El crecimiento económico colombiano en el siglo XX: aspectos globales

Por GRECO *

* Grupo de estudios del crecimiento económico colombiano

Director :	Miguel Urrutia
Investigadores :	Adriana Pontón
	Carlos Esteban Posada
Asistente de investigación:	Camila Reyes

Tabla de contenido

El crecimiento económico colombiano en el siglo XX: aspectos globales

1. Introducción_

2. Aspectos teóricos

3. Evidencia empírica

- 3.1. Posición internacional de Colombia
- 3.1. Análisis descriptivo de las series colombianas
- 3.2. Resultados econométricos
- 3.3. La tasa "natural" de crecimiento y el producto potencial

4. Resumen y conclusiones

Anexos

1. Modelo teórico	32
2. La tasa de inversión	33
3. La estimación del capital (1905-1924)	36
4. Pruebas de estacionariedad	
5. Pruebas de cointegración	39
6. Hipótesis especiales en la cointegración	42
7. ¿Es endógeno el producto per cápita? (prueba de exogeneidad fuerte)	
8. Prueba de estabilidad de los coeficientes	45
REFERENCIAS (incluye texto, anexos y tablas)	50

El crecimiento económico colombiano en el siglo XX: aspectos globales

 Autores :
 GRECO (Grupo de estudios del crecimiento económico colombiano)

 Director :
 Miguel Urrutia Montoya

 Investigadores :
 Adriana Pontón

 Carlos Esteban Posada

Resumen

Con base en el modelo neoclásico de crecimiento económico (Solow-Swan), se describen las características generales del crecimiento económico colombiano en el siglo XX: al identificar una relación estable de largo plazo entre el capital per cápita y el producto per cápita en el período 1925-1997 se obtiene el nivel promedio de la elasticidad producto-capital y la tasa de crecimiento de la eficiencia laboral. Con los resultados de este ejercicio se compara el desempeño de Colombia con el de otros países, se identifica un quiebre en la tendencia del PIB después de 1981, se establece una metodología para el cálculo el capital y la inversión para el período 1905-1924, en el cual los datos son inexistentes para el caso colombiano y se calcula un PIB potencial para Colombia en el siglo XX.

Dentro del anterior contexto se da una posible respuesta a las siguientes incógnitas: ¿Porqué Colombia tuvo un crecimiento del PIB per cápita de 2.3% anual y no uno mas alto? ¿es su crecimiento alto o bajo con respecto a la historia del desarrollo de otros países? ¿qué diferencia a Colombia del resto de países en términos de crecimiento económico en el último siglo? y ¿cuál es su perspectiva de largo plazo si mantiene su tasa de crecimiento actual?

La existencia de una relación de largo plazo se verifica mediante el uso del método de cointegración de Johansen; con ella se observa la estabilidad de los parámetros a través del tiempo, se comprueba si ocurren cambios estructurales en el tiempo, se calcula la tasa de cambio técnico, se prueba exogeneidad fuerte y débil del capital con respecto al producto y se formaliza el modelo escogido mediante las pruebas de exclusión de las variables. El uso de este instrumental econométrico permite otorgarle validez a la retrapolación de las series de capital e inversión y de igual forma encontrar una tasa natural de crecimiento.

El crecimiento económico colombiano en el siglo XX: aspectos globales

GRECO*

1. Introducción

Las diferencias en los niveles de ingreso real entre países se deben a diferencias en las tasas de crecimiento de sus productos a través de largos períodos de tiempo. Por ejemplo, si Colombia hubiera alcanzado una tasa de crecimiento per cápita promedio anual de 1 punto adicional en el último siglo estaría mas cerca de los países desarrollados que de aquellos en vía de desarrollo. ¿Porqué Colombia tuvo un crecimiento del PIB per cápita de 2.3% anual y no uno mas alto? Para responder a lo anterior es importante indagar sobre las características del crecimiento económico colombiano en el siglo XX y cómo se enmarcan dentro del contexto internacional; un estudio sobre esto permitiría responder preguntas como las siguientes: ¿es su crecimiento alto o bajo con respecto a la historia del desarrollo de otros países? ¿qué diferencia a Colombia del resto de países en términos de crecimiento económico en el último siglo? y ¿cuál es su perspectiva de largo plazo si mantiene su tasa de crecimiento actual?

El presente trabajo escoge como marco conceptual para despejar tales incógnitas un modelo que resume el proceso mediante el cual los esfuerzos y capacidades productivas de la sociedad se combinan para lograr una cantidad de producto que se eleva a través del tiempo.

^{*} Grupo de estudios del crecimiento económico colombiano

El presente documento es una versión para comentarios y no expresa la posición oficial del Banco de la República ni la de su Junta Directiva. Agradecemos la asesoría de Juan Manuel Julio y Luis Fernando Melo y los comentarios de José Darío Uribe, Enrique López, María Teresa Ramírez y Daniel Mejía; en una segunda versión incorporaremos sus sugerencias. Motivamos a nuestros lectores a enviarnos sus comentarios, pues este es un borrador del primer capítulo de un libro sobre el crecimiento económico colombiano; en los siguientes capítulos se abordarán aspectos que permitirán un análisis más profundo de sus causas.

El modelo escogido para interpretar el crecimiento es el denominado neoclásico o Solow-Swan¹. Varios criterios nos llevaron a adoptar este modelo, descrito de manera específica mas adelante. El primero de ellos fue la disponibilidad de series estadísticas. En nuestro caso se dispuso de series con frecuencia anual del producto total, de la población económicamente activa y del capital total desde 1925. Estas series bastan para describir el proceso de crecimiento económico a la luz de tal modelo. En cambio, otros modelos de crecimiento, como aquellos que incorporan variables de educación, infraestructura, recursos invertidos en investigación y desarrollo, tamaño del estado, etcétera, exigen estadísticas que, para el caso colombiano, son cortas, precarias, discontinuas o inexistentes.

El otro criterio fue el de pertinencia. En efecto, la economía colombiana ha sido relativamente atrasada y sencilla si se la compara en términos internacionales (sección 3.1) y se cataloga como importadora de tecnología. Por consiguiente es comprensible que un modelo como el escogido, que resalta el papel de la expansión del capital físico por trabajador, sea útil para ayudar a explicar los principales aspectos macroeconómicos del crecimiento colombiano, a pesar de dejar implícitos otros factores que elevan la productividad.

La misma carencia de información adicional también nos ha obligado a suponer que el aumento del capital es exógeno. Esto quiere decir que no se intentará explicar el crecimiento del producto con base en las conductas y prácticas sociales causantes del ahorro interno o en los factores determinantes de la disponibilidad del ahorro externo. Esto último ha sido, en cualquier caso, secundario. Con todo, somos conscientes de que recurrir a un modelo con variables macroeconómicas obliga a dejar implícitas las condiciones institucionales, sociales, políticas y culturales que pudieron afectar la tasa de crecimiento del producto en el largo plazo.

El DANE re-estimó (y dio a conocer en mayo de 1999) la cifra del PIB real a partir de 1994. Los cambios más significativos consistieron en fijar un nuevo año base, 1994, para los valores en precios constantes y para el nuevo sistema de precios relativos e incluir producciones ilegales². Hasta el momento (julio de 1999) el DANE ha publicado los resultados para 1994 y 1995, y por ahora tiene proyectado actualizar las cifras de cuentas

¹ Solow (1956), Swan (1956) y Solow (1969). ² DANE (1999), Pag.13.

nacionales para el período 1990-1997; sin embargo, en el presente trabajo no se adoptan las cifras del PIB obtenidas con la nueva base 1994 porque se estarían incluyendo elementos inexistentes en la estimación anterior del PIB. Así, mientras el DANE revisa toda la serie histórica del PIB, lo mejor es utilizar la serie antigua (base 1975) para efectos como los del presente trabajo, es decir, para describir e interpretar el proceso de crecimiento de la economía colombiana en el presente siglo.

En la segunda parte de este documento se describirá el modelo utilizado y los distintos aspectos teóricos que lo respaldan; en la tercera parte se mostrará su pertinencia empírica en términos de los resultados de su estimación econométrica; con base en estos resultados se calculará la tasa natural de crecimiento. Por último se expondrá un resumen y las conclusiones. En varios anexos se presentan aclaraciones técnicas adicionales, pruebas estadísticas y cifras básicas utilizadas.

2. Aspectos teóricos

A continuación se expondrá el modelo de crecimiento de Solow (1956) y de Swan (1956) el cual se basa en una función de producción neoclásica. El modelo supone que el producto global depende de dos factores: el capital físico y el trabajo medido en unidades de eficiencia. Además de las características explicadas en la sección 1, el modelo requiere supuestos adicionales como los siguientes: rendimientos constantes a escala, rendimientos marginales decrecientes con respecto a cada factor, sustituibilidad (imperfecta) entre capital y trabajo, mercados competitivos y flexibilidad del salario real y de la tasa de interés real.

El modelo inicial propuesto por Solow y Swan suponía que el nivel de tecnología era exógeno (determinado por fuera del modelo) y constante a través del tiempo, por lo cual en el largo plazo la tasa de crecimiento del producto per cápita era cero, puesto que por las propiedades de la función de producción, aumentos adicionales de los insumos cada vez producían incrementos menores en el producto. La evidencia empírica internacional ha demostrado que las tasas de crecimiento del producto per cápita han sido positivas por mas de un siglo y no revelan una tendencia al decrecimiento. Los teóricos de fines de los años cincuenta y sesenta reconocieron esta deficiencia del modelo y lo solventaron identificando el progreso técnico (exógeno) como el responsable de las tasas de crecimiento positivas de largo plazo.

En los modelos mas generales con evolución tecnológica exógena (determinada por fuera del modelo) es necesario entender esta como un mejoramiento en la eficiencia de la fuerza laboral, con el fin de encontrar una solución de estado estable en la cual las variables en el largo plazo tienen un crecimiento positivo y constante³. Si el progreso tecnológico mejora la eficiencia del capital existe la posibilidad de que surjan rendimientos crecientes a escala y no se encuentre un estado estable. No obstante, si se escoge una función de producción tipo Cobb-Douglas, con rendimientos constantes a escala y rendimientos marginales decrecientes con respecto a cada factor, aun los cambios tecnológicos que incrementan la eficiencia del capital pueden ser expresados en términos de incrementos en la eficiencia laboral. Así, una función de producción Cobb-Douglas general, tal que:

³ Demostración en Barro y Sala-i- Martín (1995) páginas 54 y 55.

(1)
$$Y = (constante)(Ke^{zt})^{\alpha}(Le^{xt})^{1-\alpha}$$

Siendo:

Y: producto interno bruto real;
K: capital real;
α: elasticidad del producto al capital; 0<α<1;
L: población laboral;
z: tasa de crecimiento de la eficiencia del capital x: tasa de crecimiento de la eficiencia del trabajo

expresa dos tipos de progreso tecnológico; el primero, un mejoramiento de la eficiencia del capital con a una tasa de crecimiento z; el segundo, un mejoramiento de la eficiencia del trabajo con una tasa de crecimiento x. La ecuación (1) puede ser resumida de la siguiente manera:

$$Y = (constante)K^{\alpha}(Le^{vt})^{1-\alpha}$$

Donde

(2)
$$v = \frac{\left[z\alpha + x(1-\alpha)\right]}{(1-\alpha)}$$

Y v incluye tanto el mejoramiento de la eficiencia del capital como el del trabajo. Si la tasa de progreso tecnológico del capital, z, no es cero, y existe un estado estable, entonces la función de producción debe tomar la forma Cobb-Douglas. Además, si la función de producción es Cobb-Douglas, entonces siempre se puede expresar el cambio tecnológico como un aumento en la eficiencia laboral, a la tasa v expresada anteriormente. Por lo cual, cuando se hable de mejoramiento en la eficiencia laboral en una función Cobb-Douglas se debe entender esta en un sentido amplio⁴.

Una función de producción más específica se puede re-expresar de la siguiente forma⁵ (la derivación del presente modelo se encuentra en el **Anexo 1**):

$$Y_{t+1} = K_{t+1}^{\alpha} \left(A_{t+1}^{\left(\frac{1}{1-\alpha}\right)} L_{t+1}^{\left(1-\alpha\right)} = K_{t+1}^{\alpha} A_{t+1} L_{t+1}^{1-\alpha} \right)$$

(3)
$$Y_{t+1} = K_{t+1}^{\ \alpha} A_t (1+g)^{1-\alpha} L_{t+1}^{1-\alpha}$$

⁴₅ Barro y Sala-i- Martín (op.cit.)

⁵ El modelo fue tomado de Obstfeld y Rogoff (1996), cap. 2, apéndice 2A.

Siendo:

A: parámetro de eficiencia de la población laboral; A>1;

t+1: un período del tiempo cualquiera.

g : la tasa de crecimiento por período del parámetro A cuando está elevado a la potencia $1/1 - \alpha^6$.

Si se divide la ecuación (3) por el número de trabajadores, se puede establecer una relación entre el producto por trabajador y el capital por trabajador con una forma bastante conocida:

(4)
$$y_{t+1} = A_t (1+g)^{1-\alpha} k^{\alpha}{}_{t+1} = A_{t+1} k^{\alpha}{}_{t+1}$$

siendo:

$$y_{t+1} \equiv \frac{Y_{t+1}}{L_{t+1}}$$
 y $k_{t+1} \equiv \frac{K_{t+1}}{L_{t+1}}$

Así, el producto por trabajador es una función Cobb-Douglas del capital por trabajador e incluye un parámetro tecnológico, A, que crece a una tasa constante g por período, elevada al factor (1- α). Mediante un análisis econométrico se obtendrá una estimación de la elasticidad α y de la tasa g.

Otra ventaja de utilizar este esquema teórico, además de asociar el cambio técnico al mejoramiento de la calidad de la fuerza laboral, consiste en que podríamos estimar la tasa de inversión de la economía y, por ende, el nivel del capital entre 1905 y 1924, período para el cual aún no se dispone de estimaciones más confiables. Para el cálculo de la inversión se requiere especifican supuestos adicionales, los cuales se describen a continuación.

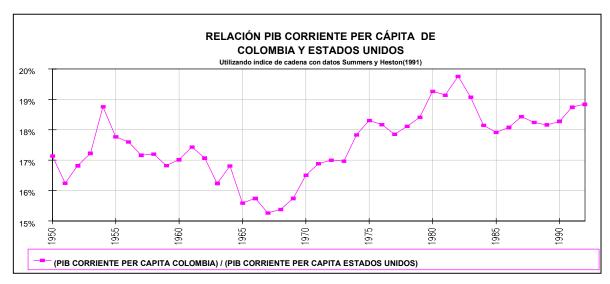
El primer supuesto adicional es el de la igualdad entre la tasa de interés real (r) y la productividad marginal del capital $(\partial y/\partial k)$, como condición de maximización de ganancias y, por lo tanto, una de las características de un estado de equilibrio estable. Con este supuesto, y dadas las estimaciones de la elasticidad α y la tasa g, se pueden deducir los niveles del capital. En efecto, según el modelo la tasa de inversión o relación entre

⁶ Específicamente : $g = \left(\frac{A_{t+1}}{A_t}\right)^{\left(\frac{1}{1-\alpha}\right)} - 1$; utilizar el componente exponencial (1- α) permite simplificar la

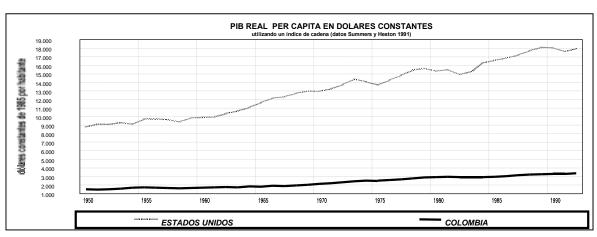
ecuación en la relación inversión/producto, que se expondrá mas adelante.

inversión y producto (i/y) de equilibrio estable es (su derivación se encuentra en el **Anexo** 2):

(5)
$$\frac{i}{y} = \frac{\alpha g}{r}$$


Entonces, dada r y estimadas α y g se puede calcular la tasa de inversión. A su turno, el nivel de la inversión total se puede computar con base en la tasa de inversión y en el nivel del producto; una vez estimada la inversión se puede "retrapolar" el capital desde 1925 hasta 1905. En el Anexo 3 se describe la estimación del capital con base en lo anterior.

Los cálculos de la inversión y el capital suponen que los coeficientes α y *g* vigentes entre 1905 y 1925 fueron iguales a los del periodo 1925-1981, estimados con el método de cointegración mencionado mas adelante.


3. Evidencia empírica

3.1. Posición internacional de Colombia

En 1950 el PIB per cápita colombiano a precios corrientes no alcanzó a ser 17% del de Estados Unidos; aún hoy, apenas llega a ser 20% del correspondiente a este país (Gráfico 1), y medido a precios constantes ha tenido un crecimiento bastante lento con respecto al de éste (Gráfico 2).

Sin embargo, para todo el siglo el comportamiento del PIB per cápita colombiano no parece deplorable a juzgar por la experiencia de los países desarrollados en su proceso de transición hacia su estado actual (**Tabla 1**). Los períodos para cada país señalados en la tabla difieren porque son calculados desde su respectivo punto de partida de crecimiento de una economía moderna⁷. Si se ordenara por la tasa de crecimiento del producto total real, Colombia estaría ubicado de primero; sin embargo, el crecimiento de su población ha sido mas elevado que el de cualquiera de los países desarrollados en su etapa de crecimiento económico moderno, así que en términos per cápita se ubica de tercero, después de Japón y Suiza.

La transición internacional al desarrollo y el caso colombiano						
	Período	Duración	Crecimiento Producto real	Crecimiento población total	Crecimiento PIB per cápita	
		(años)	(po	rcentajes y promedios a	nuales)	
Suecia	1861 /9 -1963 /7	100	3,2	0,6	2,6	
Japón	1885 /9 -1963 /7	78	3,6	1,1	2,5	
Colombia	1906 -1997	92	4,6	2,3	2,3	
Italia	1895 /9 -1963 /7	68	2,8	0,7	2,1	
Noruega	1865 /9 -1963 /7	98	2,8	0,8	2,0	
Dinamarca	1865 /9 -1963 /7	98	2,9	1,0	1,9	
Canadá	1870 / 4 - 1963 / 7	93	3,5	1,8	1,7	
Alemania	1850 /9 -1963 /7	110,5	2,7	1,0	1,7	
Francia	1831 /40 -1963 /7	128,5	2,0	0,3	1,7	
Estados Unidos	1834 /43 -1963 /7	125,5	3,6	2,0	1,6	
Suiza	1910 -1963 /7	55	2,3	0,8	1,5	
Bélgica	1900 /4 -1963 /7	63	1,9	0,5	1,4	
Holanda	1860 /9 -1963 /7	100,5	2,5	1,3	1,2	
Gran Bretaña	1765 /85 -1963 /7	180,5	2,2	1,0	1,2	
Australia	1861 /9 -1963 /7	100,5	3,2	2,2	1,0	
Notas:						
Producto real = Pl	NB (o PIB, PNN, Ingre	so nacional)				
Tomado de Minami (1986); datos colombianos en Anexo Tablas 2A.						

Tabla 1

⁷ Según metodología de Kuznets (Minami 1986) pp11-14, tabla 1.

Tabla 2	
---------	--

Tasas de crecimiento del PIB per cápita						
(dólares internacionales de 1990* y porcentajes por año)						
ordenados ascendentemente	1950-	·1973	ordenados ascendentemente por	1973-	·1996	
por ingreso inicial	Ingreso Inicial	Crecimiento	ingreso inicial	Ingreso Inicial	Crecimiento	
Japón	1.873	8,0	Noruega	10.229	3,4	
Italia	3.425	5,0	Italia	10.409	2,1	
Alemania	4.281	5,0	Japón	11.017	2,5	
Francia	5.221	4,0	Bélgica	11.905	1,8	
Bélgica	5.346	3,5	Gran Bretaña	11.992	1,6	
Noruega	5.403	3,2	Holanda	12.763	1,6	
Holanda	5.850	3,1	Francia	12.940	1,5	
Dinamarca	6.683	3,1	Alemania	13.152	1,8	
Suecia	6.738	3,1	Dinamarca	13.416	1,7	
Gran Bretaña	6.847	2,5	Suecia	13.494	1,2	
Suiza	8.939	3,1	Estados Unidos	16.607	1,6	
Estados Unidos	9.573	2,4	Suiza	17.953	0,5	
Brasil	1.673	3.76	Colombia**	3.539	1,86	
México	2.085	3,08	Brasil** 3.913 0		0.90	
Colombia	2.089	2,32	México**	4.189	1,05	
Chile	3.827	1,19	Chile**	5.028	1,94	
China	537	2,1	China	839	5,4	
Corea del Sur	876	5,2	Corea del Sur	2.840	6,8	
Taiwan	922	6,2	Taiwan	3.669	6,1	
Hong Kong	1.962	5,5	Singapur	5.412	6,1	
Singapur	2.038	4,3	Hong Kong	6.768	5,1	
Fuente: Crafts (19	99) basado en l	,				
*Se refiere a dólar país.	res constantes o	de 1990 correg	idos por paridad d s con la metodolog	·		

Según la teoría de convergencia absoluta sobre los niveles del PIB, los países con menor ingreso per cápita inicial crecen más rápido que aquellos que tienen un ingreso per cápita mas alto⁸; así, en el largo plazo los países pobres alcanzan a los ricos. En 1950 Japón y los países del este asiático (Corea del Sur, Taiwan, Hong Kong y Singapur) tuvieron un ingreso per cápita menor al de Colombia, y entre 1950 y 1973 crecieron a una tasa superior a la colombiana en 2 a 5 puntos porcentuales. Estos países crecieron tan rápidamente que en 1973 todos superaron el PIB de Colombia, con la excepción de Corea del Sur. En el período 1973-1996 Corea del Sur creció a una tasa de 6.8% anual mientras Colombia, en el período 1973-1992 solo creció en 1.86%, tasa menor a la observada en el período 1950-1973 (2.32%). Entonces, algunos países avanzaron más rápido que Colombia, y de acuerdo con la literatura de convergencia, en ello influyó no solamente el ingreso per cápita inicial, sino también los niveles iniciales de educación, de infraestructura, de desarrollo institucional, de grado de apertura, etc. (Barro y Sala-i-Martin (1995).

Hamilton y Monteagudo (1998) estudiaron los cambios en la tasa de crecimiento a través del tiempo y encontraron que la mayoría de países experimentó una desaceleración en el crecimiento después de 1973⁹. Empero, otros países cambiaron sus tendencias y experimentaron una aceleración en el crecimiento; y según la Tabla 2, estos fueron Noruega, Chile, China, Corea del Sur y Singapur. Hamilton y Monteagudo opinan que este logro se debió a mayores niveles de inversión en capital físico o a un crecimiento de la población mas bajo.

Hall y Jones (1998) encontraron que las diferencias en capital físico y humano explican parcialmente porqué algunos países producen más que otros. Sin embargo, con un análisis de contabilidad del crecimiento con el modelo de Solow hallaron una gran variación en la productividad total de los factores (el "residuo de Solow") entre países. El trabajo de estos autores se basa en el siguiente modelo:

$$Y = K^{\alpha} (A H)^{(1-\alpha)}$$

$$H = e^{\varphi(L)}L$$

siendo:

Y: producto

K: stock de capital físico

H: cantidad de capital humano o fuerza laboral entrenada con un cierto número de años de educación, donde "E" es el número de años de educación.

A: eficiencia de la población laboral calculado como un residuo.

