.10	-0.08	0.03	-0.04	-0.12	0.30	-0.04	-0.06	0.04	-0.05	-0.02	-0.03
ex_ban	0.063	0.06	-0.00	-0.06	0.03	-0.01	-0.02	0.02	0.02	-0.07	-0.02	0.01	0.01	-0.02
ex_flo	0.063	0.06	0.00	-0.09	0.00	-0.05	-0.07	-0.02	-0.03	-0.05	-0.02	-0.04	0.10	-0.03
ex_carb	0.063	0.01	-0.01	0.08	0.05	-0.07	0.01	0.14	-0.00	-0.01	0.06	-0.06	0.04	-0.04
expo_caf	0.063	-0.01	-0.01	0.00	-0.02	-0.00	0.02	0.07	0.10	-0.02	-0.02	-0.06	-0.12	0.07
imprtot	0.063	-0.03	0.07	-0.02	0.04	0.00	0.00	0.19	0.09	-0.06	0.03	0.02	0.06	-0.04
imprbco	0.063	-0.09	-0.03	-0.03	0.10	0.01	-0.01	0.16	0.03	0.00	-0.05	-0.01	0.05	0.03

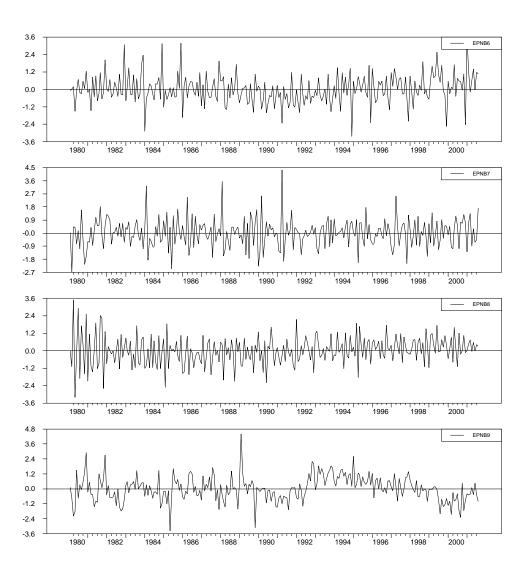
				Corr	Correlación cruzada con IPR $[Corr(IPR_t, X_{t-k})]$										
					k										
Serie (X _t)	Desv. Est.	-6	-5	-4	-4 -3 -2 -1 0 1 2 3 4 5 6										
imprbin	0.063	0.03	0.01	-0.04	0.03	0.13	-0.03	0.20	0.01	-0.05	-0.04	-0.03	-0.04	-0.02	
imprbca	0.063	0.05	0.04	0.03	0.01	-0.01	0.07	0.21	0.00	0.00	-0.00	0.01	0.04	-0.03	
impres	0.063	0.02	0.01	-0.04	0.01	0.03	-0.04	0.19	0.04	-0.03	-0.02	0.02	0.05	0.01	
resint	0.063	0.01	-0.08	0.01	-0.00	0.04	-0.16	-0.06	-0.15	-0.00	-0.02	-0.04	0.00	-0.02	

APENDICE 5 Pruebas de Raíz Unitaria de las series incluídas en el modelo final

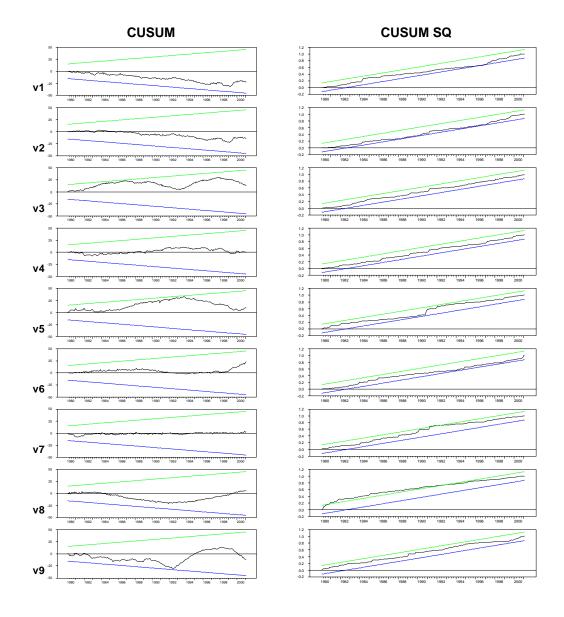
		ADF ⁴³	KPSS ⁴⁴			
Variable	Estadística	Valor Crítico	LB	Estadística	Valor Crítico	
		$(\alpha = 5\%)$	(p-value)		$(\alpha = 5\%)$	
fp1	$\tau = -0.11$	-1.94	0.35	$\eta_{\mu} = 0.54$	0.46	
fp6	$\tau = -0.35$	-1.94	0.70	$\eta_{\mu} = 0.73$	0.46	
ipr	$\tau_{\mu} = -2.48$	-2.87	0.37	$\eta_{\mu} = 2.19$	0.46	
iem_ob	$\tau = -1.82$	-1.94	0.30	$\eta_{\mu} = 1.54$	0.46	
prcem	$\tau_{\mu} = -1.83$	-2.87	0.63	$\eta_{\mu} = 1.96$	0.46	
energa	$\tau_{\mu} = -2.15$	-2.87	0.34	$\eta_{\mu} = 2.42$	0.46	
impres	$\tau_{\tau} = -2.42$	-3.43	0.30	$\eta_{\tau} = 0.43$	0.15	
cart_sbr	$\tau = -1.83$	-1.94	0.70	$\eta_{\mu} = 2.29$	0.46	
efecrc	$\tau_{\tau} = -3.87$	-3.43	0.39	$\eta_{ au} = 0.20$	0.15	