L: número de trabajadores

Si se divide por el número de trabajadores, L, y se reagrupa la ecuación, el modelo de Hall y Jones (1998) se puede expresar de la siguiente manera:

$$\frac{Y_i}{L_i} = \left(\frac{K_i}{Y_i}\right)^{\left(\frac{\alpha}{1-\alpha}\right)} \left(\frac{H_i}{L}\right) A_i$$

⁸ Esto surge como consecuencia de los rendimientos decrecientes del capital.

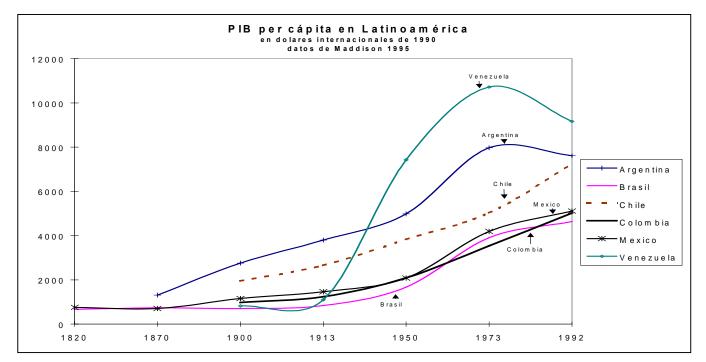
⁹ Esto era lo esperado dentro del contexto de Solow y de Mankiw, Romer y Weil (1991) considerando lo sucedido como un proceso de convergencia a sus respectivas trayectorias de estado estable.

La **Tabla 3** fue construida con base en este modelo y, para el caso colombiano, se interpreta así:

Cálculos de productividad							
Medido con respecto a valores de Estados Unidos en 1988							
	Y/L		Contribución al crecimiento del product				
		-	or trabajador o	de:			
		(K/Y) ^{α/(1-α)}	H/L	А			
Estados Unidos	1,000	1,000	1,000	1,000			
Canadá	0,941	1,002	0,908	1,034			
Suiza	0,874	1,189	0,832	0,883			
Australia	0,843	1,094	0,900	0,856			
Bélgica	0,836	1,023	0,836	0,978			
Italia	0,834	1,063	0,650	1,207			
Alemania	0,818	1,118	0,802	0,912			
Francia	0,818	1,091	0,666	1,126			
Holanda	0,806	1,060	0,803	0,946			
Suecia	0,787	1,029	0,853	0,897			
Noruega	0,759	1,196	0,909	0,699			
Gran Bretaña	0,727	0,891	0,808	1,011			
Dinamarca	0,690	1,082	0,905	0,705			
Hong Kong	0,608	0,741	0,735	1,115			
Singapur	0,606	1,031	0,545	1,078			
Japón	0,587	1,119	0,797	0,658			
Taiwan	0,445	0,821	0,699	0,776			
México	0,433	0,868	0,538	0,926			
Corea del Sur	0,380	0,861	0,761	0,580			
Colombia	0,264	0,818	0,544	0,593			
Chile	0,263	0,989	0,661	0,403			
China	0,060	0,891	0,632	0,106			
Promedio de 127	0,296	0,853	0,565	0,516			
países							
Desviación Estándar	0,268	0,234	0,168	0,325			
Fuente: Hall y Jones	(1998)						

Tabla 3

el producto por trabajador de Colombia es 24.6% del de Estados Unidos, aunque tiene 81.8% de la intensidad de capital de Estados Unidos (cuando esta intensidad es elevada a la potencia $\alpha/(1-\alpha)$) y 54.4% del capital humano de este mismo país. El menor nivel de capital humano y la baja eficiencia de la población laboral (A) explican porque Colombia tiene un menor producto por trabajador. Como las tres últimas columnas se multiplican para obtener Y/L, si Colombia tuviera la eficiencia laboral de Estados Unidos (1,000), su


producto por trabajador sería igual al de Taiwan. El comportamiento del producto per cápita de Colombia es muy cercano al promedio de los 127 países incluidos en la muestra.

Al comparar el desempeño colombiano con el de las principales economías latinoamericanas a lo largo del siglo XX los resultados son favorables para Colombia, si se tiene en cuenta su bajo nivel inicial de ingreso per cápita (**Tabla 4 y Gráfico 3**); aun así, su desempeño no tuvo el notable ritmo exhibido por Venezuela (hasta mediados de los años setenta) asociado sin duda a su creciente renta petrolera. El comportamiento del PIB colombiano se parece mas al de Brasil y México; Chile y Argentina persistentemente tuvieron niveles per cápita superiores al colombiano durante el siglo XX.

No obstante, si se compara el crecimiento económico colombiano con el observado en los llamados "tigres del Asia" (**Tabla 5**) durante el periodo de rápido crecimiento de estos (1966-1961) sí se hace evidente el creciente rezago de la economía colombiana.

Tabla	4
-------	---

			pita en alguno	•			
		dá	ólares internac	ionales de 199	90*		
	1820	1870	1900	1913	1950	1973	1992
Argentina		1311	2756	3797	4987	7970	7616
Brasil	670	740	704	839	1673	3913	4637
Chile			1949	2653	3827	5028	7238
Colombia			973	1236	2089	3539	5025
México	760	710	1157	1467	2085	4189	5112
Perú			817	1037	2263	3953	2484
Venezuela			821	1104	7424	10717	9163
	Т	asas de creci	miento anual	(con respect	o al año previ	0)	
	1820	1870	1900	1913	1950	1973	1992
Argentina			2,51	2,50	0,74	2,06	-0,24
Brasil		0,20	-0,17	1,36	1,88	3,76	0,90
Chile				2,40	1,00	1,19	1,94
Colombia**				1,86	1,43	2,32	1,86
México		-0,14	1,64	1,84	0,95	3,08	1,05
Perú				1,85	2,13	2,45	-2,42
Venezuela				2,30	5,29	1,61	-0,82
Fuente: Madd	ison 1995.	•	•	•	•		•
* Se refiere a	dólares consta	antes de 1990	corregidos por	[,] paridad de po	oder de compra	a en cada país	
		ara 1900-1913 er el nivel de F			sas de crecimi	ento de Chile	y de Brasil

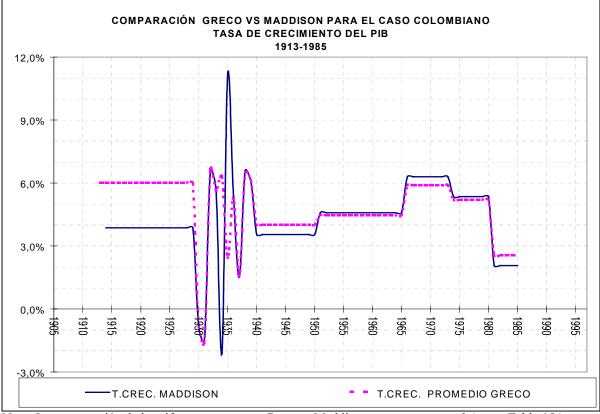
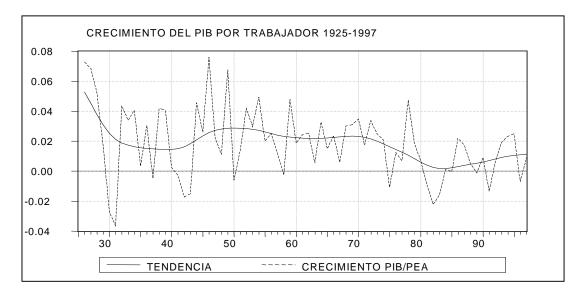


Gráfico 3

Compara	Comparación entre el desempeño de Colombia y el de los "tigres del Asia" Tasas de crecimiento anuales en porcentajes							
	Tasas	s de crecim	iento anuai	es en porce	entajes			
	Hong Kong Singapur Corea del Sur Taiwan Promedio tigres del Asia Colombia							
	1966-1991	1966-1990	1966-1990	1966-1990	1966-1990/91	1960-1994		
Producto	7,3	8,7	10,3	8,9	8,8	4,5		
Capital	8,0	11,5	13,7	12,3	11,4	4,5		
Trabajo 3,2 5,7 6,4 4,9 5,1 3,2								
Y/K inicial	0,357	0,497	0,310	0,261	0,356	0,331		
Fuente: Your	ng (1998); pag	jina 2. Datos	de Colombia t	tomados del p	oresente trabajo			

Т	a	b	la	5
-	-			-

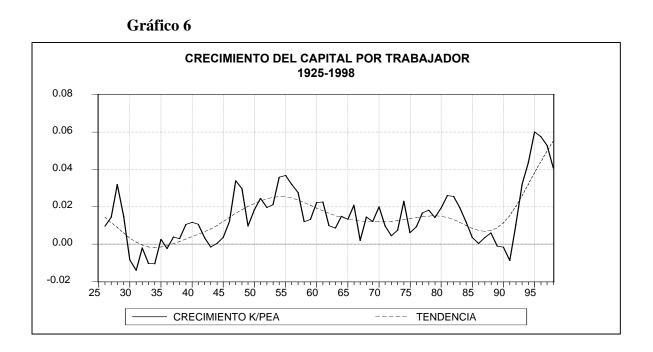
Según los artículos de Crafts(1999) y Sarel (1997) el crecimiento de los "tigres asiáticos" estuvo fundamentado en una altísima acumulación de factores, una transición demográfica acelerada y una asimilación efectiva de las oportunidades tecnológicas, dado un capital humano con capacidad para absorber tales oportunidades. Es evidente que el crecimiento del capital colombiano fue mucho más bajo que el de los mencionados países asiáticos, siendo el nuestro de 4.5% anual, mientras que el de aquellos ha sido superior al 11% en los últimos treinta años (**Tabla 5**). El crecimiento de la fuerza laboral en Colombia también fue más bajo (3.2%) que en el Asia (5.2%) y con un menor nivel de educación al asiático. Empero, la relación producto/capital de Colombia en los años sesenta era similar a la asiática en los mismos años.

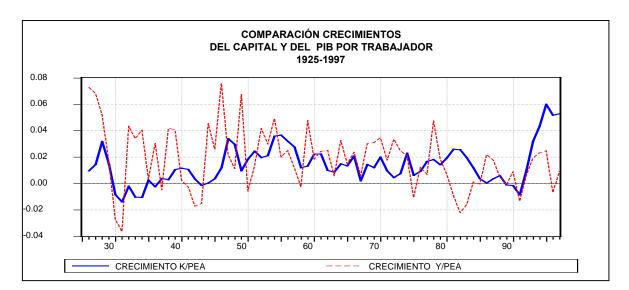

3.1. Análisis descriptivo de las series colombianas Gráfico 4

Nota: La comparación de las cifras exactas entre Greco y Maddison se encuentra en el Anexo Tabla 15A.

El gráfico presenta las tasas medias de crecimiento del PIB real total. Las dos series del gráfico solo difieren antes de 1929. A nuestro juicio la serie de Maddison para los años anteriores a 1929 subestima el ritmo de crecimiento colombiano en los años posteriores a la guerra civil llamada "de los Mil Días" (1898-1902)¹⁰.

¹⁰ La fuente de Maddison (1991) para las cifras del PIB entre 1913 y 1929 es L.J. Zimmerman (1964), *Arme en rijke landen*, The Hague.




El gráfico 5 permite apreciar el crecimiento económico medido por los cambios de la relación entre el PIB real y la población económicamente activa (según las series que nos parecen más confiables y presentadas en el **Anexo 2**). Sobresale cómo entre 1932 y 1974 (aproximadamente) la tasa anual de aumento del PIB por miembro de la PEA¹¹ osciló alrededor de un nivel medio estable: 2.37% anual. Antes de 1932 se registró una alta inestabilidad: un auge extraordinario en la segunda mitad de los años 20, seguido por la Gran Depresión de principios de los años 30 cuando el producto por trabajador llegó a decrecer en casi 4% en 1931.

Después de 1974 parece insostenible la idea de que el crecimiento continúa por una trayectoria relativamente estable y constante. En efecto, a mediados de los años setenta se inició una caída de la tasa de crecimiento del producto en magnitud poco usual hasta entonces y llegó a -2.2% en 1982. Entre 1984 y 1998 el crecimiento promedio del producto por trabajador fue apenas de 0.7% anual.

¹¹ Es un indicador no demasiado burdo tanto del producto por trabajador como del ingreso real per cápita.

El crecimiento del capital por persona activa (nuestro indicador de capital por trabajador) se vio más afectado por la crisis de los años treinta y por la segunda guerra mundial que el producto y solo se recuperó en el decenio de los cincuenta (Gráfico 6). Entre los sesenta y los setenta creció alrededor de 1.4% anual y solo a partir de 1992 inició un incremento acelerado con respecto a la tendencia.

Gráfico 7

En cuanto a la relación entre los crecimientos del capital y del PIB per cápita se observa que fue bastante estrecha entre 1947 y 1979. El gráfico 7 revela que en los años anteriores y posteriores a este período la relación es más débil. Por lo demás, el crecimiento promedio del PIB por persona activa ha sido mayor que el del capital per cápita en el conjunto de los años 1925-1998, pero menor en promedio desde 1975 (**Tabla 6**)¹².

COMPARACIÓN DE LAS SERIES CAPITAL Y PRODUCTO POR PERSONA ACTIVA (promedio tasas de crecimiento anual, %)						
PERÍODOS CAPITAL PRODUCTO POR TRABAJADOR POR TRABAJADOR						
1925-1950	0,70	2,34				
1950-1975	1,74	2,17				
1975-1990	1,11	0,55				
1990-1998	3,19	0,65				
1925-1998	1,46	1,79				

Tabla 6

3.2. Resultados econométricos

Con un análisis estadístico formal se sometieron a prueba las siguientes dos hipótesis:

 a) el producto por trabajador y el capital por trabajador mantienen una relación de equilibrio de largo plazo, es decir, las dos series están cointegradas (Anexo 5);

b) la relación de cointegración adopta la forma de la ecuación (4) presentada en la sección anterior y se puede también expresar de la siguiente manera.

(6) $y_t = A_0 (1+g)^{(1-\alpha)t} k_t^{\alpha}$

siendo:

y_t = PIB real dividido por la población económicamente activa;

A₀ = Parámetro de eficiencia de la población laboral en el momento inicial (t=0);

g = Tasa de crecimiento del parámetro A de eficiencia laboral;

 α = Elasticidad del producto al capital;

¹² Vease la tabla 2 del Anexo sobre otras estadísticas descriptivas de las series colombianas.

k_t = Capital real dividido por la población económicamente activa.;

En términos logarítmicos la ecuación anterior queda así:

(7) $y_t = \mu + [(1-\alpha)\delta]t + \alpha k_t$

siendo:

 $\mu = \ln A_0; \qquad y_t = \ln y_t; \qquad k_t = \ln k_t;$ $\delta = \ln(1+g)$

Si las series estadísticas del capital por trabajador y del producto por trabajador son integradas de orden 1 (I(1)) se puede establecer una relación de largo plazo entre ambas series si al menos existe un vector de cointegración, o lo mismo, una combinación lineal de las dos series cuyo residuo sea estacionario. Se hicieron distintos ejercicios de cointegración para la relaciones de largo plazo y cuando no se encontró cointegración en ciertos períodos se realizaron ejercicios por mínimos cuadrados restringidos.

Tabla 7

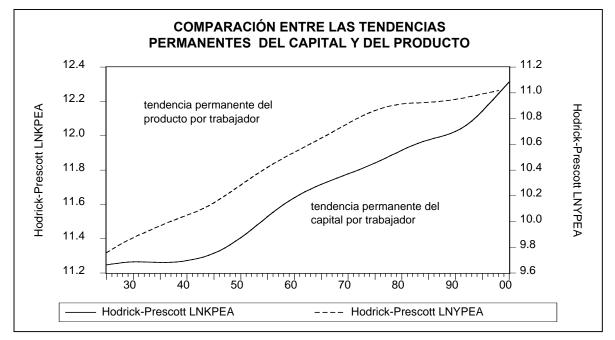
PERÍODO	TIPO DE ESTIMACIÓN	PARÁMETROS	
		α	g
1925-1981	Cointegración de Johansen	0,4202	2,77%
1926-1994	Mínimos cuadrados restringidos	0,3565	2,24%
1950-1994	Mínimos cuadrados restringidos	0,4080	1,56%

La **Tabla 7** presenta los valores de los parámetros para las distintas estimaciones que resultaron válidas según los tests estadísticos (**Anexo 8**). Solo se encontró una relación de largo plazo estable entre las variables capital por trabajador y producto por trabajador en el período 1925-1981. El coeficiente α se mantuvo estable, alrededor de 0.42 en el período 1925-1981, al igual que la tasa de crecimiento de la eficiencia de la población laboral, g, alrededor de 2.80%¹³. α y g son altamente inestables después de 1983.

¹³ Una explicación mas detallada de la estabilidad de los coeficientes se realiza en el Anexo 6.

Como las series producto y capital por persona activa son I(1) y no se encuentra cointegración en los períodos 1925-1994 y 1925-1997, se diferenciaron las variables del modelo inicial y se realizó un ejercicio por mínimos cuadrados restringidos. En el período 1926-1994 (se pierde un dato al diferenciar) las variables del lado derecho de la regresión explican solo 3.48% de la variación de la variable dependiente (Ln(PIB/PEA)), pero el parámetro α (la elasticidad del producto al capital) es significativo al 87.5% (Anexo Tabla 8A). Cuando se analiza el período 1950-1994, α aumenta su significancia al 92.05%, aunque el ajuste de la regresión sigue siendo muy bajo, 6.97%. El nivel del parámetro α se encuentra entre 0.356 y 0.407% (Anexo Tabla 8A). Este rango es compatible con otras estimaciones del caso colombiano posterior a 1950 (Posada 1993, Sánchez et al. 1996 –en su Anexo1).

La **Tabla 8** muestra los α obtenidos en distintos trabajos internacionales. Para el caso latinoamericano, Rincón (1998), en un ejercicio "*panel*" de 18 países para los años 1960-1990, calculó una elasticidad promedio, α , igual a 0.246, bastante inferior a la participación de los ingresos de capital en el producto, los cuales oscilaron entre 40% y 50%; según este autor, esta diferencia es un indicador del grado de imperfección del mercado de capital en América Latina. Para el caso estadounidense, Holtz-Eakin (1992), con una estimación del modelo de Solow con capital humano y con un modelo de convergencia, obtuvo un α entre 0.20 y 0.24. Para el caso mundial, Crafts (1999) identificó como válido un valor uniforme de α igual a 0.35 y para el Asia del Este, excluyendo Singapur, encontró un rango entre 0.28 y 0.35. Mankiw , Romer y Weil (1991) en su trabajo pionero del modelo de Solow con capital humano, encontraron un α de 0.31 para 95 países no petroleros y uno de 0.29 para 75 países intermedios.

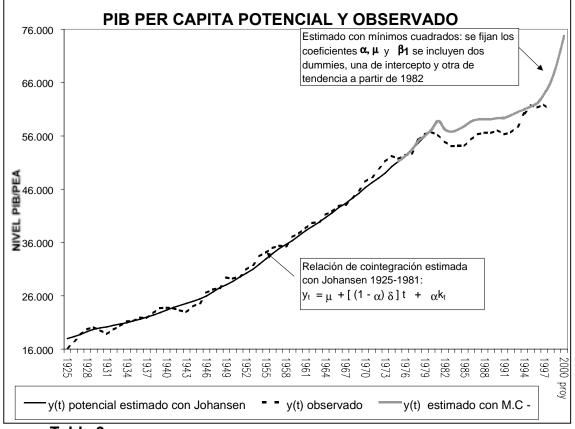

Tabla 8

	LATINO- AMÉRICA	MUNDIAL	PAÍSES INTER- MEDIOS	OECD	USA		ASIA DEL ESTE	MUNDIAL
	Rincón (1998)	Mankiw et al. (1991)		Holtz-Eakin (1992)		Crafts (1999)*		
	1960-1990		1960-1989		1973-1986		1950-1996	
	Panel 18 países (incluye Colombia)	95 países no petroleros (incluye Colombia)	75 países no petroleros (incluye Colombia)	22 países	Modelo de Solow aumentado (con capital humano)	Controlando por condiciones iniciales (modelo de convergencia)		lidad de niento
α	0.246	0.31	0.29	0.14	0,20	0,24	0,28- 0,35	0,35
ingreso elasticid	nacional para	utilizarlo en o con respe	los ejercicios ecto al crecin	s de contabil niento del ca	idad del crecimier apital, lo cual es	ación de las gana nto. Estos supone estrictamente váli	n este α es	s igual a l

El **Gráfico 8** muestra las tendencias de las series de capital y producto por trabajador y en él se hacen visibles dos hechos: primero, a partir de 1982 se aplana la tendencia de la serie de producto por trabajador (LNYPEA), evidenciando una desaceleración de su crecimiento; segundo, el capital por trabajador (LNKPEA) mantiene su tendencia hasta 1990, año a partir del cual acelera su crecimiento. Estos cambios en las series conllevan al rompimiento de la relación de largo plazo entre las dos y se rechace la hipótesis de cointegración al 5% de confianza en los períodos 1925-1994 o 1925-1997.

Sin embargo, cuando se realizan las estimaciones por mínimos cuadrados los coeficientes α y g no cambian mucho, revelando que las estimaciones básicas se mantienen en un cierto rango hasta 1994.

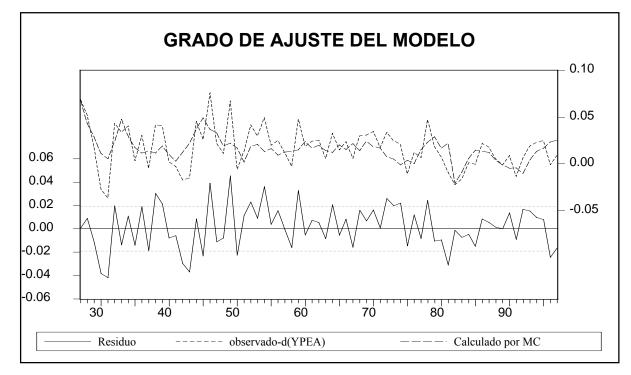
3.3. La tasa "natural" de crecimiento y el producto potencial


Con la relación de equilibrio de largo plazo de las variables capital por trabajador y producto por trabajador para 1925-1981 se calculó un PIB potencial, o lo mismo, un nivel de equilibrio de producción dados los factores productivos. Así, para el cálculo del PIB potencial se excluyeron los coeficientes de corto plazo del vector de corrección de errores (VEC) y se utilizó únicamente la relación de cointegración, específicamente la ecuación (7) para 1925-1981.

El **Gráfico 9** compara el PIB potencial con el observado. La no existencia de cointegración a partir de 1982 sugiere que el comportamiento del modelo es distinto a partir de tal año; sin embargo, para extender el cálculo del PIB potencial hasta 1997 se ejecutó una regresión por mínimos cuadrados restringidos y se supuso que los coeficientes α , μ y β^{14} adoptan los mismos valores que en el período 1925-1981; además, para capturar el cambio estructural se incluyeron dos *dummies* a partir de 1982, una de intercepto y otra de tendencia¹⁵. La **Tabla 9** expone la regresión utilizada para extender el cálculo del PIB potencial hasta 1997; el **Gráfico 10** muestra el grado de ajuste del modelo presentado en la Tabla 9.

¹⁴ Recordemos que $\mu = \ln A_0$, $\beta = (1-\alpha)\delta y \ \delta = \ln(1+g)$

¹⁵ También se reestimaron los valores de los coeficientes de corto plazo de Δy_{t-1} y Δk_{t-1} del VEC, pero el resultado del cálculo del PIB potencial no fue muy distinto al obtenido sin ellos; en cambio, al incluir las *dummies* en el momento del cambio estructural sí se mejoró la estimación.


Gráfico 9

)
)

Regresión por Mínimos Cuadrados Restringidos					
	Muestra ajustada (datos anuales): 1927-1997 Número de observaciones (ajustadas): 71				
	Variable dependiente: Δ (LNPIBPEA): Dy _t				
Ecuación	Ecuación: $\Delta y_t = \lambda [y(t-1) - \mu - \alpha k(t-1) - \beta t] + \varphi_1 + \varphi_2 * dummy + \varphi_3 * dummy 2 + \varepsilon_t$				
	Coeficiente	Error estándar	Estadístico ´t´	Probabilidad	
α (dado)	0,4202				
β (dado)	0,0158				
μ (dado)	4,7642				
λ (dado)	-0,5190				
φ 1	0,0155	0,0028	5,5831	0,0000	
φ2	-0,0686	0,0112	-6,1042	0,0000	
φ3	-0,0059	0,0011	-5,2171	0,0000	
R cuadrado	: 0,301	Durbin Watson:		2,126	
R cuadrado	ajustado: 0,270	Prob(e	estadístico F)	0,000	

Además, quisimos comparar el comportamiento del PIB potencial obtenido de la relación de cointegración con el PIB permanente derivado de aplicar el filtro de Hodrick y Prescott. Según el resultado (Gráfico 11) las dos series son muy similares, aunque se percibe alguna subestimación de los auges antes de 1940 por parte del producto potencial calculado con Johansen. Con el filtro de Hodrick y Prescott se evidencia el cambio de tendencia en la serie observada del PIB desde fines de los setenta.

En realidad, encontramos dos posibles razones por las cuales se hace difícil la estimación del PIB potencial posterior a 1982 con base en el modelo Solow-Swan (y con otros modelos que hacen énfasis en la acumulación de capital físico); la primera es una desaceleración del cambio técnico, sustentada con los coeficientes negativos de las *dummies*, y ello hace que el PIB observado tenga un crecimiento tendencial mas lento¹⁶; y la segunda, ya mencionada antes, es el crecimiento asombroso del capital a partir de los años noventa sin correspondencia con el crecimiento del PIB observado.

¹⁶ Este hecho fue documentado por Clavijo (1994), por Sánchez et al. (1996) y Ramírez y Jaramillo (1996).

Por lo anterior consideramos que estimar el PIB potencial con base en el componente permanente del PIB calculado con el filtro Hodrick-Prescott parece ser un recurso aceptable¹⁷.

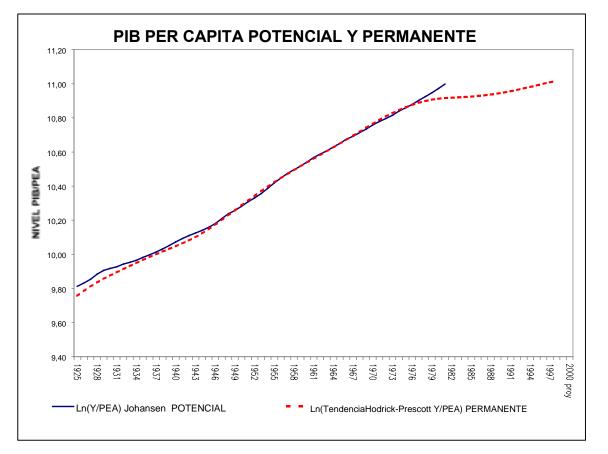
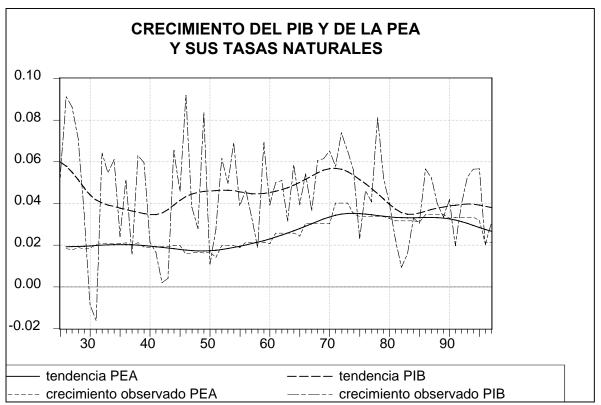


Gráfico 11

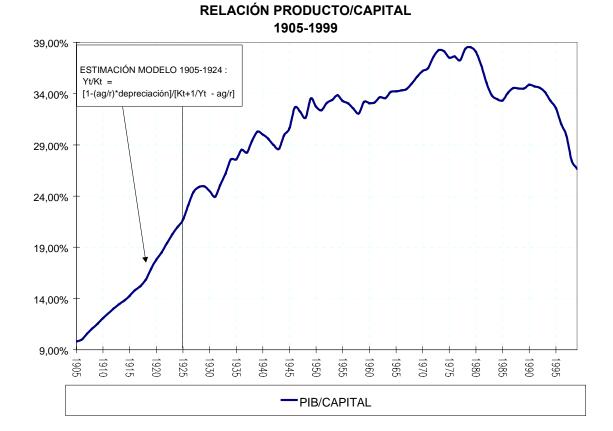

La principal implicación de lo anterior es la siguiente: entre 1925 y 1981 la tasa natural de crecimiento del PIB por miembro de la PEA(ó la tasa de crecimiento del PIB potencial o permanente) fue 2.07% anual y la de la PEA fue 2.40% anual, siendo la tasa natural de crecimiento del PIB total 4.57% anual; entre 1982 y 1997 dichas tasas fueron 0,57%, 3.15% y 3.77% respectivamente (**Tabla 10** y **Gráfico 12**), período en el cual el crecimiento de la PEA aumenta y el del PIB total disminuye.

¹⁷ Greenwood y Jovanovic (1998) argumentan que si bien el modelo de Solow (1956) identifica procesos de desaceleración en la productividad encontrados en la mayoría de los países después de 1973, no explica

Tabla 10

TASAS DE CRECIMIENTO NATURAL EN COLOMBIA (% anual)				
	PEA	PIB	PIB por trabajador	
1905-1924	1,94	5,36	3,42	
1925-1981	2,39	4,57	2,18	
1982-1997	3,24	3,85	0,62	
1925-1997	2,58	4,41	1,84	

cuales son las causas de este estancamiento tecnológico reciente, y entra en contradicción con lo que actualmente se vive: el desarrollo de computadoras personales, teléfonos celulares, robots, internet, etc.


4.Resumen y conclusiones

Una forma práctica de resumir y presentar conclusiones es la de enumerar algunas tesis que sobresalen del análisis previo, como se hará a continuación:

- El crecimiento del producto colombiano en la segunda mitad del siglo fue mediocre comparado con el de Estados Unidos y el de los "tigres asiáticos", pero su crecimiento a lo largo del siglo XX fue alto contrastado con la experiencia de los países desarrollados en el período 1850-1963, años en los cuales experimentaron el proceso de transición hacia su estado actual de desarrollo. También su desarrollo per cápita es semejante al de Brasil y México.
- 2. Las series de producto per cápita y capital per cápita no fueron estacionarias a lo largo del siglo XX, ni siquiera en torno a una tendencia determinística; fueron, por el contrario, series cuya tendencia tuvo un componente estocástico significativo. A la luz del modelo teórico, esto se traduce en que los impactos aleatorios provenientes de factores de oferta han dejado una huella perdurable en los niveles del producto y del capital per cápita.
- Entre 1925 y 1981 tales variables sostuvieron una relación de cointegración o de equilibrio de largo plazo.
- 4. La relación de cointegración se ajusta a una formulación específica: la del modelo de Solow-Swan de crecimiento; bajo ésta el producto por trabajador depende del capital por trabajador, con rendimientos marginales decrecientes y rendimientos de escala constantes.
- 5. Entre 1925 y 1981 la elasticidad del producto al capital, α , fue 0.42 y la tasa de crecimiento de la eficiencia laboral, g, fue 2.8% anual.
- 6. Con posterioridad a 1981 desaparece la evidencia de cointegración; aun así, los ejercicios con regresiones por mínimos cuadrados para 1925-1994 y 1950-1994 permiten estimar α y g en rangos casi similares aunque con valores medios algo mas bajos.
- 7. La no cointegración a partir de 1981 y los resultados de las estimaciones por mínimos cuadrados son síntomas de dos hechos básicos ocurridos desde mediados o fines de los

años setenta: el primero, una desaceleración en el crecimiento del producto por trabajador asociado a una caída de la tasa de crecimiento de la eficiencia laboral; el segundo, una aceleración en el ritmo de crecimiento del capital por trabajador en la primera mitad de los noventa.

8. Aunque parte de lo ocurrido con la evolución del capital por trabajador a partir de 1991 puede explicarse por una sobreestimación de la inversión bruta, es preocupante el hecho de que el crecimiento económico haya adoptado en los últimos quinquenios una modalidad bajo la cual los esfuerzos de acumulación de capital físico no se traducen en ritmos compatibles de aumento del producto per cápita y por trabajador. Así, la relación producto/capital ha disminuido desde 1980 persistentemente (Gráfico 13), regresando recientemente a los niveles alcanzados en 1940. Un síntoma de lo anterior es el hecho de que el producto per cápita colombiano no se esté acercando al de Estados Unidos, como se mencionó y previamente.

Gráfico 13

- Entre 1925 y 1981 la tasa natural de crecimiento del PIB por miembro de la PEA fue 2.07% anual y la de la PEA fue 2.40% anual, por lo cual la tasa natural de crecimiento del PIB total fue 4.57% anual; entre 1982 y 1997 dichas tasas fueron 0,57%, 3.15% y 3.77% respectivamente (Tabla 10).
- 10. En el Anexo 3 se presenta una estimación (provisional) del capital y de la relación producto/capital para 1905-1924. De acuerdo con tal estimación, entre 1905 y 1924 el capital creció a una tasa promedio de 1.28% anual, crecimiento menor a la tasa media de crecimiento del producto, la cual fue 5.43% anual (Tabla 11). Si se aceptan estos cálculos como válidos, la relación producto/capital promedio debió aumentar entre 1905 y 1924; así, el incremento de la misma entre 1925 y 1979 fue parte de un proceso iniciado desde principios del siglo XX.

Producto y capital entre 1905 y 1924			
	Tasa crecimiento del PIB real	Tasa crecimiento del capita real	
	estimado por GRECO (1999)	estimación actual Anexo Tabla 9A	
1905-1924	5,43%	1,28%	

Tabla 11

Anexos

1. Modelo teórico

La función de producción que se utiliza en este trabajo es la siguiente:

(1)
$$Y_{t+1} = K_{t+1}^{\alpha} \left(A_{t+1}^{\left(\frac{1}{1-\alpha}\right)} L_{t+1}^{\left(1-\alpha\right)} \right)^{(1-\alpha)}$$

Siendo:

Y: producto interno bruto real;

K: capital real;

 α : elasticidad del producto al capital; 0< α <1;

L: población laboral;

A: puede ser entendido como un parámetro de eficiencia de la población laboral; A>1;

t+1: un período del tiempo cualquiera.

Además, el modelo supone que el parámetro de eficiencia de la población laboral sigue la siguiente ley de evolución en el tiempo:

(2)
$$A_{t+1} = A_t (1+g)^{1-\alpha}$$
 $A_{t+1}^{\left(\frac{1}{1-\alpha}\right)} = A_t^{\left(\frac{1}{1-\alpha}\right)} (1+g)$

Siendo g la tasa de crecimiento por período del parámetro A cuando está elevada a la potencia $1/(1-\alpha)^{18}$. Específicamente:

$$g = \left(\frac{A_{t+1}}{A_t}\right)^{\left(\frac{1}{1-\alpha}\right)} - 1;$$

Por tanto:

(3)
$$Y_{t+1} = K_{t+1}^{\alpha} A_t (1+g)^{1-\alpha} L_{t+1}^{1-\alpha}$$

¹⁸ Utilizar el componente exponencial (1-α) permite simplificar la ecuación (1) hasta obtener una relación inversión/producto muy sencilla, la cual se expondrá mas adelante.

Dado lo anterior, podemos establecer una relación entre el producto por trabajador y el capital por trabajador con una forma bastante conocida:

(4)
$$\frac{Y_{t+1}}{L_{t+1}} \equiv y_{t+1} = A_t (1+g)^{1-\alpha} \left(\frac{K_{t+1}}{L_{t+1}}\right)^{\alpha}; \quad sea: \qquad k_{t+1} \equiv \frac{K_{t+1}}{L_{t+1}}$$

y en términos per cápita (por trabajador)

(5) $y_{t+1} = A_t (1+g)^{1-\alpha} k^{\alpha}_{t+1} = A_{t+1} k^{\alpha}_{t+1}$

Así, el producto por trabajador es una función Cobb-Douglas del capital por trabajador expresada en una forma tradicional que incluye un parámetro tecnológico, *A*, el cual crece a una tasa constante por período, g.

2. La tasa de inversión

Con el anterior modelo se puede estimar la tasa de inversión de la economía y, por ende, el nivel del capital entre 1905 y 1924, período para el cual aún no se dispone de estimaciones directas y más confiables. Esta estimación supone que la tasa de interés real (*r*) es igual a la productividad marginal del capital $(\partial y/\partial k)$; el anterior supuesto es necesario para cumplir con la condición de maximización de ganancias y, por lo tanto, se requiere para alcanzar un estado de equilibrio estable.

por lo tanto, si se cumple el supuesto:

(6)
$$\frac{\partial y}{\partial k} = r$$

entonces se reemplaza la derivada del producto con respecto al capital : $\alpha A_{t+1} k_{t+1}^{\alpha-1} = r$

se despeja el capital de la ecuación anterior :

$$k_{t+1} = \left(\frac{\alpha A_{t+1}}{r}\right)^{\frac{1}{1-\alpha}}$$

por otra parte, la inversión se define de la siguiente manera :

$$(7) \quad i_t \equiv k_{t+1} - k_t$$

reemplazando la definición de capital :

$$i_{t} = \left(\frac{\alpha A_{t+1}}{r}\right)^{\frac{1}{1-\alpha}} - \left(\frac{\alpha A_{t}}{r}\right)^{\frac{1}{1-\alpha}}$$

reagrupando

$$i_t = \left(\frac{\alpha}{r}\right)^{\frac{1}{1-\alpha}} A_t^{\frac{1}{1-\alpha}} (1+g) - \left(\frac{\alpha}{r}\right)^{\frac{1}{1-\alpha}} A_t^{\frac{1}{1-\alpha}}$$

por lo tanto, la inversión es igual a :

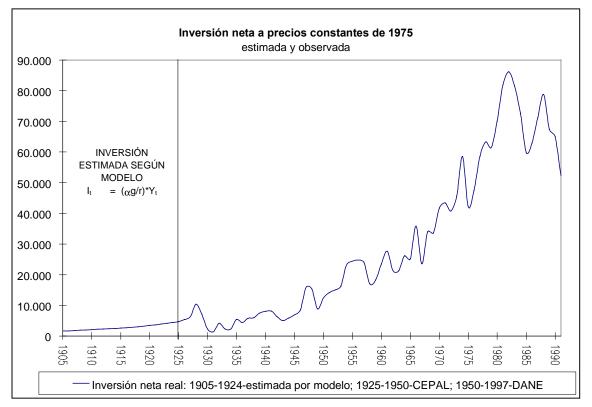
(8)
$$i_t = \left(\frac{\alpha A_t}{r}\right)^{\frac{1}{1-\alpha}} g$$

Ahora bien, puesto que la ecuación (5) nos permite estimar el producto por trabajador en el período t, así:

 $y_t = A_t k_t^{\alpha}$

Y hemos visto como el capital de equilibrio estable se puede expresar como:

$$k_t = \left(\frac{\alpha A_t}{r}\right)^{\frac{1}{1-\alpha}}$$


Por lo cual, si se reemplazan las dos ecuaciones resulta:

(9)
$$y_t = A_t (A_t)^{\frac{\alpha}{1-\alpha}} \left(\frac{\alpha}{r}\right)^{\frac{\alpha}{1-\alpha}}$$

 $y_t = A_t^{\frac{1}{1-\alpha}} \left(\frac{\alpha}{r}\right)^{\frac{\alpha}{1-\alpha}}$

Por tanto, según las ecuaciones (8) y (9), la tasa de inversión o relación entre inversión y producto (i/y) de equilibrio estable es:

(10)
$$\frac{i}{y} = \frac{\alpha g}{r}$$

Dada r y estimadas α y g se puede calcular la tasa de inversión. A su turno, el nivel de la inversión total se puede calcular con base en la tasa de inversión y en el nivel del producto. Las estimaciones de la inversión y el capital suponen que los coeficientes α y g del modelo econométrico son estadísticamente estables.

Gráfico 14

3. La estimación del capital (1905-1924)

Si se considera que en estado estacionario se cumple la siguiente relación derivada del modelo expuesto:

(10.a)
$$\frac{i_n}{y_n} = \frac{\alpha g}{r}$$

Donde $i_n =$ inversión neta por trabajador $y_n =$ producto neto por trabajador

entonces en cada periodo t se cumple :

$$(10.b) \quad i_{n_t} = \frac{\alpha g}{r} y_{n_t}$$

para obtener la inversión neta total se multiplica por el número de trabajadores :

$$i_{n_t}L_t = \frac{\alpha g}{r} y_{n_t}L_t$$

o lo que es equivalente, el lado derecho de la ecuación se multiplica por el producto neto total :

$$(10.c) \quad I_{n_t} = \frac{\alpha g}{r} Y_{n_t}$$

pero el producto neto está compuesto por el producto bruto menos la depreciación del capital (δK):

(10.d)
$$I_{n_t} = \frac{\alpha g}{r} (Y_t - \delta K_t)$$

 $I_{n_t} = \frac{\alpha g}{r} Y_t - \frac{\alpha g}{r} \delta K_t;$

además, la inversión neta es igual a la diferencia de capitales : (10.e) $I_{n_t} = K_{t+1} - K_t$

int e gra ndo las ecuaciones (10.d) y (10.e):

(10.f)
$$K_{t+1} - K_t = \frac{\alpha g}{r} Y_t - \frac{\alpha g}{r} \delta K_t$$

reorganizando la ecuación (10.f):

(10.g)
$$K_{t+1} - K_t + \frac{\alpha g}{r} \delta K_t = \frac{\alpha g}{r} Y_t$$

 $K_{t+1} - \frac{\alpha g}{r} Y_t = (1 - \frac{\alpha g}{r} \delta) K_t$

despejando K_t (esta es la ecuación que se utiliza para retrapolar el capital desde 1925 hacia atrás):

(10.*h*)
$$K_t = \frac{K_{t+1} - \frac{\alpha g}{r}Y_t}{1 - \frac{\alpha g}{r}\delta}$$

dividiendo por el producto bruto :

$$\frac{K_{t}}{Y_{t}} = \frac{\frac{K_{t+1}}{Y_{t}} - \frac{\alpha g}{r}}{1 - \frac{\alpha g}{r}\delta}$$

e invirtiendo la anterior relación para obtener la relación producto capital :

(10.*i*)
$$\frac{Y_t}{K_t} = \frac{1 - \frac{\alpha g}{r} \delta}{\frac{K_{t+1}}{Y_t} - \frac{\alpha g}{r}}$$

El problema de esta retrapolación del capital consiste en que α y g estimados econométricamente por el modelo del presente trabajo son derivados del producto bruto y de la inversión bruta. Por lo cual esto nos obliga a suponer que los α y g estimados econométricamente son iguales a los parámetros α y g de la igualdad expresada en la ecuación (10.a), los cuales se obtendrían con la inversión neta y el producto neto. Los resultados de esta estimación se encuentran en el **Tabla 9 A.**

4. Pruebas de estacionariedad

El proceso generador de una serie puede ser *estacionario o no estacionario*. Para explicar lo anterior, supóngase un mecanismo bajo el cual la serie y_t está generada por un proceso autorregresivo de primer orden:

(11) $y_t = \mathbf{r} y_{t-1} + u_t$

Si $\rho = 1$ (o mayor), entonces y_t será *no estacionario* y el valor actual de y_t dependerá de su valor inicial y de todos los errores del pasado. Así, la media y la varianza de y_t aumentarán a medida que $t \rightarrow \infty$ y no hay fuerza que revierta la serie a un valor medio. Si el valor inicial de y fuese cero, y_t sería la sumatoria de los errores del pasado¹⁹.

Si $|\rho| < 1$, entonces y_t es *estacionario*²⁰ con media y varianza constantes e independientes del tiempo. Así, las series estacionarias tienden a regresar a sus valores medios y fluctúan alrededor de ellos dentro de un rango más o menos constante, mientras que una serie no estacionaria tiene una media diferente en cada punto del tiempo. Igualmente, un choque a una variable estacionaria necesariamente tiene efecto temporal y la serie regresa a su media de largo plazo. En cambio, un choque a una variable no estacionaria tiene efecto permanente.

Si las dos series son no estacionarias, una regresión simple (por ejemplo, mediante mínimos cuadrados) puede encontrar relaciones aparentemente significativas, cuando en realidad lo que existen son solo correlaciones contemporáneas, siendo espúrea la aparente significancia de largo plazo. Si bien diferenciar las variables evade el problema de una regresión espúrea, elimina información de largo plazo.

Para evitar deducir relaciones falsas entre las variables primero se prueba si las series son estacionarias (al menos si lo son entorno a una tendencia determinística). Por tanto, la primera prueba es la de raíz unitaria sobre las series LNYPEA (logaritmo de

¹⁹ Si y₀ = 0 entonces $y_t = \sum_{i=1}^{t} \mathbf{r}^{t-i} \mathbf{m}_i$

Si $|\rho| \ge 1$ la media y la varianza crecen a medida que la muestra crece.

Si $|\rho| < 1$ la media y la varianza son independientes del la muestra temporal

 $^{^{20}}$ Por lo cual se denominaría variable integrada de orden cero I(0))

PIB/PEA), y LNKPEA (logaritmo del capital/PEA). La prueba de Dickey-Fuller aumentada (ADF), cuya hipótesis nula es la existencia de raíz unitaria, fue aplicada a las dos series y sus resultados no rechazan la existencia de una raíz unitaria y sugieren que las series LNYPEA y LNKPEA son integradas de orden 1 (I(1)) (Tablas 4A y 5A, incluidas pruebas de integración de segundo orden).

Utilizando la prueba alterna de KPSS²¹, la hipótesis nula es la existencia de estacionariedad en la serie (inversa a la prueba ADF); con este ejercicio se acepta que LNYPEA sea I(1), pero en el caso de LNKPEA solo acepta no estacionariedad al 10% (confiabilidad de 90%). Esto se puede justificar por el hecho de que las pruebas de raíz unitaria no son perfectamente confiables y, consecuentemente, las variables pueden ser consideradas como $I(1)^{22}$ (**Tablas 4A y 5A**).

5. Pruebas de cointegración

Suponiendo que las dos variables tienen el mismo grado de integración, con una probabilidad de rechazo de la hipótesis correcta de 10%, se puede establecer una relación de largo plazo entre las dos si al menos existe un vector de cointegración, o lo mismo, si existe una combinación lineal de las mismas que sea estacionaria.