 $^{^{43}}H_0: X_t \sim I_1(1)$ $^{44}H_0: X_t \sim I_1(0)$


Pruebas de Raíz Unitaria Estacional de las series incluidas en el modelo final


	FRANSES - HOBIJN										
Variable	Estadística	Valor Crítico	Estadística	Valor Crítico	LB						
	$H_o: X_t \sim I_{12}(1)$	$(\alpha = 5\%)$	$H_o: X_t \sim I_{1,12}(1,1)$	$(\alpha = 5\%)$	(p-value)						
fp1	$t(\pi_2) = -16.37$	-5.63	$F(\pi_1, \pi_2) = 143.51$	19.70	0.58						
fp6	$t(\pi_2) = -9.84$	-5.63	$F(\pi_1, \pi_2) = 59.26$	19.70	0.31						
ipr	$t(\pi_2) = -6.02$	-5.64	$F(\pi_1, \pi_2) = 21.03$	20.97	0.47						
iem_ob	$t(\pi_2) = -10.40$	-5.63	$F(\pi_1, \pi_2) = 61.44$	19.70	0.44						
prcem	$t(\pi_2) = -8.59$	-5.64	$F(\pi_1, \pi_2) = 50.15$	20.97	0.42						
energa	$t(\pi_2) = -9.42$	-5.64	$F(\pi_1, \pi_2) = 60.04$	20.97	0.44						
impres	$t(\pi_2) = -9.35$	-5.63	$F(\pi_1, \pi_2) = 45.92$	19.70	0.43						
cart_sbr	$t(\pi_2) = -11.90$	-5.63	$F(\pi_1, \pi_2) = 76.24$	19.70	0.36						
efecrc	$t(\pi_2) = -9.05$	-7.90	$F(\pi_1, \pi_2) = 52.50$	36.87	0.47						

Correlaciones cruzadas de las series incluidas en el modelo final


	Correlación cruzada con IPR [Corr(IPR _t , X _{t-}								(_{t-k})]					
		k												
Serie (X _t)	Desv. Est.	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
f_p1	0.063	-0.02	0.00	-0.11	0.12	0.04	-0.11	0.35	0.22	0.01	0.07	0.10	0.07	-0.01
fp6	0.063	-0.07	-0.00	-0.11	-0.03	0.10	-0.18	0.26	0.13	0.01	0.16	0.09	0.03	-0.00
iem_ob	0.063	0.07	0.02	0.02	0.10	0.14	0.11	0.26	0.13	0.06	0.22	-0.10	0.06	-0.03
prcem	0.063	0.14	-0.01	0.05	0.03	0.03	0.07	0.24	0.00	0.02	0.00	0.14	0.05	0.04
energa	0.063	0.09	0.09	0.09	0.06	-0.05	-0.19	0.41	-0.02	-0.04	0.05	0.02	0.07	0.09
impres	0.063	0.02	0.01	-0.04	0.01	0.03	-0.04	0.19	0.04	-0.03	-0.02	0.02	0.05	0.01
cart_sbr	0.063	-0.02	0.03	-0.04	0.01	0.02	0.06	0.03	0.12	0.02	0.08	-0.04	-0.00	0.03
efecrc	0.063	0.04	-0.04	-0.03	0.05	0.17	0.03	0.02	0.13	0.16	0.09	0.01	0.04	0.06

APENDICE 6
Estimación de los errores de predicción un paso adelante

APENDICE 7 Pruebas Cusum y Cusum square