Dados los componentes de un vector Y_t (m x 1) se dice que están cointegrados de órdenes "d" y "b", y el vector Y_t se denota por

 $Y_t \sim CI(d,b),$

si todos los componentes de Yt son integrables del mismo orden "d" (I(d)) y existe un vector α , no nulo, tal que

 α ' $Y_t = z_t \sim I(d-b)$ donde b>0

Entonces al vector α se le denomina vector de cointegración. En el caso de dos variables con el mismo grado de integración y un vector de cointegración, los errores z_t serían integrados de orden cero (estacionarios). Con base en un proceso de máxima verosimilitud, el método de Johansen establece el número de vectores o ecuaciones de cointegración existentes.

 ²¹ Kwiatkowski, Phillips, Schmidt y Shin (1992).
 ²² Harris (1995).

Para aplicar la técnica de cointegración de Johansen se requiere seleccionar el nivel apropiado de rezagos de un modelo VAR en los niveles de las variables LNYPEA y LNKPEA con el fin de asegurar términos de errores gaussianos en el vector de corrección de errores –es decir, asegurar que los errores no estén autocorrelacionados, sean normales, etc.-. El número óptimo de rezagos²³ del modelo VAR se establece mediante las siguientes tareas que se deben ejecutar conjuntamente (**Tabla 6A**):

- a. Encontrar el valor mínimo de los criterios de información de Akaike, Schwarz, Hannan-Quinn, y sus recientes modificaciones, RWNAR-Akaike, RWNAR-Schwarz, RWNAR-Hannan-Quinn, los cuales penalizan por exceso de variables, para el conjunto de rezagos incluidos.
- b. Verificar ruido blanco en los errores del modelo VAR seleccionado en el paso a., mediante el estadístico Q de Ljung-Box, el cual mide la existencia de autocorrelación de orden superior a 1 en los errores.
- c. Verificar si los errores del modelo seleccionado tienen una distribución normal multivariada, para lo cual utilizamos la prueba de Doornik y Hansen (1994) para el tercer y cuarto momento de los errores.

Para la mayoría de los criterios el rezago óptimo es 2 para el modelo VAR en niveles y para tales rezagos los errores no están correlacionados (prueba Ljung-Box multivariada cuyo *p-value* es mayor que 0.05) y se distribuyen normalmente (prueba de Doornik y Hansen cuyo *p-value* también es mayor a 0.05).

Si las dos variables son integradas de orden 1 (I(1)) se puede establecer una relación de largo plazo entre las dos si al menos existe un vector de cointegración, o lo mismo, una combinación lineal de las dos series cuyo residuo sea estacionario. El modelo de cointegración se puede formular como un vector que incluye relaciones tanto de corto como de largo plazo. Así, el modelo presentado en la ecuación (7) de la sección 3.3 se transforma en un vector de corrección de errores, VEC, que tiene la siguiente forma:

(12) $\Delta y_t = \varphi_{11} \Delta y_{t-1} + \varphi_{12} \Delta k_{t-1} + \lambda_1 [y_{t-1} - \alpha k_{t-1} - \mu - \beta t] + \varepsilon_{1t}$

²³ Para saber cuantas variables del pasado se introducen en el Vector de Corrección de Errores: (t-1), (t-2),...(t- n).

$$\Delta k_t = \varphi_{21} \Delta y_{t-1} + \varphi_{22} \Delta k_{t-1} + \lambda_2 [y_{t-1} - \alpha k_{t-1} - \mu - \beta t] + \varepsilon_{2t}$$

Siendo $\beta = (1-\alpha) \delta$

Así, la relación entre el producto y el capital por trabajador debe girar alrededor de una constante, una tendencia determinística y un nivel de capital por trabajador si los valores absolutos de los coeficientes ϕ_{ij} y los λ_i son menores que 1. Ahora bien, como el método de cointegración de Johansen utiliza una estimación mediante máxima verosimilitud y dada la propiedad de invarianza de los estimadores de máxima verosimilitud, entonces:

$$\hat{\delta} = \frac{\hat{\beta}}{(1-\hat{\alpha})}$$

y puesto que $\delta = \ln(1+g)$, entonces:

$$(e^{\delta}-1)=\hat{g}$$

Los coeficientes φ_{11} , φ_{12} , φ_{21} , φ_{22} reflejan el impacto de corto plazo de cambios en las variables en t-1. De igual forma, λ_1 y λ_2 representan velocidades de ajuste a un desequilibrio entre el producto y sus determinantes de largo plazo. Mientras, α , μ y β son los coeficientes de largo plazo.

El problema típico que se enfrenta en cointegración es probar si $\lambda_1 = 0$ o $\lambda_2 = 0$. Si $\lambda_1 \neq 0$ y $\lambda_2 = 0$, entonces hay un solo vector de cointegración²⁴; pero si los dos λ son distintos de cero, hay dos vectores de cointegración.

Para el período 1925-1994 se rechaza cualquier cointegración a un nivel de significancia del 10% (TABLA 7A) o, de igual forma, en ese período no se evidencia una relación de largo plazo entre las variables. Si las dos variables son I(1) al 90% de acuerdo con las pruebas ADF y KPSS (Anexos), entonces se pueden diferenciar las variables y analizar su relación en una regresión por mínimos cuadrados²⁵ (MC). La regresión por MC a realizar es la siguiente:

(13) $dy_t = (1-\alpha)\delta + \alpha dk_t$

donde:

 $dy_t = \ln y_t \cdot \ln y_{t-1}$

²⁴ De igual forma sucedería si $\lambda_2 \neq 0$ y $\lambda_1 = 0$ ²⁵ También podría denominarse mínimos cuadrados restringidos porque se impone una forma específica.

 $dk_t = \ln k_t - \ln k_{t-1}$ $\delta = \ln(1+g)$

Los resultados de la regresión por mínimos cuadrados restringidos se encuentran en la **Tabla 8A**, donde se analizan los períodos 1926-1994 y 1950-1994. Con estos resultados se sustenta la sección 3.3. de la parte principal de este documento.

Se encontró una relación de cointegración para el período 1925-1981²⁶ (**Tabla 9A**); además, se realizó recursivamente el ejercicio, disminuyendo uno a uno los años y la relación de cointegración se mantuvo hasta el período 1925-1960, pero no se sostuvo para el período 1925-1959 (**Tabla 10A**). El coeficiente α se mantuvo estable, alrededor de 0.42, al igual que la tasa de crecimiento de la eficiencia de la población laboral, g, alrededor de 2.80%²⁷ (**Tabla 11A**). Sobre el análisis de la estabilidad de los coeficientes léase el Anexo 8.

6. Hipótesis especiales en la cointegración

6.1. Prueba de exclusión

La prueba de exclusión se realiza para observar cual es el número de variables válidas dentro del vector de cointegración, pues cuando se analiza un modelo VAR existe la posibilidad de que solo un subconjunto de variables sea necesario dentro del espacio de cointegración. Así, la hipótesis nula es: "la variable no es necesaria para obtener relaciones estacionarias de largo plazo al 95% de confianza". Entonces, si se define matricialmente el VEC de la siguiente manera.

(14)

²⁶ Para el período 1925-1981 se realizaron las pruebas de raíz unitaria correspondientes, las cuales se encuentran en los Anexos-Tablas 4A y 5A, y en el Anexo-Tabla 6A se muestra la escogencia del rezago óptimo para el VAR.

²⁷ Una explicación mas detallada de la estabilidad de los coeficientes se realiza en el Anexo 6.

$$\begin{bmatrix} \Delta y_t \\ \Delta k_t \end{bmatrix} = \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix} \begin{bmatrix} \Delta y_{t-1} \\ \Delta k_{t-1} \end{bmatrix} + \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} [\eta_1 & \eta_2 & \eta_3 & \eta_4] \begin{bmatrix} y_{t-1} \\ k_{t-1} \\ \mu \\ t \end{bmatrix} + \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \end{bmatrix}$$

y según nuestro modelo $\eta_1 = 1$ $\eta_2 = -\alpha$ $\eta_3 = -1$ $\eta_4 = -\beta$

Y si, por ejemplo, si la prueba cuestiona que k_{t-1} no es necesaria para obtener relaciones estacionarias de largo plazo, entonces, en este caso la hipótesis nula es que $\eta_2=-\alpha=0$. De igual forma, si la prueba cuestiona que la tendencia no es necesaria para obtener relaciones estacionarias de largo plazo, entonces, en este caso la hipótesis nula es que $\eta_4=\beta=0$.

En este caso todas las variables son necesarias dentro del vector de cointegración, incluso la tendencia, en todos los subperíodos de la muestra (**Tabla 12A**).

6.2. Prueba de estacionariedad multivariada (Hansen y Juselius)

Usualmente se verifica la estacionariedad con pruebas univariadas tipo ADF o KPSS. Sin embargo, esta es una prueba multivariada bajo la cual la hipótesis nula es: "existe estacionareidad dado el vector de cointegración", en oposición al test univariado de Dickey-Fuller cuya hipótesis nula es la de "no estacionareidad de la serie". Además esta prueba es una χ^2 , mientras que el test univariado tiene una distribución distinta encontrada por Dickey y Fuller.

Según esta prueba, las variables y_t (LNYPEA) y k_t (LNKPEA) son no estacionarias para todos los subperíodos, dado el espacio de cointegración (**Tabla 12A**).

6.3. Exogeneidad débil para los parámetros de largo plazo

La prueba de exogeneidad débil es una hipótesis sobre las filas de la matriz λ (en nuestro caso el vector λ), cuando los parámetros de interés son los parámetros de largo

plazo α y β . Entonces, la condición para que LNKPEA sea exógena es que $\lambda_2=0$ y esto implica que Δ LNKPEA no contiene información sobre los parámetros de largo plazo de η (siendo η el vector de coeficientes de largo plazo).

Según los resultados, se acepta que la variable LNKPEA es exógenamente débil para los parámetros de largo plazo α y β (**Tabla 12A**).

7. ¿Es endógeno el producto per cápita? (prueba de exogeneidad fuerte)

Sea :

(15) $y_t = \psi_0 + \psi_1 x_t + \psi_2 y_{t-1} + u_t$

si x_t es estocástico, el proceso de generación de datos puede estar dado por :

(16) $x_t = \xi x_{t-1} + \varepsilon_t$ $|\xi| < 1 \quad y \quad \varepsilon_t \sim NIID (0, \sigma^2)$

Si μ_t y ε_t no están correlacionadas, se puede decir que la covariancia de los dos errores es cero (E($\mu_t \varepsilon_s$)=0 para todo t y s). De esta manera es posible tratar x_t como si fuera fija e independiente de u_t (así, la covarianza de x_t y u_t es cero: E(x_t, u_t,)=0) con el propósito de estimar la ecuación (15). Así x_t se puede considerar como exógena fuerte en términos de la ecuación (15) y decir que x_t causa a y_t en el sentido de Granger.

Si (16) es reformulado como:

(17) $x_t = \xi_1 x_{t-1} + \xi_2 y_{t-1} + \varepsilon_t$

se sigue cumpliendo que $E(x_t, u_t)=0$, pero como los valores pasados de y_t ahora determinan a x_t , entonces x_t solo puede ser considerada como exógena débil en el modelo (15). Esto quiere decir que x_t todavía causa a y_t , pero no el sentido de Granger, porque los valores rezagados de y_t determinan x_t .

En términos prácticos, la exogeneidad fuerte se cumple cuando habiendo encontrado exogeneidad débil también se cumple la prueba de no causalidad de Granger de y con respecto a x.

La aproximación de Granger (1969) al problema de saber si x causa y se utiliza para observar cuanto del valor actual de y puede ser explicado por valores pasados de y; luego se observa si añadiendo valores rezagados de x se puede mejorar la explicación. Si los coeficientes de x rezagados son estadísticamente significativos en la ecuación de y, entonces x causa a y en el sentido de Granger.

Al realizar la prueba de causalidad tipo Granger para los períodos 1925-94 y 1925-81 no se puede rechazar la hipótesis "LNKPEA no causa LNYPEA en el sentido de Granger" pero si se puede rechazar la hipótesis "LNYPEA no causa LNKPEA en el sentido de Granger". Así la causalidad de Granger corre en un solo sentido de LNYPEA a LNKPEA y no en sentido contrario. Por lo tanto, queda demostrado que el capital per cápita es una variable exógena débil pero no exógena fuerte (**Tabla 13A**).

8. Prueba de estabilidad de los coeficientes

8.1. Estabilidad de α

Estimando un VEC recursivo en donde se añade un año adicional en cada nueva estimación, se calculó el coeficiente α y se encontró que es estable en el período en el cual se obtiene cointegración (1925-1981), pero no en períodos anteriores a 1925-1960 o en períodos que incluyan años posteriores a 1981 (**Gráfico 2A y Tabla 11A**).

8.2 Estabilidad de $\delta(y, por ende, de g)$

También con un VEC recursivo se calculó la estabilidad del coeficiente de la tendencia, β , siendo estable entre los subperiodos 1927-1954 y 1927-1981 (**Gráfico 3A**). La tasa de crecimiento de la eficiencia laboral en el VEC recursivo es baja inicialmente hasta 1954 y se vuelve estable en el periodo de cointegración (**Gráfico 4A**).

8.3 Estabilidad del conjunto de coeficientes

Con una estimación recursiva, el programa CATS realiza una prueba para el conjunto de coeficientes del vector de cointegración. La prueba permite apreciar dos características de los coeficientes del vector dependiendo de sí se escoge el período completo de la estimación o una submuestra de éste. La primera característica del vector que se puede observar mediante la prueba es la ubicación del modelo dentro o fuera del espacio de cointegración; la segunda característica observable es la estabilidad de los coeficientes.

La primera opción de la prueba, con la cual se verifica la constancia del espacio de cointegración, toma el período completo y estima recursivamente con una ventana muestral que elimina año tras año. La prueba se distribuye asindóticamente como una χ^2 con 1 grado de libertad según nuestro caso²⁸. Como este test ha sido re-escalonado de manera tal que la unidad corresponde a la prueba con 5% de significancia, entonces, si Z(t) y R(t)²⁹ están por debajo de la unidad se puede decir que el modelo identificado se encuentra en el espacio de cointegración en todas las submuestras. En el **Gráfico 5A** se muestra la prueba para el período 1925-1981, estimando recursivamente hacia atrás hasta 1950. Como todos los valores se ubican por debajo de 1 se puede concluir que el modelo identificado con constante y tendencia se encuentra dentro del espacio de cointegración en todos los subperíodos.

²⁸ Los grados de libertad están determinados por la siguiente ecuación: (ρ- r)r, siendo ρ el número de variables y r el rango o número de vectores cointegrados.

 $^{^{29}}$ Z(t) corresponde al modelo VEC completo con efectos de corto y largo plazo, $\beta' z_t$ muestra el desequilibrio actual como una función de las dinámicas de corto y largo plazo, R(t) es el vector de los residuos y $\beta' R_t$ es el desequilibrio actual en función de los efectos de largo plazo. "Beta" en el manual de CATS corresponde al vector (ó la matriz) de coeficientes del vector de cointegración.

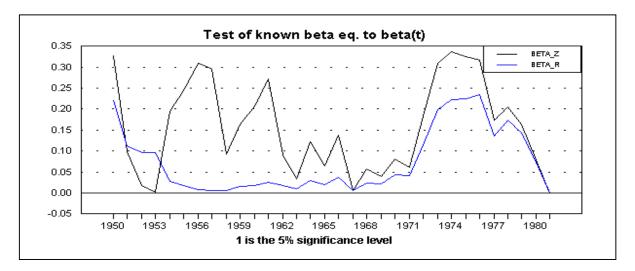
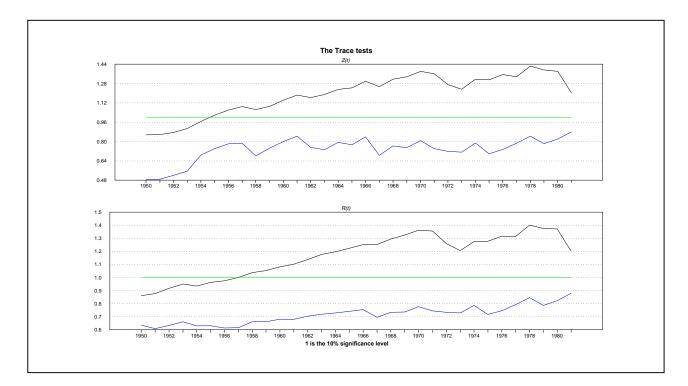



Gráfico 5A (constancia del espacio de cointegración)

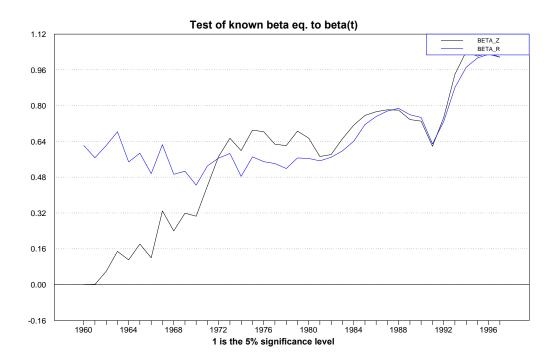

La prueba de la traza representada en el Gráfico 6A revela el número de veces que el test estadístico está por encima de la unidad verificando así el grado de cointegración del modelo especificado, el cual en este caso es 1 a partir de 1954.

Gráfico 6A (prueba de la traza para verificar el rango de cointegración)

La segunda opción estima el modelo partiendo de una submuestra y con una ventana muestral va añadiendo año tras año recursivamente. Con este método revisa si existe un quiebre estructural en algún punto. De igual forma, el *test* es equivalente al anterior tal que la unidad corresponde a la prueba con 5% de significancia. Entonces, partiendo de una submuestra 1925-1960 y observando el **Gráfico 7A**, si Z(t) y R(t) están por debajo de la unidad se puede decir que los coeficientes del vector de cointegración son estables; según el gráfico los coeficientes son estables hasta 1994, año a partir del cual existe un quiebre estructural.

Con la misma segunda opción con la que se estima el modelo partiendo de una submuestra que se amplía recursivamente, la prueba de la traza representada en el **Gráfico 8A** evidencia un grado de cointegración igual a 1 que sólo se sostiene hasta 1982.

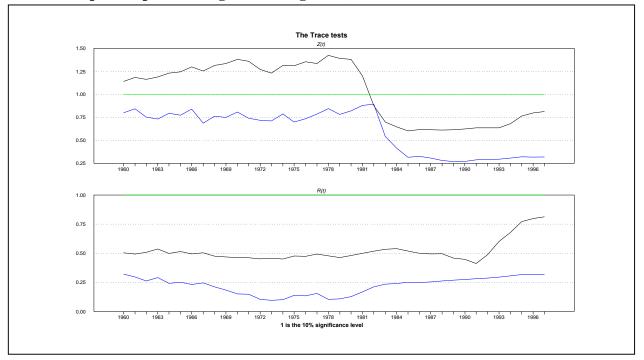


Gráfico 8A (prueba para el rango de cointegración)

REFERENCIAS (incluye texto, anexos y tablas)

- Barrios, Adriana, Martha Luz Henao, Carlos Esteban Posada, Fanny Mercedes Valderrama y Diego Mauricio Vásquez; "Empleo y capital en Colombia: nuevas estimaciones (1950-1992)". Archivos de Macroeconomía (DNP), No. 15 (1993).
- Barro, Robert J. y Xavier Sala-i-Martin; *Economic Growth*; McGraw-Hill, Inc. 1995.
- **CEPAL**; Análisis y proyecciones del desarrollo económico. El desarrollo económico de Colombia. Anexo estadístico, DANE, 1957.
- Clavijo, Sergio; "Crecimiento económico y productividad en Colombia: una perspectiva de largo plazo (1957-1994)", Archivos de Macroeconomía (DNP), No. 30 (1994).
- Crafts, Nicholas; "East Asian growth before and after crisis"; *IMF Staff papers*, Vol. 46, No 2 (Junio 1999).
- Departamento Administrativo Nacional, DANE; Nueva base de cuentas nacionales, Resultados 1994-1995, (Mayo 1999).
- Engle, Robert F., David F. Hendry y Jean-Francois Richard; "Exogeneity". *Econometrica*, 51 (1983).
- Flórez, Carmen Elisa; Las Transformaciones Socio-Demográficas en Colombia durante el siglo XX. Documento CEDE presentado al Banco de la República (Agosto 1998).
- Granger, C. W. J.; "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods", *Econometrica*, 37 (1969).
- GRECO (Grupo de Estudios del Crecimiento Económico Colombiano); "El desempeño macroeconómico colombiano –series estadísticas (1905-1997)- Segunda Versión". *Borradores de Economía* (Banco de la República), No. 121 (Febrero 1999).
- Greenwood, Jeremy y Boyan Jovañovic; "Accounting for growth"; *NBER working paper 6647* (Julio 1998)
- Hall, Robert y Charles H. Jones; "Why do some countries produce so much more output per worker than others?"; *NBER working paper 6564* (mayo 1998)

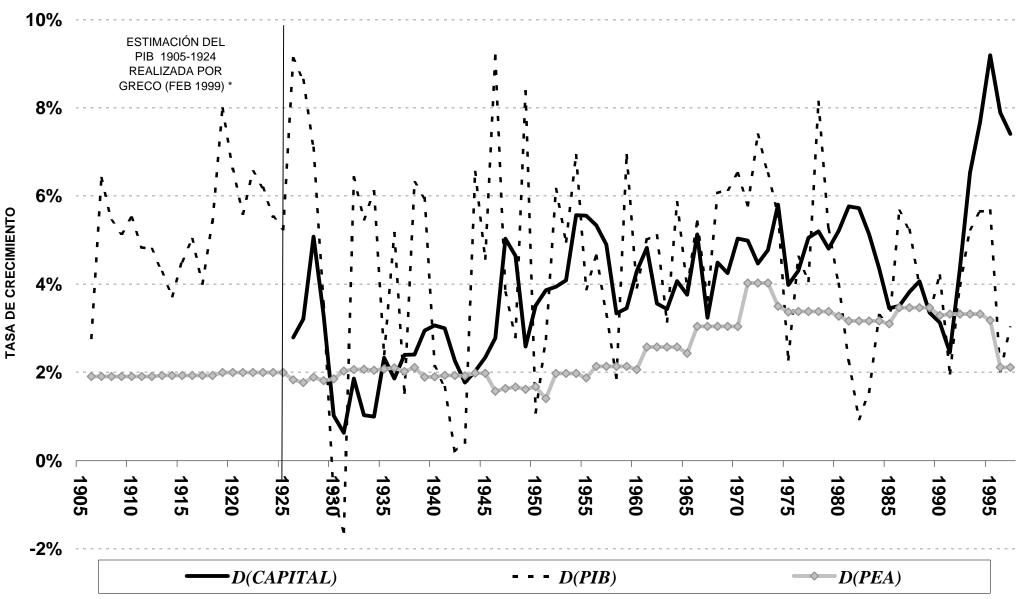
- Hamilton, James D. y Josefina Monteagudo,; "Augmented Solow model and productivity slowdown"; *Journal of Monetary Economics*, 42, (1998)
- Harris Richard. I.D.; Using Cointegration Analysis in Econometric Modelling. Prentice Hall /Harvester Wheatsheaf, 1995.
- Holtz-Eakin, Douglas; "Solow and the states: capital accumulation, productivity and economic growth", *NBER working paper* 4144 (1992).
- Johansen, Soren y Katarina Juselius; "Maximum Likelihood Estimation and Inferences on Cointegration—with applications to the demand for money," *Oxford Bulletin of Economics and Statistics*, 52 (1990).
- Johansen, Soren. Likelihood-based Inference in Cointegrated Vector Autoregressive Models, Oxford University Press, 1995.
- Johansen, Soren; "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," *Econometrica*, 59 (1991).
- Kwiatkowski Denis, Peter C.B. Phillips, Peter Schmidt y Yongcheol Shin; "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?", *Journal of Econometrics*, 54 (1992).
- López Alejandro, Carolina Gómez y Norberto Rodríguez; "La caída de la tasa de ahorro en Colombia durante los años noventa: evidencia a partir de una base de datos para el período 1950-1993". *Borradores Semanales de Economía* (Banco de la República), No. 57 (1996).
- Maddison, Angus; *Monitoring the world economy 1820-1992*; OEDC Developing Centre Studies , 1995.
- Maddison, Angus; Long-term trends in Latin American economic development; Interamerican Delopment Bank, 1991.
- Mankiw, N. Gregory, David Romer y David Weil; "A contribution to the empirics of economic growth"; *Quarterly Journal of Economics*, 107 (Mayo, 1991)
- Minami, Ryōshin; The Economic Development of Japan. A Quantitative Study; St. Martin's Press, New York, 1986.

- **Obstfeld, Maurice y Kenneth Rogoff**; *Foundations of International Macroeconomics*, MIT Press, Cambridge (Ma), 1996.
- Ohkawa, Kazushi y Henry Rosovsky; *Japanese economic growth: trend acceleration in the twentieth century;* Stanford University Press and Oxford University Press, 1973.
- Posada, Carlos Esteban; "Productividad, crecimiento y ciclos en la economía colombiana (1967 1992)"; *Archivos de Macroeconomía* (DNP), No. 16 (1993).
- Ramírez, Manuel y Fernando Jaramillo; "Los determinantes de la productividad total de los factores en Colombia" en *El crecimiento de la productividad en Colombia* (Ricardo Chica, coordinador), DNP- Colombia -Fonade, 1996.
- Rincón, Augusto; "Crecimiento económico en la América Latina. Estudio basado en el modelo neoclásico", *El Trimestre Económico*, Vol. LXV, No. 259 (1998).
- Sánchez, Fabio, Jorge Iván Rodríguez y Jairo Nuñez, "Evolución y determinantes de la productividad en Colombia: un análisis global y sectorial" en *El crecimiento de la productividad en Colombia* (Ricardo Chica, coordinador), DNP -Colombia- Fonade, 1996.
- Sarel, Michael; "Growth in East Asia: What we can and what we cannot infer"; IMF Working Paper 95/98, 1997.
- Solow, Robert M.; "A contribution to the theory of economic growth"; *Quarterly Journal of Economics*, No. 70, 1, (Febrero 1956).
- Solow, Robert M.; Growth theory an exposition- (The Radcliffe lectures delivered in the University of Warwick, 1969, and Nobel Prize lecture, 1987); Oxford University Press, 1987.
- Summers, Robert y Alan Heston; "The Penn World Tables (Mark 5): An expanded set of international comparisons"; *Quarterly Journal of Economics*, No 106, (1991)
- Summers, Robert y Alan Heston; "The Penn World Tables (Version 5.5"; disponible en diskette en el National Bureau of Economic Research, Cambridge, MA. (1993)
- Swan, Trevor; "Economic growth and capital accumulation" Economic Record, No. 32 (Noviembre 1956).

• Young, Alwyn; "Paasche vs Laspeyres: the elasticity of substitution and bias in measures of TFP growth"; *NBER working paper 6663* (julio 1998).

ANEXO - Tabla 1 A

		EXPLICACIÓN D	E LAS SE	RIES		
Nombre d	de la serie	<u>Valores en :</u>	<u>Fuente</u>			
CAPITAL		Millones de Pesos de 1975	Barrios et al. (1993) retrapolado desde 1950 con las tasas de crecimiento de la serie CEPAL (1957). La actualización de datos a partir de 1990 se realiza utilizando datos de			
				itas Nacionales de Colombia, siguiendo la misma		
				de Barrios et al. (1993).		
			1994 - 1997: 1994			
			1994 1995 - 1997:	son provisionales son provectados		
PIB	Producto Interno Bruto	Millones de Pesos de 1975		e=1975) 1905-1997. Propuesta GRECO (1999)		
			1905-1924:	con el promedio de las tasas de crecimiento de las estimaciones con funciones de demanda de dinero y de comercio exterior se retrapoló el PIB a partir de 1925 (estimación GRECO 1999).		
			1925-1949:	con las tasas de crecimiento del PIB real construido por la CEPAL (1957, cuadro No. 1) se retrapoló el PIB real esti- mado por López et al. (1996, basado en Cuentas Nacionales).		
			1950-1993:	fuente: López et al. (1996)		
			1994-1997:	datos actualizados con estimaciones del DANE.		
			1995 - 1997:	son proyectados		
PEA	Población Económicamente Activa	Número de personas		en Elisa (1998)		
				asada en datos al 30 de junio de cada año.		
				de la PEA se basa en la relación observada de PEA/PT de		
				roporción luego aplicada a la población total estimada por		
				; incluye población rural y urbana.		
POBTOTAL	Población total	Número de personas	Flórez, Carmo	en Elisa (1998)		
KPEA	CAPITAL/PEA			r persona económicamente activa, medido en pesos de 1975 PITAL*1'000,000/pea)		
LNKPEA	logaritmo natural de kpea					
D(KPEA)	tasa de crecimiento de capital per capita		Diferencia de			
YPEA	PIB/PEA			erno Bruto por persona económicamente activa		
				esos de 1975.		
			fórmula: ((PIE	3*1'000,000)/pea)		
	logaritmo natural de pibpea					
D(YPEA)	tasa de crecimiento de PIB per capita		Diferencia de	logaritmos		


ANEXO - T	abla 2A
-----------	---------

						5	SERIES UTILIZ	ADAS						
	CAPITAL	D(CAPITAL)	PIB	D(PIB)	PEA	D(PEA)	POBTOTAL	D(POBTOT)	KPEA	LNKPEA	D(KPEA)	YPEA	LNYPEA	D(YPEA)
1905	#N/A		14.148		1.694.072		4.737.588		#N/A	#N/A	#N/A	8.352	9,0302	#N/A
1906	#N/A		14.547	2,78%	1.726.740	1,91%	4.828.948	1,91%	#N/A	#N/A	#N/A	8.425	9,0389	0,87%
1907	#N/A		15.509	6,40%	1.760.038	1,91%	4.922.069	1,91%	#N/A	#N/A	#N/A	8.812	9,0839	4,49%
1908	#N/A		16.376	5,44%	1.793.979	1,91%	5.016.985	1,91%	#N/A	#N/A	#N/A	9.128	9,1191	3,53%
1909	#N/A		17.241	5,15%	1.828.574	1,91%	5.113.732	1,91%	#N/A	#N/A	#N/A	9.428	9,1515	3,24%
1910	#N/A		18.217	5,51%	1.863.836	1,91%	5.212.345	1,91%	#N/A	#N/A	#N/A	9.774	9,1875	3,60%
1911	#N/A		19.120	4,84%	1.899.778	1,91%	5.312.859	1,91%	#N/A	#N/A	#N/A	10.064	9,2168	2,93%
1912	#N/A		20.059	4,80%	1.936.413	1,91%	5.415.312	1,91%	#N/A	#N/A	#N/A	10.359	9,2456	2,89%
1913	#N/A		20.935	4,27%	1.974.170	1,93%	5.520.903	1,93%	#N/A	#N/A	#N/A	10.605	9,2690	2,34%
1914	#N/A		21.731	3,73%	2.012.664	1,93%	5.628.554	1,93%	#N/A	#N/A	#N/A	10.797	9,2870	1,80%
1915	#N/A		22.735	4,52%	2.051.909	1,93%	5.738.303	1,93%	#N/A	#N/A	#N/A	11.080	9,3129	2,59%
1916	#N/A		23.906	5,02%	2.091.918	1,93%	5.850.193	1,93%	#N/A	#N/A	#N/A	11.428	9,3438	3,09%
1917	#N/A		24.886	4,02%	2.132.708	1,93%	5.964.264	1,93%	#N/A	#N/A	#N/A	11.669	9,3647	2,09%
1918	#N/A		26.268	5,41%	2.174.293	1,93%	6.080.559	1,93%	#N/A	#N/A	#N/A	12.081	9,3994	3,48%
1919	#N/A		28.451	7,98%	2.218.238	2,00%	6.203.455	2,00%	#N/A	#N/A	#N/A	12.826	9,4592	5,98%
1920	#N/A		30.396	6,61%	2.263.071	2,00%	6.328.835	2,00%	#N/A	#N/A	#N/A	13.431	9,5053	4,61%
1921	#N/A		32.146	5,60%	2.308.811	2,00%	6.456.749	2,00%	#N/A	#N/A	#N/A	13.923	9,5413	3,60%
1922	#N/A		34.323	6,55%	2.355.475	2,00%	6.587.248	2,00%	#N/A	#N/A	#N/A	14.571	9,5868	4,55%
1923	#N/A		36.513	6,19%	2.403.082	2,00%	6.720.384	2,00%	#N/A	#N/A	#N/A	15.194	9,6287	4,18%
1924	#N/A		38.587	5,53%	2.451.651	2,00%	6.856.212	2,00%	#N/A	#N/A	#N/A	15.739	9,6639	3,53%
1925	187.511		40.669	5,25%	2.501.202	2,00%	6.994.784	2,00%	74.968	11,2248	#N/A	16.260	9,6964	3,25%
1926	192.824	2,79%	44.552	9,12%	2.547.447	1,83%	7.136.158	2,00%	75.693	11,2344	0,96	17.489	9,7693	7,29
1927	199.114	3,21%	48.565	8,62%	2.593.008	1,77%	7.280.389	2,00%	76.789	11,2488	1,44	18.729	9,8378	6,85
1928	209.491	5,08%	52.132	7,09%	2.642.496	1,89%	7.427.535	2,00%	79.278	11,2807	3,19	19.728	9,8898	5,20
1929	216.510	3,30%	54.008	3,54%	2.690.895	1,81%	7.577.654	2,00%	80.460	11,2955	1,48	20.071	9,9070	1,72
1930	218.731	1,02%	53.544	-0,86%	2.741.281	1,86%	7.730.808	2,00%	79.791	11,2872	-0,83	19.532	9,8798	-2,72
1931	220.117	0,63%	52.689	-1,61%	2.797.594	2,03%	7.887.058	2,00%	78.681	11,2732	-1,40	18.834	9,8434	-3,64
1932 1933	224.257	1,86%	56.182 59.340	6,42% 5.47%	2.855.992	2,07%	8.046.465	2,00%	78.521	11,2711	-0,20	19.672	9,8869 9,9209	4,35
1933	226.584 228.859	1,03%	63.075	6,10%	2.915.765	2,07%	8.209.095 8.375.011	2,00%	77.710	11,2607	-1,04	20.352	9,9209	3,40
1934	228.859	1,00%	64.617	2 42%	3.038.758	2,05%	8.544.280	2,00%	76.896	11,2502	-1,05	21.193	9,9614	4,05
1936	234.200	1.86%	68.035	5.16%	3.103.442	2,08%	8 716 971	2,00%	76.904	11,2527	-0.24	21.204	9,9648	3.05
1930	238.007	2 40%	69.094	1.54%	3.103.442	2,11%	8 893 152	2,00%	77 193	11,2503	-0,24	21.922	9,9955	-0.48
1938	250.412	2,40%	73.590	6.30%	3.234.430	2,02%	9.072.894	2,00%	77.421	11,2570	0,30	22.752	10.0324	4.19
1939	257.910	2,95%	78.105	5.95%	3.296.286	1.89%	9.294.207	2,41%	78.243	11,2576	1.06	23.695	10,0324	4,15
1940	265.942	3,07%	79.795	2,14%	3.359.598	1,03%	9.520.918	2,41%	79.159	11,2792	1,00	23.751	10,0754	0,24
1941	274.044	3,00%	81.133	1,66%	3.425.242	1,94%	9.753.160	2,41%	80.007	11,2899	1,10	23.687	10,0727	-0,27
1942	280.334	2,27%	81.300	0.21%	3.425.242	1,94%	9.991.066	2,41%	80.279	11,2899	0.34	23.087	10,0727	-0,27
1943	285.345	1,77%	81.635	0,21%	3.559.868	1,93%	10.234.776	2,41%	80.156	11,2933	-0,15	22.932	10,0334	-1,72
1944	291.191	2,03%	87.152	6,54%	3.631.269	1,99%	10.484.430	2,41%	80.190	11,2917	0.04	24.001	10,0403	4,55
1945	298.085	2,34%	91.240	4.58%	3.703.933	1,98%	10.740.174	2,41%	80.478	11,2922	0,36	24.633	10,0000	2,60
1946	306.489	2,78%	100.009	9,18%	3.762.755	1,58%	11.002.156	2,41%	81.453	11,2078	1,20	26.579	10,1879	7,60
1947	322.303	5,03%	103.892	3,81%	3.824.904	1,64%	11.270.529	2,41%	84.264	11,3417	3,39	27.162	10,2096	2,17
1948	337.620	4,64%	106.846	2,80%	3.889.375	1,67%	11.545.449	2,41%	86.806	11,3714	2,97	27.471	10,2209	1,13
1949	346.469	2,59%	116.172	8,37%	3.952.926	1,62%	11.827.074	2,41%	87.649	11,3811	0.97	29.389	10,2884	6,75
1950	358.871	3,52%	117.454	1,10%	4.019.784	1,68%	12.115.569	2,41%	89.276	11,3995	1,84	29.219	10,2826	-0,58
1951	373.007	3,86%	120.742	2,76%	4.076.863	1,41%	12.411.101	2,41%	91.494	11,4240	2,45	29.616	10,2961	1,35
1952	388.016	3,94%	128.408	6,16%	4.158.392	1,98%	12.786.527	2,98%	93.309	11,4437	1,96	30.879	10,3378	4,18
1953	404.217	4,09%	134.953	4,97%	4.241.550	1,98%	13.173.310	2,98%	95.299	11,4648	2,11	31.817	10,3678	2,99
1954	427.346	5,56%	144.625	6,92%	4.326.372	1,98%	13.571.793	2,98%	98.777	11,5006	3,58	33.429	10,4172	4,94
1955	451.755	5,55%	150.362	3,89%	4.408.342	1,88%	13.982.329	2,98%	102.477	11,5374	3,68	34.109	10,4373	2,01
1956	476.516	5,34%	157.507	4,64%	4.503.656	2,14%	14.405.284	2,98%	105.806	11,5694	3,20	34.973	10,4623	2,50
1957	500.438	4,90%	162.823	3,32%	4.601.032	2,14%	14.841.033	2,98%	108.766	11,5970	2,76	35.388	10,4741	1,18
1958	517.428	3,34%	165.916	1.88%	4.700.512	2,14%	15.289.964	2,98%	110.079	11,6090	1,20	35.297	10,4716	-0,26
	535 635	3,46%	177.806	6.92%	4.700.312	2,14%	15 752 474	2,98%	111.541	11,6030	1,20	37.026	10,4710	4.78
1959														

						5	SERIES UTILIZ	ADAS						
	CAPITAL	D(CAPITAL)	PIB	D(PIB)	PEA	D(PEA)	POBTOTAL	D(POBTOT)	KPEA	LNKPEA	D(KPEA)	YPEA	LNYPEA	D(YPEA)
1961	586.773	4,82%	194.432	5,01%	5.030.317	2,58%	16.719.888	2,98%	116.647	11,6669	2,25	38.652	10,5624	2,43
1962	608.064	3,56%	204.613	5,10%	5.161.556	2,58%	17.225.652	2,98%	117.806	11,6768	0,99	39.642	10,5876	2,53
1963	629.314	3,44%	211.178	3,16%	5.296.219	2,58%	17.746.715	2,98%	118.823	11,6854	0,86	39.873	10,5935	0,58
1964	655.458	4,07%	223.915	5,86%	5.434.396	2,58%	18.283.540	2,98%	120.613	11,7003	1,49	41.203	10,6263	3,28
1965	680.582	3,76%	232.906	3,94%	5.568.284	2,43%	18.813.059	2,86%	122.225	11,7136	1,33	41.827	10,6413	1,50
1966	716.407	5,13%	245.865	5,41%	5.740.469	3,05%	19.357.913	2,86%	124.799	11,7345	2,08	42.830	10,6650	2,37
1967	740.000	3,24%	254.985	3,64%	5.917.978	3,05%	19.918.547	2,86%	125.043	11,7364	0,19	43.086	10,6710	0,60
1968	774.007	4,49%	270.928	6,07%	6.100.976	3,05%	20.495.418	2,86%	126.866	11,7509	1,45	44.407	10,7012	3,02
1969	807.632	4,25%	288.102	6,15%	6.289.633	3,05%	21.088.996	2,86%	128.407	11,7630	1,21	45.806	10,7322	3,10
1970	849.354	5,04%	307.496	6,51%	6.483.890	3,04%	21.699.764	2,86%	130.995	11,7829	2,00	47.425	10,7669	3,47
1971	892.810	4,99%	325.825	5,79%	6.750.268	4,03%	22.328.222	2,86%	132.263	11,7925	0,96	48.268	10,7845	1,76
1972	933.609	4,47%	350.813	7,39%	7.027.590	4,03%	22.974.881	2,86%	132.849	11,7970	0,44	49.919	10,8182	3,36
1973	979.254	4,77%	374.398	6,51%	7.316.306	4,03%	23.640.267	2,86%	133.845	11,8044	0,75	51.173	10,8430	2,48
1974	1.037.758	5,80%	395.910	5,59%	7.577.147	3,50%	24.198.027	2,33%	136.959	11,8274	2,30	52.251	10,8638	2,08
1975	1.079.950	3,99%	405.108	2,30%	7.836.895	3,37%	24.768.947	2,33%	137.803	11,8336	0,61	51.692	10,8531	-1,07
1976	1.127.464	4,31%	424.263	4,62%	8.106.476	3,38%	25.353.336	2,33%	139.082	11,8428	0,92	52.336	10,8654	1,24
1977	1.185.911	5,05%	441.906	4,07%	8.385.330	3,38%	25.951.514	2,33%	141.427	11,8595	1,67	52.700	10,8724	0,69
1978	1.249.193	5,20%	479.335	8,13%	8.673.777	3,38%	26.563.804	2,33%	144.020	11,8777	1,82	55.263	10,9199	4,75
1979	1.310.717	4,81%	505.119	5,24%	8.972.146	3,38%	27.190.541	2,33%	146.087	11,8920	1,43	56.299	10,9384	1,86
1980	1.380.804	5,21%	525.765	4,01%	9.270.861	3,28%	27.832.065	2,33%	148.940	11,9113	1,93	56.712	10,9457	0,73
1981	1.462.710	5,76%	537.736	2,25%	9.569.363	3,17%	28.488.725	2,33%	152.853	11,9372	2,59	56.194	10,9366	-0,92
1982	1.548.898	5,73%	542.836	0,94%	9.877.476	3,17%	29.160.877	2,33%	156.811	11,9628	2,56	54.957	10,9143	-2,23
1983	1.630.469	5,13%	551.380	1,56%	10.195.509	3,17%	29.848.889	2,33%	159.920	11,9824	1,96	54.081	10,8982	-1,61
1984	1.703.054	4,36%	569.855	3,30%	10.523.782	3,17%	30.553.132	2,33%	161.829	11,9943	1,19	54.149	10,8995	0,13
1985	1.762.893	3,45%	587.561	3,06%	10.855.203	3,10%	31.273.992	2,33%	162.401	11,9978	0,35	54.127	10,8991	-0,04
1986	1.825.814	3,51%	621.781	5,66%	11.238.180	3,47%	31.942.983	2,12%	162.465	11,9982	0,04	55.328	10,9210	2,19
1987	1.896.996	3,82%	655.164	5,23%	11.634.670	3,47%	32.626.286	2,12%	163.047	12,0018	0,36	56.311	10,9387	1,76
1988	1.975.761	4,07%	681.791	3,98%	12.045.148	3,47%	33.324.204	2,12%	164.030	12,0078	0,60	56.603	10,9438	0,52
1989	2.043.215	3,36%	705.068	3,36%	12.470.108	3,47%	34.037.052	2,12%	163.849	12,0067	-0,11	56.541	10,9427	-0,11
1990	2.108.178	3,13%	735.259	4,19%	12.887.441	3,29%	34.765.149	2,12%	163.584	12,0051	-0,16	57.052	10,9517	0,90
1991	2.160.541	2,45%	749.976	1,98%	13.322.910	3,32%	35.508.821	2,12%	162.167	11,9964	-0,87	56.292	10,9383	-1,34
1992	2.256.898	4,36%	780.312	3,97%	13.773.093	3,32%	36.268.401	2,12%	163.863	12,0068	1,04	56.655	10,9447	0,64
1993	2.409.150	6,53%	822.371	5,25%	14.238.488	3,32%	37.044.229	2,12%	169.200	12,0388	3,21	57.757	10,9640	1,93
1994	2.601.455	7,68%	870.151	5,65%	14.719.609	3,32%	37.130.566	0,23%	176.734	12,0824	4,36	59.115	10,9872	2,32
1995	2.851.891	9,19%	920.880	5,67%	15.195.619	3,18%	37.924.837	2,12%	187.678	12,1425	6,01	60.602	11,0121	2,48
1996	3.086.051	7,89%	939.758	2,03%	15.520.673	2,12%	38.736.099	2,12%	198.835	12,2002	5,77	60.549	11,0112	-0,09
1997	3.323.310	7,41%	968.515	3,01%	15.852.680	2,12%	39.564.714	2,12%	209.637	12,2531	5,29	61.095	11,0202	0,90

ANEXO - Tabla 2A

Anexo Gráfico 1

TASAS DE CRECIMIENTO DEL CAPITAL, EL PIB Y LA PEA

*con base en el promedio simple de los resultados de dos estimaciónes: la primera, una función de demanda de dinero y la segunda, una función de comercio exterior.

Anexo Tabla 2A-A

DATOS DE POBLACIÓN Y SUS CÁLCULOS

TOMADOS DE FLOREZ (1998)

	Población Total	Tasa bruta de participación	PEA
1905	4.737.588	35,76	1.694.072
1906	4.828.948	35,76	1.726.740
1907	4.922.069	35,76	1.760.038
1908	5.016.985	35,76	1.793.979
1909	5.113.732	35,76	1.828.574
1910	5.212.345	35,76	1.863.836
1910	5.312.859	35,76	1.899.778
1911	5.415.312	35,76	1.936.413
1912	5.520.903	35,76	1.930.413
1913	5.628.554	35,76	2.012.664
1914	5.738.303	35,76	2.051.909
1915	5.850.193	35,76	2.091.918
1910	5.964.264	35,76	2.132.708
1917	6.080.559	35,76	2.132.708
1918			
1919	6.203.455 6.328.835	35,76	2.218.238
1920		35,76	2.263.071
	6.456.749	35,76	2.308.811
1922	6.587.248	35,76	2.355.475
1923	6.720.384	35,76	2.403.082
1924	6.856.212	35,76	2.451.651
1925	6.994.784	35,76	2.501.202
1926	7.136.158	35,70	2.547.447
1927	7.280.389	35,62	2.593.008
1928	7.427.535	35,58	2.642.496
1929	7.577.654	35,51	2.690.895
1930	7.730.808	35,46	2.741.281
1931	7.887.058	35,47	2.797.594
1932	8.046.465	35,49	2.855.992
1933	8.209.095	35,52	2.915.765
1934	8.375.011	35,54	2.976.224
1935	8.544.280	35,56	3.038.758
1936	8.716.971	35,60	3.103.442
1937	8.893.152	35,61	3.166.849
1938	9.072.894	35,65	3.234.430
1939	9.294.207	35,47	3.296.286
1940	9.520.918	35,29	3.359.598
1941	9.753.160	35,12	3.425.242
1942	9.991.066	34,95	3.491.994
1943	10.234.776	34,78	3.559.868
1944	10.484.430	34,63	3.631.269
1945	10.740.174	34,49	3.703.933
1946	11.002.156	34,20	3.762.755
1947	11.270.529	33,94	3.824.904
1948	11.545.449	33,69	3.889.375
1949	11.827.074	33,42	3.952.926
1950	12.115.569	33,18	4.019.784
1951	12.411.101	32,85	4.076.863
1952	12.786.527	32,52	4.158.392
1953	13.173.310	32,20	4.241.550
1954	13.571.793	31,88	4.326.372
1955	13.982.329	31,53	4.408.342

SUPUESTO:

PARA OBTENER LA PEA ANTES DE 1925 EL GRECO SUPONE QUE LA TBP ES FIJA ENTRE 1905 Y 1927.

Anexo Tabla 2A-A

	DATO		LACIÓN Y SUS C. Ados de florez (1998)	ÁLCULOS
		Tasa bruta de	ADOS DE FLOREZ (1998)	
	Población Total	participación	PEA	
1956	14.405.284	31,26	4.503.656	
1957	14.841.033	31,00	4.601.032	
1958	15.289.964	30,74	4.700.512	
1959	15.752.474	30,49	4.802.144	
1960	16.228.974	30,21	4.902.415	
1961	16.719.888	30,09	5.030.317	
1962	17.225.652	29,96	5.161.556	
1963	17.746.715	29,84	5.296.219	
1964	18.283.540	29,72	5.434.396	
1965	18.813.059	29,60	5.568.284	
1966	19.357.913	29,65	5.740.469	
1967	19.918.547	29,71	5.917.978	
1968	20.495.418	29,77	6.100.976	
1969	21.088.996	29,82	6.289.633	
1970	21.699.764	29,88	6.483.890	
1971	22.328.222	30,23	6.750.268	
1972	22.974.881	30,59	7.027.590	
1973	23.640.267	30,95	7.316.306	
1974	24.198.027	31,31	7.577.147	
1975	24.768.947	31,64	7.836.895	
1976	25.353.336	31,97	8.106.476	
1977	25.951.514	32,31	8.385.330	
1978	26.563.804	32,65	8.673.777	
1979	27.190.541	33,00	8.972.146	
1980	27.832.065	33,31	9.270.861	
1981	28.488.725	33,59	9.569.363	
1982	29.160.877	33,87	9.877.476	
1983	29.848.889	34,16	10.195.509	
1984	30.553.132	34,44	10.523.782	
1985	31.273.992	34,71	10.855.203	
1986	31.942.983	35,18	11.238.180	
1987	32.626.286	35,66	11.634.670	
1988	33.324.204	36,15	12.045.148	
1989	34.037.052	36,64	12.470.108	
1990	34.765.149	37,07	12.887.441	
1991	35.508.821	37,52	13.322.910	
1992	36.268.401	37,98	13.773.093	
1993	37.044.229	38,44	14.238.488	
1994	37.130.566	38,90	14.444.920	
1995	37.924.837	39,32	14.912.046	
1996	38.736.099	39,32	15.231.034	
1997	39.564.714	39,32	15.556.846	

	Ε	STADÍSTICAS	S DE LAS VARIAI	BLES EN NIV	ELES	
	Muestra: 19	25 - 1997	Muestra: 1925	5 - 1994	Muestra: 1925	5 - 1981
	KPEA	YPEA	KPEA	YPEA	KPEA	YPEA
Media	120.173	39.696	116.680	38.755	105.215	34.561
Mediana	118.866	39.387	114.942	38.085	97.112	32.422
Máximo	212.356	61.887	180.095	60.239	155.760	57.790
Mínimo	76.394	16.569	76.394	16.569	76.394	16.569
Desv. estándar	36.918	14.854	33.434	14.434	25.529	12.643
Asimetría	0,45	0,00	0,29	0,04	0,41	0,38
Curtosis	2,09	1,47	1,64	1,47	1,68	1,82
Jarque-Bera	4,93	7,08	6,37	6,81	5,78	4,67
Probabilidad	0,09	0,03	0,04	0,03	0,06	0,10
	Muestra: 19 D(KPEA)	25 - 1997 D(YPEA)	Muestra: 1925 D(KPEA)	5 - 1994 D(YPEA)	Muestra: 1925 D(KPEA)	5 - 1981 D(YPEA)
Media	1,42%	1,83%	1,24%	1,87%	1,27%	2,21%
Mediana	1,20%	1,86%	1,19%	1,86%	1,21%	2,27%
Máximo	6,01%	7,60%	4,36%	7,60%	3,68%	7,60%
Mínimo	-1,40%	-3,64%	-1,40%	-3,64%	-1,40%	-3,64%
Desv. estándar	1,48%	2,33%	1,23%	2,36%	1,18%	2,40%
Asimetría	0,7715	0,2267	0,1964	0,1954	-0,0452	0,0165
Curtosis	3,8317	3,0240	2,7356	2,9824	2,7422	2,9837
Jarque-Bera	9,2174	0,6184	0,6445	0,4400	0,1742	0,0032
Probabilidad	0,0100	0,7340	0,7245	0,8025	0,9166	0,9984
NOTA:	KPEA YPEA		a económicamente activa. na económicamente activa.			

Anexo Tabla 2A-B

	(INITIONES OF D	esos de 1975)						
	Tasa de	Capital en	Capital en	Nivel	Capital	Tasa de	Capital	Tasa de
Años	Crecimiento Capital Total	Costrucción y Vivienda	Maquinaria y Equipo	de Existencias	Total	Crecimiento K Total	Fijo	Crecimient K Fijo
1.925	CEPAL (%)	1	2	3	4=1+2+3	%	5=1+2	%
1.925	2,83				<u>187.511</u> 192.824			
1.927	3,26				199.114			
1.928	5,21				209.491			
1.929	3,35				216.510			
1.930 1.931	1,03 0,63				218.731 220.117			
1.932	1,88				224.257			
1.933	1,04				226.584			
1.934	1,00				228.859			
1.935 1.936	2,36 1,88				234.260 238.667			
1.930	2,43				238.007	-		
1.938	2,43				250.412			
1.939	2,99				257.910			
1.940	3,11				265.942			
1.941	3,05 2,30				274.044 280.334			
1.942	2,30			<u> </u>	280.334	+		
1.944	2,05				291.191			
1.945	2,37				298.085			
1.946	2,82			<mark> </mark>	306.489			
1.947 1.948	5,16 4,75			<u> </u>	<u>322.303</u> 337.620			
1.949	2,62				346.469			
1.950	3,58	218.426	133.055	7.390	358.871		351.481	
1.951		223.649	137.962	11.396	373.007	3,94	361.611	2,88
1.952 1.953		229.544 236.857	143.484 155.194	14.988 12.166	388.016 404.217	4,02 4,18	373.028 392.051	3,16 5,10
1.953		247.265	168.153	11.928	404.217	5,72	415.418	5,96
1.955		258.433	181.540	11.782	451.755	5,71	439.973	5,91
1.956		269.593	192.126	14.797	476.516	5,48	461.719	4,94
1.957		280.267	193.511	26.660	500.438	5,02	473.778	2,61
1.958		289.818 301.183	194.403 195.180	33.207 39.272	517.428 535.635	3,40 3,52	484.221 496.363	2,20 2,51
1.960		311.617	201.414	46.104	559.135	4,39	513.031	3,36
1.961		323.617	208.436	54.720	586.773	4,94	532.053	3,71
1.962		336.339	214.244	57.481	608.064	3,63	550.583	3,48
1.963 1.964		347.105 358.642	218.627 225.862	63.582 70.954	629.314	3,49 4,15	565.732 584.504	2,75
1.965		370.044	230.621	79.917	655.458 680.582	3,83	600.665	3,32 2,76
1.966		383.019	236.123	97.265	716.407	5,26	619.142	3,08
1.967		399.671	239.950	100.379	740.000	3,29	639.621	3,31
1.968		418.538	246.991	108.478	774.007	4,60	665.529	4,05
1.969		438.940 459.787	252.938 263.866	115.754 125.701	807.632 849.354	4,34 5,17	691.878 723.653	3,96 4,59
1.971		480.264	276.787	135.759	892.810	5,12	757.051	4,62
1.972		499.552	288.741	145.316	933.609	4,57	788.293	4,13
1.973		523.392	299.916	155.946	979.254	4,89	823.308	4,44
1.974 1.975		549.241 572.185	313.208 325.747	175.309 182.018	1.037.758	5,97 4,07	862.449 897.932	4,75 4,11
1.975		596.382	341.858	189.224	1.127.464	4,07	938.240	4,11
1.977		621.754	355.983	208.174	1.185.911	5,18	977.737	4,21
1.978		647.500	374.926	226.767	1.249.193	5,34	1.022.426	4,57
1.979 1.980		671.803 701.065	396.702 422.190	242.212 257.549	1.310.717 1.380.804	4,93 5,35	1.068.505	4,51
1.980		701.065	422.190	257.549	1.380.804	5,35	1.123.255	5,12 5,20
1.982		766.230	474.649	308.019	1.548.898	5,89	1.240.879	5,01
1.983		800.919	498.347	331.203	1.630.469	5,27	1.299.266	4,71
1.984		837.160	519.826	346.068	1.703.054	4,45	1.356.986	4,44
1.985 1.986		875.681 916.504	532.075 547.785	355.137 361.525	1.762.893	3,51 3,57	1.407.756	3,74 4,02
1.987		950.101	569.940	376.955	1.896.996	3,90	1.520.041	3,81
1.988		989.790	595.254	390.717	1.975.761	4,15	1.585.044	4,28
1.989		1.023.453	618.643	401.119	2.043.215	3,41	1.642.096	3,60
1.990		1.051.656	642.808	413.714	2.108.178	3,18	1.694.464	3,19
1.991		1.079.054 1.110.293	658.921 681.827	422.566 464.796	2.160.541 2.256.916	2,48 4,46	1.737.975	2,57 3,12
1.993		1.149.559	734.364	525.245	2.409.168	6,75	1.883.923	5,12
4prov		1.216.509	787.587	609.620	2.613.716	8,49	2.004.096	6,38
95py		1.285.328	841.357	698.697	2.825.383	8,10	2.126.686	6,12
)6py	1	1.346.666	886.334	796.014	3.029.014	7,21	2.233.000	5,00

Datos de 1994 - 1997 tomados de DANE - DNP - UMACRO; 1994 son provisionales, 1995 - 1997 proyectados. Datos 1925-1950: Se retraprolan los datos de Barrios et al. con base en las tasas de crecimiento de Capital total de la CEPAL.

ANEXO - Continuación de la Tabla 3A

	CALCULO DEL CAPITAL PARA CONSTRUCCION Y VIVIENDA Millones de pesos de 1975									
Años	FBKF para construcción y vivienda 1	Deprecia- ción 2	FNKF para construcción y vivienda 3	Capital en construcción y vivienda 4	Tasa de crecimiento del capital					
1.925										
1.926										
1.927 1.928										
1.929										
1.930										
1.931										
1.932 1.933										
1.934										
1.935										
1.936										
1.937 1.938										
1.939										
1.940										
1.941										
1.942 1.943										
1.943										
1.945										
1.946										
1.947 1.948										
1.940										
1.950	10.845	4.236	6.609	218.426						
1.951	9.592	4.369	5.223	223.649	2,39					
1.952	10.368	4.473	5.895	229.544	2,64					
1.953 1.954	11.904 15.146	4.591 4.737	7.313 10.409	236.858 247.266	3,19 4,39					
1.955	16.113	4.945	11.168	258.434	4,52					
1.956	16.329	5.169	11.160	269.594	4,32					
1.957	16.066	5.392	10.674	280.269	3,96					
1.958 1.959	15.156 17.161	5.605 5.796	9.551 11.365	289.819 301.184	3,41 3,92					
1.959	16.512	6.024	10.488	311.672	3,48					
1.961	18.180	6.233	11.947	323.619	3,83					
1.962	19.194	6.472	12.722	336.340	3,93					
1.963 1.964	17.943 18.480	6.727 6.951	11.216 11.529	347.556 359.085	3,33 3,32					
1.964	18.574	7.182	11.392	370.478	3,32					
1.966	20.376	7.410	12.966	383.444	3,50					
1.967	24.312	7.669	16.643	400.087	4,34					
1.968 1.969	26.861 28.773	8.002 8.379	18.859	418.946 439.341	4,71 4,87					
1.969	29.626	8.787	20.394 20.839	460.180	4,07					
1.971	29.672	9.204	20.468	480.648	4,45					
1.972	28.894	9.613	19.281	499.929	4,01					
1.973	33.831	9.999	23.832 25.841	523.762	4,77					
1.974 1.975	36.316 33.929	10.475 10.992	25.841 22.937	549.602 572.539	4,93 4,17					
1.976	35.641	11.451	24.190	596.730	4,23					
1.977	37.300	11.935	25.365	622.095	4,25					
1.978	38.181 37.253	12.442	25.739 24.296	647.834 672.130	4,14					
1.979 1.980	42.698	12.957 13.443	24.296 29.255	672.130 701.386	3,75 4,35					
1.981	46.022	14.028	31.994	733.380	4,56					
1.982	47.825	14.668	33.157	766.537	4,52					
1.983	50.014	15.331	34.683	801.221	4,52					
1.984 1.985	52.259 55.265	16.024 16.749	36.235 38.516	837.455 875.971	4,52 4,60					
1.986	58.336	17.519	40.817	916.788	4,66					
1.987	51.927	18.336	33.591	950.379	3,66					
1.988	58.691	19.008	39.683	990.062	4,18					
1.989 1.990	53.459 48.410	19.801 20.474	33.658 27.936	1.023.720 1.051.656	3,40 2,73					
1.991	48.431	21.033	27.398	1.079.054	2,61					
1.992	52.820	21.581	31.239	1.110.293	2,90					
1.993	61.472	22.206	39.266	1.149.559	3,54					
1994prov 1995py	89.942 93.150	22.991 24.330	66.950 68.819	1.216.509 1.285.328	5,82 5,66					
1995py 1996py	87.045	25.707	61.338	1.346.666	4,77					
1997py	90.332	26.933	63.398	1.410.064	4,71					

ANEXO	- Continuación	de la Tabla 3A
-------	----------------	----------------

			DATO)S BASI(COS PARA E Millones de pes	CL CALCULO I os de 1975	DEL CAPITA	AL	
Años	Tasa de Crecimiento FBKF Total CEPAL (%)	FBKF Construcción y Vivienda 1	FBKF Maquinaria y Equipo 2	FBKF TOTAL 3=1+2	Variación de Existencias 4	Inversión bruta total cepal mill. Pesos 1950	Tasa de Crecimiento inversión bruta CEPAL (%)	Total Inversión Bruta Nacional 5=3+4	Inversión Neta Nacional 6=capital(t)-capital(t-1)
1.925				8.951	1.808	550		10.759	
1.926	24,80			11.170	1.879	684	21,28	13.049	5.313
1.927	20,90			13.505	2.263	810	20,84	15.769	6.290
1.928	18,24			15.969	3.206	990	21,60	19.175	10.377
1.929 1.930	-13,48 -34,89			13.817 8.995	2.412 1.164	835 546	-15,37 -37,40	<u>16.229</u> 10.159	7.019 2.221
1.930	-34,89			7.432	887	446	-37,40	8.319	1.386
1.931	17,77			8.753	1.487	631	23,09	10.240	4.140
1.933	-2,09			8.570	1.147	520	-5,11	9.717	2.328
1.934	1,89			8.732	1.161	524	1,81	9.894	2.274
1.935	14,31			9.982	1.796	622	19,05	11.778	5.402
1.936	10,18			10.999	1.722	670	8,00	12.721	4.407
1.937	15,96			12.754	2.117	771	16,90	14.871	5.793
1.938	2,35			13.054	2.164	789	2,33	15.218	5.952
1.939	14,22			14.910	2.608	903	15,12	17.518	7.498
1.940	-3,97			14.318	2.638	904	-3,20	16.956	8.031
1.941	-4,30			13.703	2.605	894	-3,82	16.308	8.102
1.942	-12,09			12.047	2.137	814	-13,02	14.184	6.290
1.943	6,07			12.778	3.923	951	17,75	16.701	5.011
1.944	8,95			13.921	-1.389	719	-24,96	12.532	5.846
1.945	24,53			17.336	4.723	1.178	76,02	22.059	6.894
1.946	18,34			20.516	-1.649	1.013	-14,47	18.867	8.405
1.947	20,49			24.720	5.038	1.567	57,72	29.758	15.814
1.948	-2,09 -23.80			24.204	4.547	1.511 752	-3,38	28.751	15.316
1.949 1.950		10.845	10 477	18.444 21.322	-5.273	1.466	-54,19	13.171	8.849
1.950	15,60	9.592	10.477 11.560	21.322	5.595 4.006	1.651	104,37	26.917 25.158	12.402 14.136
1.951		10.368	12.420	21.152	3.592	1.574		26.380	14.136
1.953		11.904	18.885	30.789	-2822	1621		27.967	16.201
1.954		15.146	20.719	35.865	-237	1021		35.628	23.129
1.955		16.113	21.795	37.908	-146			37.762	24.409
1.956		16.329	19.662	35.991	3.015			39.006	24.761
1.957		16.066	10.991	27.057	11.863			38.920	23.922
1.958		15.156	10.568	25.724	6.547			32.271	16.990
1.959		17.161	10.497	27.658	6.065			33.723	18.207
1.960		16.512	15.993	32.505	6.832			39.337	23.500
1.961		18.180	17.093	35.273	8.616			43.889	27.638
1.962		19.194	16.230	35.424	2.761			38.185	21.291
1.963		17.493	15.095	32.588	6.101			38.689	21.250
1.964		18.480	18.166	36.646	7.372			44.018	26.144
1.965		18.574	16.052	34.626	8.963			43.589	25.124
1.966		20.376	17.033	37.409	17.348			54.757	35.825
1.967		24.312	15.632	39.944	3.114			43.058	23.593
1.968 1.969		26.861 28.773	19.039 18.296	45.900 47.069	8.100 7.276			54.000 54.345	34.007 33.625
1.969		29.626	23.575	53.201	9.947			63.148	41.722
1.970		29.626	23.575	55.786	9.947			65.844	41.722 43.456
1.972		28.894	25.793	54.687	9.557			64.244	40.799
1.973		33.831	25.612	59.443	10.630			70.073	45.645
1.974		36.316	28.288	64.604	19.363		1	83.967	58.504
1.975		33.929	28.200	62.129	6.709			68.838	42.192
1.976		35.641	32.398	68.039	7.206			75.245	47.514
1.977		37.300	32.118	69.418	18.950			88.368	58.447
1.978		38.181	36.742	74.923	18.593			93.516	63.282
1.979		37.253	40.522	77.775	15.445			93.220	61.524
1.980		42.698	45.323	88.021	15.337			103.358	70.087
1.981		46.022	47.517	93.539	23.498			117.037	81.906
1.982		47.825	48.482	96.307	26.972			123.279	86.188
1.983		50.014	47.430	97.444	23.184			120.628	81.571
1.984		52.259	46.397	98.656	14.865			113.521	72.585
1.985		55.265	38.240	93.505	9.069			102.574	59.839 62.921
1.986 1.987		58.336 51.927	42.314 49.544	100.650 101.471	6.388 15.430			<u>107.038</u> 116.901	62.921 71.182
1.987		51.927	49.544 53.811	101.471	13.762			126.264	71.182 78.765
1.988		53.459	53.811	106.611	13.762			126.264	67.454
1.989		48.410	54.636	103.046	12.595			115.641	64.963
1.990		48.431	48.254	96.685	8.852			105.537	52.363
1.992		52.820	55.852	108.672	42.230			150.902	96.375
1.993		61.472	86.628	148.100	60.449			208.549	152.252
1994prov		89.942	89.942	179.883	84.375			264.258	204.549
1995py		93.150	93.150	186.299	89.077			275.376	211.666
1996py		87.045	87.045	174.089	97.317			271.406	203.632
1997py		90.332	90.332	180.663	101.333			281.996	210.746

ANEXO - Continuación de la Tabla 3A

	CALCULO DEL CAPITAL PARA MAQUINARIA Y EQUIPO Millones de pesos de 1975										
Años	FBKF en Maquinaria y Equipo 1	Deprecia- ción 2	FNKF Maquinaria y Equipo 3	Tasa de Crecimiento Inv. Neta 4	Stock de Capital en Maq. y Eq. 5	Tasa de Crecimiento del Capital %					
1.925		-			C C	70					
1.926											
1.927											
1.928 1.929											
1.930											
1.931											
1.932											
1.933 1.934											
1.934											
1.936											
1.937											
1.938											
1.939 1.940											
1.940											
1.942											
1.943											
1.944 1.945											
1.945											
1.940											
1.948											
1.949											
1.950 1.951	10.477 11.560	6.451 6.653	4.026 4.907	21.90	133.055 137.962	2.60					
1.951	12.420	6.898	5.522	21,89 12,53	137.962	3,69 4,00					
1.953	18.885	7.174	11.711	112,08	155.195	8,16					
1.954	20.719	7.760	12.959	10,66	168.154	8,35					
1.955	21.795	8.408	13.387	3,30	181.541	7,96					
1.956 1.957	19.662 10.991	9.077 9.606	10.585 1.385	-20,93 -86,92	192.126 193.511	5,83 0,72					
1.958	10.568	9.676	892	-35,55	193.311	0,72					
1.959	10.497	9.720	777	-12,96	195.180	0,40					
1.960	15.993	9.759	6.234	702,50	201.414	3,19					
1.961 1.962	17.093 16.230	10.071 10.422	7.022 5.808	12,65 -17,29	208.437 214.245	3,49 2,79					
1.962	15.095	10.422	4.383	-17,29 -24,54	214.245	2,79					
1.964	18.166	10.931	7.235	65,07	225.862	3,31					
1.965	16.052	11.293	4.759	-34,22	230.621	2,11					
1.966	17.033	11.531	5.502	15,61	236.123	2,39					
1.967 1.968	15.632 19.039	11.806 11.997	3.826 7.042	-30,46 84,05	239.949 246.990	1,62 2,93					
1.969	18.293	12.350	5.943	-15,59	252.934	2,93					
1.970	23.575	12.647	10.928	83,87	263.862	4,32					
1.971	26.114	13.193	12.921	18,23	276.783	4,90					
1.972	25.793	13.839	11.954	-7,48	288.737	4,32					
1.973 1.974	25.612 28.288	14.437 14.996	11.175 13.292	-6,51 18,95	299.912 313.204	3,87 4,43					
1.974	28.200	15.660	12.540	-5,66	325.744	4,43					
1.976	32.398	16.287	16.111	28,48	341.855	4,95					
1.977	32.118	17.093	15.025	-6,74	356.880	4,40					
1.978	36.742	17.844	18.898	25,77	375.778	5,30					
1.979 1.980	40.522 45.323	18.789 19.876	21.733 25.447	15,00 17,09	397.511 422.959	5,78 6,40					
1.981	47.517	21.148	26.369	3,62	449.328	6,23					
1.982	48.482	22.466	26.016	-1,34	475.343	5,79					
1.983	47.430	23.767	23.663	-9,04	499.006	4,98					
1.984 1.985	46.397	24.950	21.447	-9,37	520.453 532.670	4,30					
1.985	38.240 42.314	26.023 26.634	12.217 15.680	-43,03 28,35	532.670 548.351	2,35 2,94					
1.987	49.544	27.418	22.126	41,11	570.477	4,04					
1.988	53.811	28.524	25.287	14,28	595.764	4,43					
1.989	53.152	29.788	23.364	-7,61	619.128	3,92					
1.990 1.991	54.636 48.254	30.956 32.140	23.680 16.114	1,35 -31,95	642.808 658.921	3,82 2,51					
1.991	48.254 55.852	32.140	22.906	-31,95 42,15	658.921	3,48					
1.993	86.628	34.091	52.537	129,36	734.364	7,71					
994prov	89.942	36.718	53.223	1,31	787.587	7,25					
995py	93.150	39.379	53.770	1,03	841.357	6,83					
996ру 997ру	87.045 90.332	42.068 44.317	44.977 46.015	-16,35 2,31	886.334 932.349	5,35 5,19					

Anexo Tabla 4A						
PRUEBA DE RAIZ UNITARIA PARA LNYPEA 1925-1994						

PRUEBA DE I	DICKEY-FULI	LER AUMENTA	DA (ADF) PARA	LNYPEA	PRUEBA DE	KPSS PARA LNYP	EA
		V	/alores críticos de M		a		
			rechazar la hipóte				
			Unitaria		1. Ho: {LNYPEA} es ur	na serie estacionaria a	Irededor
Estadístico ADF	-1,8859		Valor Crítico al 1%	-3,5328			
		I	Valor Crítico al 5%	-2,9062	2		
		١	Valor Crítico al 10%	-2,5903	B Estadístico η _μ del rezag	o óptimo 7 :	0,9671
No se puede rechaz	zar la hipótesis	nula de la exister	ncia de raíz unitaria		Valor crítico al 1%	0,739	
Ecuación de la PRU	JEBA DE DICKE	EY-FULLER AUME	ENTADA (ADF)		Valor crítico al 5%	0,463	
Estimación por Mínimos o	cuadrados // La var	iable dependiente es D	D(LNYPEA)		Valor crítico al 10%	0,347	
Muestra(ajustada): 1930	1994						
Observaciones incluidas:	65 después de aju	star por datos perdidos	s al diferenciar y por date	os n.d.			
Variable	Cooficiento	Error Ectándor	t-Estadístico	Probabilidad	4		
Variable	<u>Coeficiente</u>	Error Estándar	I-ESIGUISTICO	FIUDADIIIUAU	2. Ho: {LNYPEA} es un	a serie estacionaria al	rededor
LNYPEA(-1)	-0,0137	0,0073	-1,8859	0,0642	de una tendencia.		
D(LNYPEA(-1))	0,1116	0,1241	0,8994	0.3721	Estadístico ητ del rezago	o óptimo 7 ·	0,1910
D(LNYPEA(-2))	0,0562	0,1218	0,4612	0,6464			0,1510
D(LNYPEA(-3))	-0,1619	0,1200	-1,3497	0,1823	Valor crítico al 1%	0,216	
D(LNYPEA(-4))	-0,2597	0,1200	-2,1944	0,0322	Valor crítico al 1%	0,146	
C	0,1656	0,0775	2,1377	0,0367	Valor crítico al 10%	0,119	
0	0,1000		$\alpha \mu = 2,89 \rightarrow N=50$	-		0,115	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
			$\alpha \mu = 2,86 \rightarrow N=100$)	-		
Estadístico Durbin-W		1,8701			NOTA: A un nivel de aceptaci		
Correlograma de res					de que LNYPEA sea estaciona		
Q-Estadístico del rez					alrededor de un nivel , porque	los valores críticos de $\eta\mu$ y	ητ están
P-value del rezago 1		0,573			por encima del valor del estad	ístico de prueba.	
			ADDE ADDE AND AND A AND A AND A	the state of the second se			
El <i>p-valu</i> e y el Durbin-Wa							
El <i>p-value</i> y el Durbin-Wa NOTA: Aunque en este r					-		
NOTA: Aunque en este r	modelo la constante	e no es significativa, si		igno el coe-			
NOTA: Aunque en este r	modelo la constante	e no es significativa, si	i se elimina cambia de si	igno el coe-]		
NOTA: Aunque en este r	modelo la constante	e no es significativa, si	i se elimina cambia de si	igno el coe-]		
NOTA: Aunque en este ficiente de la varia	modelo la constante able rezagada LNYI	e no es significativa, si PEA(-1) y el comportar	i se elimina cambia de si miento de la serie se vue	igno el coe- Ilve explosivo.]		
NOTA: Aunque en este r ficiente de la varia PRUEJ	modelo la constante able rezagada LNYI BA DE RAÍZ UN	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994	igno el coe- Ilve explosivo.	PRUEBA DE I	KPSS PARA D(LNYPEA	x)
NOTA: Aunque en este r ficiente de la varia PRUEJ	modelo la constante able rezagada LNYI BA DE RAÍZ UN	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 GUNDO ORDEN	igno el coe- lve explosivo.		KPSS PARA D(LNYPEA	A)
NOTA: Aunque en este r ficiente de la varia PRUEJ	modelo la constante able rezagada LNYI BA DE RAÍZ UN	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 GUNDO ORDEN /alores críticos de M	igno el coe- ilve explosivo.		KPSS PARA D(LNYPEA	()
NOTA: Aunque en este r ficiente de la varia PRUEJ	modelo la constante able rezagada LNYI BA DE RAÍZ UN	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 GUNDO ORDEN /alores críticos de M. rechazar la hipóte	igno el coe- elve explosivo. acKinnon para sis de Raíz		KPSS PARA D(LNYPEA	n)
NOTA: Aunque en este r ficiente de la varia PRUEJ PF	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 GUNDO ORDEN /alores críticos de M. rechazar la hipóte Unitaria	igno el coe- elve explosivo. acKinnon para esis de Raíz	= a		·
NOTA: Aunque en este r ficiente de la varia PRUEJ	modelo la constante able rezagada LNYI BA DE RAÍZ UN	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 GUNDO ORDEN /alores críticos de M. rechazar la hipóte Unitaria /alor Crítico al 1%	igno el coe- elve explosivo. acKinnon para esis de Raíz a -3,5328	a 1. Ho: {D(LNYPEA)} es	una serie estacionaria	·
NOTA: Aunque en este r ficiente de la varia PRUEJ PF	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V	i se elimina cambia de si miento de la serie se vue EUNYPEA) 1925-1994 GUNDO ORDEN /alores críticos de M. rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 5%	igno el coe- elve explosivo. acKinnon para esis de Raíz	= a	una serie estacionaria	·
NOTA: Aunque en este r ficiente de la varia PRUEJ PF	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 GUNDO ORDEN /alores críticos de M. rechazar la hipóte Unitaria /alor Crítico al 1%	igno el coe- elve explosivo. acKinnon para esis de Raíz a -3,5328	a 1. Ho: {D(LNYPEA)} es	una serie estacionaria	·
NOTA: Aunque en este r ficiente de la varia PRUEJ PF	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V	i se elimina cambia de si miento de la serie se vue EUNYPEA) 1925-1994 GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 5% /alor Crítico al 10%	igno el coe- elve explosivo. acKinnon para esis de Raíz a -3,5328 -2,9062	a 1. Ho: {D(LNYPEA)} es	s una serie estacionari I.	·
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores c	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V V scríticos de MacKinnor	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M. rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 5% /alor Crítico al 10% n, se rechaza la	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590	a 1. Ho: {D(LNYPEA)} es alrededor de un nive	s una serie estacionari I.	a
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores c tencia de raíz unita	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V Seríticos de MacKinnor aria y se sugiere que la	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M. rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 5% /alor Crítico al 10% n, se rechaza la la serie es estacionaria	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590	a 1. Ho: {D(LNYPEA)} es alrededor de un nive	s una serie estacionari I.	a
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V V scríticos de MacKinnor aria y se sugiere que l EY-FULLER AUME	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF)	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590	a 1. Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1%	s una serie estacionari I. o óptimo 7 : 0,739	a
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Minimos d	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V V scríticos de MacKinnor aria y se sugiere que l EY-FULLER AUME	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF)	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% 	s una serie estacionari I. o óptimo 7 : 0,739 0,463	a
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Mínimos o Muestra(ajustada): 1930	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V Críticos de MacKinnor aria y se sugiere que EY-FULLER AUME iable dependiente es D	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M. rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 5% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA)	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590	a 1. Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1%	s una serie estacionari I. o óptimo 7 : 0,739	a
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Minimos (Muestra(ajustada): 1930 Observaciones incluidas:	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590 c bs n.d.	 1. Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 	s una serie estacionari I. o óptimo 7 : 0,739 0,463	a
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Mínimos (Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u>	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores c tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u>	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME tiable dependiente es D istar por datos perdidos Error Estándar	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u>	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590 c Dos n.d. Probabilidad	 1. Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 	s una serie estacionari I . o óptimo 7 : 0,739 0,463 0,347	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Mínimos (Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1))	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D istar por datos perdidos <u>Error Estándar</u> 0,2058	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u> -5,5534	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590 os n.d. <u>Probabilidad</u> 0,0000	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 2. Ho: {D(LNYPEA)} es 	s una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Minimos (Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1),2)	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores c tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427 0,2843	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D istar por datos perdidos <u>Error Estándar</u> 0,2058 0,1677	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date t-Esta(jstico -5,5534 1,6956	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590 bs n.d. <u>Probabilidad</u> 0,0000 0,0951	 1. Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 	s una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Mínimos (Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1))	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D istar por datos perdidos <u>Error Estándar</u> 0,2058	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u> -5,5534	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590 os n.d. <u>Probabilidad</u> 0,0000	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 2. Ho: {D(LNYPEA)} es 	s una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Minimos (Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1),2)	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores c tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427 0,2843	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(1 TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D istar por datos perdidos <u>Error Estándar</u> 0,2058 0,1677	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date t-Esta(jstico -5,5534 1,6956	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590 bs n.d. <u>Probabilidad</u> 0,0000 0,0951	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 2. Ho: {D(LNYPEA)} es 	s una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria Idencia.	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Mínimos (Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-2),2)	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427 0,2843 0,3591	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D istar por datos perdidos Error Estándar 0,2058 0,1677 0,1447	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date t-Esta(jstico -5,5534 1,6956 2,4669	igno el coe- ilve explosivo. acKinnon para sis de Raíz -3,5328 -2,9062 -2,5590 . bs n.d. Probabilidad 0,0000 0,0951 0,0167	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 2. Ho: {D(LNYPEA)} es alrededor de una ten 	s una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria Idencia.	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Mínimos o Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-2),2) D(LNYPEA(-3),2)	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427 0,2843 0,3591 0,2164	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D istar por datos perdidos Error Estándar 0,2058 0,1677 0,1447 0,1186 0,0045	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u> -5,5534 1,6956 2,4669 1,8250 4,3936	igno el coe- ilve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590 <u>Probabilidad</u> 0,0000 0,0951 0,0167 0,0730 0,0000	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNYPEA)} es alrededor de una ten Estadístico ητ del rezago 	s una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria idencia.	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Mínimos o Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-2),2) D(LNYPEA(-3),2)	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427 0,2843 0,3591 0,2164	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D istar por datos perdidos Error Estándar 0,2058 0,1677 0,1447 0,1186 0,0045	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 <u>GUNDO ORDEN</u> /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u> -5,5534 1,6956 2,4669 1,8250 4,3936 $c \alpha \mu = 2,89 \rightarrow N=50$	igno el coe- ilve explosivo. acKinnon para sis de Raíz - 3,5328 - 2,9062 - 2,5590 Des n.d. Probabilidad 0,0000 0,0951 0,0167 0,0730 0,0000	 1. Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 2. Ho: {D(LNYPEA)} es alrededor de una ten Estadístico ητ del rezago Valor crítico al 1% 	s una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria Idencia. o óptimo 7 : 0,216	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEI PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Minimos o Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1)) D(LNYPEA(-1),2) D(LNYPEA(-2),2) D(LNYPEA(-3),2) C	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores c tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 :65 después de aju <u>Coeficiente</u> -1,1427 0,2843 0,3591 0,2164 0,0197	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(TEGRACIÓN DE SE V L STÍTICOS de MacKinnor aria y se sugiere que la EY-FULLER AUME iable dependiente es D Istar por datos perdidos Error Estándar 0,2058 0,1677 0,1447 0,1186 0,0045 T	i se elimina cambia de si miento de la serie se vue GUNDO ORDEN /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u> -5,5534 1,6956 2,4669 1,8250 4,3936	igno el coe- ilve explosivo. acKinnon para sis de Raíz - 3,5328 - 2,9062 - 2,5590 Des n.d. Probabilidad 0,0000 0,0951 0,0167 0,0730 0,0000	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNYPEA)} es alrededor de una ten Estadístico ητ del rezago Valor crítico al 1% Valor crítico al 1% Valor crítico al 5% 	s una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria idencia. o óptimo 7 : 0,216 0,146	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Minimos o Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1)) D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-2),2) D(LNYPEA(-3),2) C	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores c tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 :65 después de aju <u>Coeficiente</u> -1,1427 0,2843 0,3591 0,2164 0,0197	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D istar por datos perdidos Error Estándar 0,2058 0,1677 0,1447 0,1186 0,0045	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 <u>GUNDO ORDEN</u> /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u> -5,5534 1,6956 2,4669 1,8250 4,3936 $c \alpha \mu = 2,89 \rightarrow N=50$	igno el coe- ilve explosivo. acKinnon para sis de Raíz - 3,5328 - 2,9062 - 2,5590 Des n.d. Probabilidad 0,0000 0,0951 0,0167 0,0730 0,0000	 1. Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 2. Ho: {D(LNYPEA)} es alrededor de una ten Estadístico ητ del rezago Valor crítico al 1% 	s una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria Idencia. o óptimo 7 : 0,216	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Minimos (Muestra(ajustada): 1930 Observaciones incluidas: Variable D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-2),2) D(LNYPEA(-3),2) C Estadístico Durbin-W Correlograma de res	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores c tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427 0,2843 0,3591 0,2164 0,0197 Vatson :iduos	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D Istar por datos perdidos Error Estándar 0,2058 0,1677 0,1447 0,1186 0,0045 T 1,8651	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 <u>GUNDO ORDEN</u> /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u> -5,5534 1,6956 2,4669 1,8250 4,3936 $c \alpha \mu = 2,89 \rightarrow N=50$	igno el coe- ilve explosivo. acKinnon para sis de Raíz - 3,5328 - 2,9062 - 2,5590 Des n.d. Probabilidad 0,0000 0,0951 0,0167 0,0730 0,0000	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNYPEA)} es alrededor de una ten Estadístico ητ del rezago Valor crítico al 1% Valor crítico al 1% Valor crítico al 5% Valor crítico al 5% Valor crítico al 5% Valor crítico al 5% Valor crítico al 10% 	e una serie estacionaria I. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria idencia. o óptimo 7 : 0,216 0,146 0,119	a 0,42584
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Minimos o Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1)) D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-2),2) D(LNYPEA(-2),2) C Estadístico Durbin-W Correlograma de res Q-Estadístico del rez	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427 0,2843 0,3591 0,2164 0,0197 Vatson :iduos zago 16 (#observ.i	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D Istar por datos perdidos Error Estándar 0,2058 0,1677 0,1447 0,1186 0,0045 T 1,8651 in 16,422	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 <u>GUNDO ORDEN</u> /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u> -5,5534 1,6956 2,4669 1,8250 4,3936 $c \alpha \mu = 2,89 \rightarrow N=50$	igno el coe- ilve explosivo. acKinnon para sis de Raíz - 3,5328 - 2,9062 - 2,5590 Des n.d. Probabilidad 0,0000 0,0951 0,0167 0,0730 0,0000	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNYPEA)} es alrededor de una ten Estadístico ητ del rezago Valor crítico al 1% Valor crítico al 1% Valor crítico al 5% Valor crítico al 5% Valor crítico al 10% 	s una serie estacionaria l. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria idencia. o óptimo 7 : 0,216 0,146 0,119 ón del 5% la serie	a 0,42584 a 0,08352
NOTA: Aunque en este r ficiente de la varia PRUEJ PF Estadístico ADF Como -5,5534 es menor hipótesis nula de exist Ecuación de la PRU Estimación por Minimos (Muestra(ajustada): 1930 Observaciones incluidas: <u>Variable</u> D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-1),2) D(LNYPEA(-2),2) D(LNYPEA(-3),2) C Estadístico Durbin-W Correlograma de res	modelo la constante able rezagada LNYI BA DE RAÍZ UN RUEBA PARA INT -5,5534 r que los valores o tencia de raíz unita JEBA DE DICKE cuadrados // La var 1994 : 65 después de aju <u>Coeficiente</u> -1,1427 0,2843 0,3591 0,2164 0,0197 Vatson iduos zago 16 (#observ.i	e no es significativa, si PEA(-1) y el comportar NITARIA PARA D(TEGRACIÓN DE SE V V Críticos de MacKinnor aria y se sugiere que l EY-FULLER AUME iable dependiente es D Istar por datos perdidos Error Estándar 0,2058 0,1677 0,1447 0,1186 0,0045 1,8651 in 16,422 0,424	i se elimina cambia de si miento de la serie se vue LNYPEA) 1925-1994 <u>GUNDO ORDEN</u> /alores críticos de M rechazar la hipóte Unitaria /alor Crítico al 1% /alor Crítico al 1% /alor Crítico al 10% n, se rechaza la la serie es estacionaria ENTADA (ADF) D(LNYPEA) s al diferenciar y por date <u>t-Estadístico</u> -5,5534 1,6956 2,4669 1,8250 4,3936 $cq\mu = 2,89 \rightarrow N=50$ $cq\mu = 2,86 \rightarrow N=100$	igno el coe- elve explosivo. acKinnon para sis de Raíz a -3,5328 -2,9062 -2,5590 bs n.d. Probabilidad 0,0000 0,0951 0,0167 0,0730 0,0000 0,0000	 Ho: {D(LNYPEA)} es alrededor de un nive Estadístico ημ del rezag Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNYPEA)} es alrededor de una ten Estadístico ητ del rezago Valor crítico al 1% Valor crítico al 1% Valor crítico al 5% Valor crítico al 5% Valor crítico al 5% Valor crítico al 5% Valor crítico al 10% 	s una serie estacionaria l. o óptimo 7 : 0,739 0,463 0,347 una serie estacionaria idencia. o óptimo 7 : 0,216 0,146 0,119 ón del 5% la serie	a 0,42584 a 0,08355

Anexo Tabla 5A PRUEBA DE RAIZ UNITARIA PARA LNKPEA 1925-1994

PRUEB/	A DE DICKEY-FU	JLLER AUMENTA	ADA (ADF) PARA LNKPE	A	PRUEBA DE KPS	SS PARA LNKPEA	
			Valores críticos de MacKi	nnon para rechazar			
			la hipótesis de Ra		1. Ho: {LNKPEA] es una serie e	stacionaria alrededor	
Prueba Estadística ADF	-2,70124	4	Valor Crítico al 1%	-4,0969	de un nivel.		
			Valor Crítico al 5%	-3,4759			
			Valor Crítico al 10%	-3,1651	Estadístico nu del rezago óptimo	o 7 :	0,958
Como -2,7012 es mayor q					Valor crítico al 1%	0,739	
hipótesis nula de que exi				onaria.	Valor crítico al 5%	0,463	
cuación de la PRUEBA I			()		Valor crítico al 10%	0,347	
Estimación por Mínimos o	cuadrados // La \	variable dependie	ante es D(LNKPEA)			stacionaria alradadar	
/luestra(ajustada): 1927 1994 Diservaciones incluidas: 68 des	pués de ajustar par (datas pardidas al difa	rangiar y par datas n d		 Ho: {LNKPEA] es una serie es de una tendencia. 		
Variable	Coeficiente	Error Estándar		Probabilidad	de una tendencia.		
Valiable	ocontrionite	Enor Estandar	t Estadiotioo	riobabilidad	Estadístico ητ del rezago óptimo	7.	0,120
LNKPEA(-1)	-0,0549	0.0203	-2,7012	0.0088	Valor crítico al 1%	0,216	0,120
D(LNKPEA(-1))	0,6988	0,0916	7,6282	0,0000	Valor crítico al 5%	0,146	
C	0,6129	0,2262	2,7096	0,0086	Valor crítico al 10%	0,119	
			$\tau \alpha \tau = 3,47 \rightarrow N=50$				
			$\tau \alpha \tau = 3,42 \rightarrow N=100$		NOTA: Como el valor de $\eta\mu$ > el valor	r crítico de la prueba, enton-	
Tendencia	0,0008	0,0003	2,8664	0,0056	ces se rechaza la posibilidad de que LN		
			$\tau \beta \tau = 3,18 \rightarrow N=50$		de un nivel a un nivel de significancia d	del 5% y no es estacionaria	
			$\tau \beta \tau = 3.14 \rightarrow N=100$		alrededor de una tendencia a un nivel o	de aceptación del 10%.	
Q-Estadístico del rezago 17 P-value del rezago 17 El p-value y el Durbin-Wats IOTA: Aunque en este modelo	son sugieren que o la tendencia no es s agada en niveles, LNK	significativa, al elimina	a prueba ADF no están cor	nte			
Por esta razón es v	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla.	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor	a prueba ADF no están cor arta cambia el signo del coeficie rtamiento de la serie sería explo	nte		S PARA D(I NKPFA)	
Q-Estadístico del rezago 17 P-value del rezago 17 El p-value y el Durbin-Wats VOTA: Aunque en este modelo de la variable rezag Por esta razón es v	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla.	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor	e a prueba ADF no están cor arla cambia el signo del coeficie	nte		S PARA D(LNKPEA) ie estacionaria alrededo	
Q-Estadístico del rezago 17 P-value del rezago 17 El p-value y el Durbin-Wats IOTA: Aunque en este modelo de la variable rezag Por esta razón es v	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla.	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin	nte isivo. nnon para rechazar	1. Ho: {D(LNKPEA)} es una seri	· · ·	or
Q-Estadístico del rezago 17 -value del rezago 17 El p-value y el Durbin-Wats NOTA: Aunque en este modelo de la variable rezag Por esta razón es v PRU	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ UI RUEBA PARA INT	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor	a prueba ADF no están cor aria cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra	nte isivo. nnon para rechazar aíz Unitaria		· · ·)r
Q-Estadístico del rezago 17 -value del rezago 17 El p-value y el Durbin-Wats NOTA: Aunque en este modelo de la variable rezag Por esta razón es v PRU	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla.	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo O(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 5%	nte isivo. nnon para rechazar aiz Unitaria -2,5968 -1,9452	1. Ho: {D(LNKPEA)} es una seri	ie estacionaria alrededc	
2-Estadístico del rezago 17 2-value del rezago 17 El p-value y el Durbin-Wats IOTA: Aunque en este modelo de la variable rezag Por esta razón es v PRU PF Prueba Estadística ADF	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ U RUEBA PARA INT -1,739183	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S	a prueba ADF no están cor arta cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 5% Valor Crítico al 10%	nnon para rechazar aiz Unitaria -2,5968 -1,9452 -1,6183	 Ho: {D(LNKPEA)} es una seri de un nivel. 	ie estacionaria alrededc	or 0,214
Q-Estadístico del rezago 17 2-value del rezago 17 El p-value y el Durbin-Wats NOTA: Aunque en este modelo de la variable reza Por esta razón es PRU Prueba Estadística ADF A un nivel de aceptación	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ UI RUEBA PARA IN -1,739183 o del 10% se recha	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 10% nula de existencia de raíz	nnon para rechazar aiz Unitaria -2,5968 -1,9452 -1,6183	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo 	ie estacionaria alrededo	
Q-Estadístico del rezago 17 2-value del rezago 17 El p-value y el Durbin-Wats NOTA: Aunque en este modelo de la variable reza Por esta razón es PRU Prueba Estadística ADF A un nivel de aceptación	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ UI RUEBA PARA IN -1,739183 o del 10% se recha	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 10% nula de existencia de raíz	nnon para rechazar aiz Unitaria -2,5968 -1,9452 -1,6183	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo Valor crítico al 1% 	ie estacionaria alrededo o 7 : 0,739	
Q-Estadístico del rezago 17 P-value del rezago 17 El p-value y el Durbin-Wats IOTA: Aunque en este modelo de la variable rezag Por esta razón es v	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ U RUEBA PARA INT -1,739183 o del 10% se recha cra diferencia de DE DICKEY-FULI	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S aza la hipótesis r la serie LNKPEA LER AUMENTAD	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo O(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 10% nula de existencia de raíz es estacionaria.	nnon para rechazar aiz Unitaria -2,5968 -1,9452 -1,6183	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo Valor crítico al 1% Valor crítico al 5% 	0 7 : 0,739 0,463 0,347	0,214
A-Estadístico del rezago 17 Avalue del rezago 17 Avalue y el Durbin-Wats ToTA: Aunque en este modelo de la variable rezag Por esta razón es Prueba Estadística ADF Aun nivel de aceptación y se sugiere que la prime Ecuación de la PRUEBA I Estimación por Mínimos o	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ U RUEBA PARA INT -1,739183 o del 10% se recha cra diferencia de DE DICKEY-FULI	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S aza la hipótesis r la serie LNKPEA LER AUMENTAD	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo O(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 10% nula de existencia de raíz es estacionaria.	nnon para rechazar aiz Unitaria -2,5968 -1,9452 -1,6183	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% 	0 7 : 0,739 0,463 0,347	0,21
A-Estadístico del rezago 17 -value del rezago 17 -value y el Durbin-Wats OTA: Aunque en este modelo de la variable rezag Por esta razón es Por esta razón es Prueba Estadística ADF Aun nivel de aceptación res sugiere que la prime cuación de la PRUEBA I stimación por Mínimos o luestra(ajustada): 1927 1994	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ U RUEBA PARA INT -1,739183 del 10% se reche era diferencia de DE DICKEY-FULI cuadrados // La v	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S aza la hipótesis r la serie LNKPEA LER AUMENTAD variable dependie	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 5% Valor Crítico al 5% Valor Crítico al 10% nula de existencia de raíz es estacionaria. VA (ADF) ente es D(LNKPEA,2)	nnon para rechazar aiz Unitaria -2,5968 -1,9452 -1,6183	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNKPEA)} es una serie de una tendencia. 	o 7 : 0,739 0,463 0,347 e estacionaria alrededo	0,21 r
D-Estadístico del rezago 17 -value del rezago 17 I p-value y el Durbin-Wats IOTA: Aunque en este modelo de la variable rezag Por esta razón es Por esta razón es Prueba Estadística ADF Aun nivel de aceptación r se sugiere que la prime cuación de la PRUEBA I Estimación por Mínimos o fuestra(ajustada): 1927 1994	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ U RUEBA PARA INT -1,739183 del 10% se reche era diferencia de DE DICKEY-FULI cuadrados // La v	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S aza la hipótesis r la serie LNKPEA LER AUMENTAD variable dependie	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 10% nula de existencia de raíz es estacionaria. NA (ADF) ente es D(LNKPEA,2) renciar y por datos n.d.	nnon para rechazar aiz Unitaria -2,5968 -1,9452 -1,6183	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNKPEA)} es una serie de una tendencia. Estadístico ητ del rezago óptimo 	o 7 : 0,739 0,463 0,347 e estacionaria alrededo	0,21
A-Estadístico del rezago 17 -value del rezago 17 il p-value y el Durbin-Wats OTA: Aunque en este modelo de la variable rezag Por esta razón es Por esta razón es PRU Pr rueba Estadística ADF Aun nível de aceptación se sugiere que la prime Cuación de la PRUEBA I istimación por Mínimos o iuestra(ajustada): 1927 1994 bservaciones incluidas: 68 des	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ UI RUEBA PARA INT -1,739183 del 10% se recht era diferencia de DE DICKEY-FULI cuadrados // La v	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S aza la hipótesis r la serie LNKPEA LER AUMENTAD variable dependie datos perdidos al difer	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 10% nula de existencia de raíz es estacionaria. NA (ADF) ente es D(LNKPEA,2) renciar y por datos n.d.	nte Isivo.	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNKPEA)} es una serie de una tendencia. Estadístico ητ del rezago óptimo Valor crítico al 1% Valor crítico al 5% 	ie estacionaria alrededo o 7 : 0,739 0,463 0,347 e estacionaria alrededo o 7 : 0,216 0,146	0,21 r
A-realue del rezago 17 A-value del rezago 17 A-value del rezago 17 A-value del rezago 17 A-value y el Durbin-Wats A-value an este modelo de la variable rezag Por esta razón es Prueba Estadística ADF A un nivel de aceptación rese sugiere que la prime Ecuación de la PRUEBA I Estimación por Mínimos o Muestra(ajustada): 1927 1994 Deservaciones incluidas: 68 des Variable D(LNKPEA(-1)) Estadístico Durbin-Watson	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ UI RUEBA PARA INT -1,739183 o del 10% se recht era diferencia de DE DICKEY-FULI cuadrados // La v spués de ajustar por o Coeficiente -0,1203	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S aza la hipótesis r la serie LNKPEA LER AUMENTAD variable dependid datos perdidos al difer Error Estándar	a prueba ADF no están cor arla cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 10% nula de existencia de raíz es estacionaria. VA (ADF) ente es D(LNKPEA,2) renciar y por datos n.d. t-Estadístico -1,7392	nte Isivo.	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNKPEA)} es una seria de una tendencia. Estadístico ητ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 5% Valor crítico al 10% 	e estacionaria alrededo 0 7 : 0,739 0,463 0,347 e estacionaria alrededo 0 7 : 0,216 0,146 0,146 0,119	0,21 r 0,09
A-Estadístico del rezago 17 -value del rezago 17 -value del rezago 17 -value y el Durbin-Wats OTA: Aunque en este modelo de la variable rezag Por esta razón es Preu rueba Estadística ADF - un nivel de aceptación re sugiere que la prime cuación de la PRUEBA I stimación por Mínimos o luestra(ajustada): 1927 1994 bservaciones incluidas: 68 des Variable D(LNKPEA(-1)) stadístico Durbin-Watson correlograma de residuos	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ UI RUEBA PARA INT -1,739183 del 10% se recha era diferencia de DE DICKEY-FULI cuadrados // La v spués de ajustar por c Coeficiente -0,1203	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S aza la hipótesis r la serie LNKPEA LER AUMENTAD variable dependie datos perdidos al difer Error Estándar 0,0692 1,7822	a prueba ADF no están cor aria cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 10% nula de existencia de raíz es estacionaria. PA (ADF) ente es D(LNKPEA,2) renciar y por datos n.d. t-Estadístico -1,7392	nte Isivo.	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNKPEA)} es una serie de una tendencia. Estadístico ητ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 5% Valor crítico al 10% NOTA: Como los valores de ημ y ητ 	ie estacionaria alrededo o 7 : 0,739 0,463 0,347 e estacionaria alrededo o 7 : 0,216 0,146 0,119 son menores el valor crític	0,21 r 0,09
P-Estadístico del rezago 17 -value del rezago 17 -value del rezago 17 il p-value y el Durbin-Wats OTA: Aunque en este modelo de la variable reza Por esta razón es Prueba Estadística ADF vueba Estadística ADF un nivel de aceptación res sugiere que la prime cuación de la PRUEBA I istimación por Mínimos o luestra(ajustada): 1927 1994 ibservaciones incluidas: 68 des Variable D(LNKPEA(-1))	son sugieren que o la tendencia no es s agada en niveles, LNK válido dejarla. UEBA DE RAÍZ UI RUEBA PARA INT -1,739183 del 10% se recha era diferencia de DE DICKEY-FULI cuadrados // La v spués de ajustar por c Coeficiente -0,1203	0,772 los residuos de la significativa, al elimina (PEA(-1), y el compor NITARIA PARA E TEGRACION DE S aza la hipótesis r la serie LNKPEA LER AUMENTAD variable dependie datos perdidos al difer Error Estándar 0,0692	a prueba ADF no están cor aria cambia el signo del coeficie rtamiento de la serie sería explo D(LNKPEA) 1925-1994 SEGUNDO ORDEN Valores críticos de MacKin la hipótesis de Ra Valor Crítico al 1% Valor Crítico al 1% Valor Crítico al 10% mula de existencia de raíz es estacionaria. MA (ADF) ente es D(LNKPEA,2) renciar y por datos n.d. t-Estadístico -1,7392	nte Isivo.	 Ho: {D(LNKPEA)} es una seri de un nivel. Estadístico ημ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 10% Ho: {D(LNKPEA)} es una seria de una tendencia. Estadístico ητ del rezago óptimo Valor crítico al 1% Valor crítico al 5% Valor crítico al 5% Valor crítico al 10% 	ie estacionaria alrededo o 7 : 0,739 0,463 0,347 e estacionaria alrededo o 7 : 0,216 0,146 0,119 son menores el valor crític osibilidad de que D(LNKPEA	0,21 r 0,09

estra : iables:	1925-1994 LNKPEA	Datos anuales LNYPEA	CONSTANTE	TENDENCIA	A	
	ra la selección del nú	imero de términos (lelo multivar	iado VAR	
Buscar el m	nínimo valor de los criterios	de información Schwarz	z, Hannan-Quinn y RWN	NAR - Akaike)		
	Numero rezagos incluidos en el VAR	SCHWARZ*	HANNAN-QUINN*	RWNAR- AKAIKE	RWNAR- BIC	RWNAR- HANNAN QUINN
	1	-16,444	-16,521			
	2	-16,935	-17,090	-17,421	-17,421	-17,421
	3	-16,763	-16,995			
	4	-16,764	-17,074			
	5	-16,758	-17,145			
	6	-16,559	-17,024			
	valor mínimo	-16,935	-17,145	-17,421	-17,421	-17,421
	rezago mínimo	2	5	2	2	2
El p-va /erificaci	go óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e	iyendo constante y sin te pajando es del 5%. In los errores del m	ndencia también es 2. odelo VAR	2	2	2
El p-va /erificaci	go óptimo del modelo inclu alue con el que se está trat	iyendo constante y sin te pajando es del 5%. In los errores del m	odelo VAR nultivariado		2	2
El p-va /erificaci	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación :	uyendo constante y sin te bajando es del 5%. I <mark>n los errores del m</mark> serial en el modelo n	odelo VAR nultivariado			2
El p-va /erificaci	go óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s Numero rezagos incluidos en el VAR	uyendo constante y sin te bajando es del 5%. I <mark>n los errores del m</mark> serial en el modelo n Test Ljung-Box en	ndencia también es 2. <u>odelo VAR</u> nultivariado Probabilidad P value 0,00			2
El p-va /erificaci	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s Numero rezagos incluidos en el VAR 1 2	ayendo constante y sin te bajando es del 5%. In <u>los errores del m</u> serial en el modelo n Test Ljung-Box en rezago 17	odelo VAR nultivariado Probabilidad P value			2
El p-va /erificaci	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s Numero rezagos incluidos en el VAR 1 2 3	vyendo constante y sin te pajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87	odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56		2	2
El p-va /erificaci	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s Numero rezagos incluidos en el VAR 1 2 3 4	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26		2	2
El p-va /erificaci	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s Numero rezagos incluidos en el VAR 1 2 3 4 5	vyendo constante y sin te pajando es del 5%. <u>In los errores del m</u> serial en el modelo n <u>Test Ljung-Box en</u> <u>rezago 17</u> 102,33 <u>59,30</u> 53,87 58,09 41,82	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72		2	2
El p-va /erificaci	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s Numero rezagos incluidos en el VAR 1 2 3 4	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26		2	2
El p-va /erificaci Test de L	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s Numero rezagos incluidos en el VAR 1 2 3 4 5 6 nultivariada de norma	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09 41,82 40,58	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72 0,62		2	2
El p-va /erificaci Test de L	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s numero rezagos incluidos en el VAR 1 2 3 4 5 6	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09 41,82 40,58	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72 0,62		2	
El p-va /erificaci Test de L	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s incluidos en el VAR 1 2 3 4 5 6 nultivariada de norma Doornik y Hansen (1994 Numero rezagos	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09 41,82 40,58	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72 0,62		2	
El p-va /erificaci Test de L	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s incluidos en el VAR 1 2 3 4 5 6 multivariada de norma	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09 41,82 40,58 Ilidad de los errores 4) para el tercer y cu	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72 0,62 Sarto momento de los			
El p-va /erificaci Test de L	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s numero rezagos incluidos en el VAR 1 2 3 4 5 6 nultivariada de norma Doornik y Hansen (1994 Numero rezagos incluidos en el VAR 1	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09 41,82 40,58 Ilidad de los errores 4) para el tercer y cur Test Doornik&Hansen 11,52	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72 0,62 S arto momento de los Probabilidad P-value 0,021		2	
El p-va /erificaci Test de L	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s numero rezagos incluidos en el VAR 1 2 3 4 5 6 nultivariada de norma Doornik y Hansen (1994 Numero rezagos incluidos en el VAR	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09 41,82 40,58 Ilidad de los errores 4) para el tercer y cu Test Doornik&Hansen 11,52 0,23	endencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72 0,62 Santo momento de los Probabilidad P-value		2	
El p-va /erificaci Test de L	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s numero rezagos incluidos en el VAR 1 2 3 4 5 6 nultivariada de norma Doornik y Hansen (1994 Numero rezagos incluidos en el VAR 1	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09 41,82 40,58 Ilidad de los errores 4) para el tercer y cur Test Doornik&Hansen 11,52	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72 0,62 S arto momento de los Probabilidad P-value 0,021			
El p-va /erificaci Test de L	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s numero rezagos incluidos en el VAR 1 2 3 4 5 6 nultivariada de norma Doornik y Hansen (1994 Numero rezagos incluidos en el VAR 1 2	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09 41,82 40,58 Ilidad de los errores 4) para el tercer y cu Test Doornik&Hansen 11,52 0,23 0,43 1,39	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72 0,62 Sarto momento de los Probabilidad P-value 0,021 0,994			
El p-va /erificaci Test de L	igo óptimo del modelo inclu alue con el que se está trat ión de ruido blanco e jung-Box -correlación s Numero rezagos incluidos en el VAR 1 2 3 4 5 6 nultivariada de norma Doornik y Hansen (1994 Numero rezagos incluidos en el VAR 1 2 3 3	ayendo constante y sin te bajando es del 5%. In los errores del m serial en el modelo n Test Ljung-Box en rezago 17 102,33 59,30 53,87 58,09 41,82 40,58 Ilidad de los errores 4) para el tercer y cu Test Doornik&Hansen 11,52 0,23 0,43	ndencia también es 2. odelo VAR nultivariado Probabilidad P value 0,00 0,50 0,56 0,26 0,72 0,62 S arto momento de los Probabilidad P-value 0,021 0,994 0,980			

L

Anexo Tabla 6A

PRUEBA DE COINTEGRACIÓN DE JOHANSEN					VECTOR DE CORRECCIÓN DE ERRORES			
						Ecuación de Cointegración	EC. de COINT1	
						LNYPEA(-1)	1,0000	
Muestra efectiva:		1927-199 [,]						
Observaciones incl	uidas:	6				LNKPEA(-1)	-0,2038	
Rezagos en el mod	lelo VAR:		2			Error estándar	0,1003	
						Estadístico-t	-2,0313	
Supuesto de la pru								
Existe una tendenc						TENDENCIA	-0,0144	
Constante y tender	icia no restringio	das en el vector	de cointeg	gración		Error estándar	0,0014	
						Estadístico-t	-9,9729	
Variables endógena	as:	LNKPEA	LNYPEA	L Contraction of the second seco				
						C	-6,43977	
		Análisis I (1)				Corrección de errores:	D(LNYPEA)	D(LNKPE
Valores Propios	L moy	Trozo	Ho: r		Traza90			
(Eigenvalues)	<u>L-max.</u>	<u>Traza</u>	<u>Ho: r</u>	<u>L-máx.90</u>	1182890			
0,1665	12,38	15,63	0	12,39	22,95	EC. de COINT1	-0,1751	0,0783
0,0466	3,25	3,25	1	10,56	10,56	Error estándar	0,0774	0,0330
						Estadístico-t	-2,2626	2,3769
Se rechaza cualquie	er cointegración	a un nivel de si	gnificancia	a del 10%.				
						D(LNYPEA(-1))	0,2679	0,0787
						Error estándar	0,1141	0,0486
						Estadístico-t	2,3484	1,6207
						D(LNKPEA(-1))	0,2995	0,5365
						Error estándar	0,2940	0,1252
						Estadístico-t	1,0187	4,2848
						с	0,0100	0,0052
						Error estándar	0,0051	0,0022
						Estadístico-t	1,9582	2,3813
						Criterio Akaike	.,	-17,25
						Criterio Schwarz		-17,07

Anexo Tabla 7A

RE	GRESIONES UTILI	ZANDO MÍNIMOS CU	IADRADOS	
Muestra ajustada: Número de observaciones: Variable dependiente:	• •	Datos anuales Istar por datos perdido B/PEA) _t - LN(PIB/PEA	•••	/PEA _{t-1}
Ecuación:	$D(YPEA)_t = (1-\alpha)$	δ + αD(KPEA) _t		
	Coeficiente	Error estándar	Estadístico ´t´	Probabilidad
α	0,3565	0,2294	1,5539	0,1249
δ	0,0222	0,0056	3,9716	0,0002
R cuadrado: R cuadrado ajustado:	0,0348 0,0204	Durbin - Watson:	1,4067	
Muestra ajustada: Número de observaciones: Variable dependiente: Ecuación:	• •	Datos anuales Istar por datos perdido 3/PEA) _t - LN(PIB/PEA) δ + αD(KPEA).	• •	PEA _{t-1}
	2 (
	Coeficiente	Error estándar	Estadístico 't'	Probabilidad
α δ	0,4080 0,0155	0,2272 0,0042	1,7960 3,6925	0,0795 0,0006
R cuadrado: R cuadrado ajustado:	0,0698 0,0481	Durbin - Watson:	1,2474	

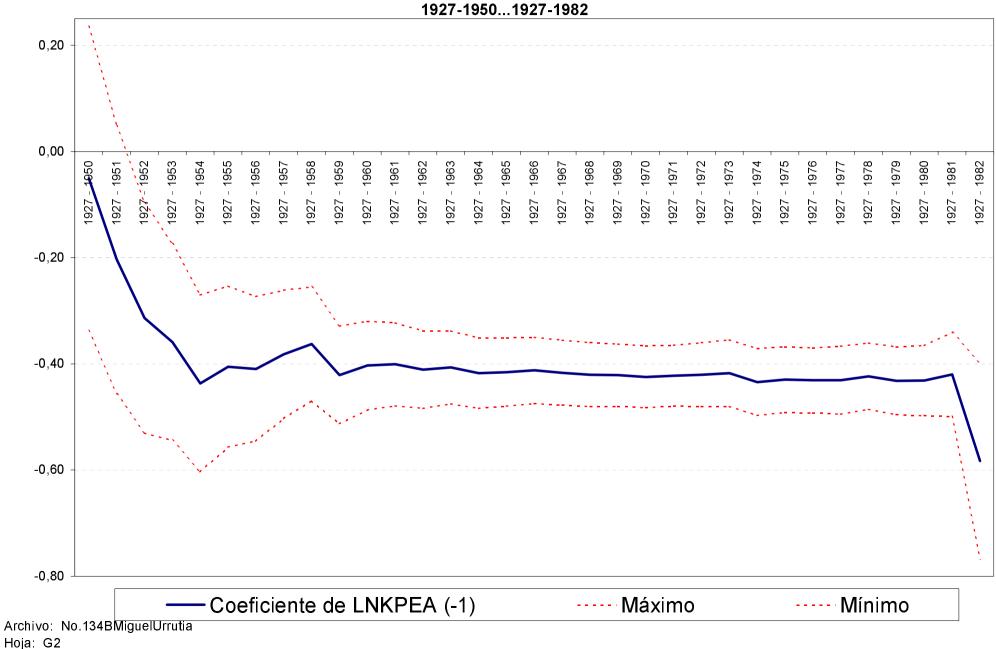
Anexo Tabla 8A

EC. de COINT1 -0,5190 0,051 Error estándar -0,1370 -0,057 Estadístico-t -3,7888 -0,901 D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,053 Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Estadístico-t -0,2869 -0,116 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,0024	F	PRUEBA DE COINTEGRACIÓN DE JOHANSEN						DRRECCIÓN DE ERROF	RES
Observaciones incluidas: 55 Rezagos en el modelo VAR: 2 (Un rezago en el modelo VEC) Supuesto de la prueba: Existe una tendencia lineal determinística en los datos. Constante y tendencia no restringidas en el vector de cointegración LNYPEA(-1) 1,0000 Variables endógenas: LNKPEA LNYPEA Valores Propios L-máx. Traza Ho: r L-máx.90 Traza90 0,2828 18,28 27,57 0 12,39 22,95 0,056 0,1554 9,29 9,29 1 10,56 10,56 El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. C -4,7642 Corrección de Errores: D(LNYPEA) D(LNYPEA) Error estándar -0,1370 -0,057 Error estándar -0,1370 -0,056 Error estándar -0,1283 -0,058 Corrección de Errores: D(LNYPEA) D(LNKPE Error estándar -0,1370 -0,057 Error estándar -0,1283 -0,058 Corrección de Errores: D(LNYPEA) 0,0054 Error estánda							Período:	1927 - 1981	
Rezagos en el modelo VAR: 2 (Un rezago en el modelo VEC) Supuesto de la prueba: Existe una tendencia lineal determinística en los datos. Los datos. Constante y tendencia no restringidas en el vector de cointegración UNYPEA LNKPEA (-1) 1,0000 Variables endógenas: LINKPEA LNYPEA LNKPEA (-1) -0,4202 Variables endógenas: LINKPEA LNYPEA Estadístico-t -5,3196 Valores Propios L-máx. Traza Ho: r L-máx.90 Traza90 0.2828 18,28 27,57 0 12,39 22,95 0,1554 -0,0012 El estadístico L -máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. D(LNKPE D(LNKPE Corrección de Errores: D(LNYPEA) D(LNKPE EC. de COINT1 -0,5190 0.051 Error estándar -0,1370 -0.057 Estadístico-t -3,7888 -0,0015 Error estándar -0,2869 -0.111 Corrección de Errores: D(LNKPEA(-1)) 0,4281 0.555 Error estándar -0,2869 -0.115 Estadístico-t -2,7076 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Número observaciones</td><td>55</td><td></td></t<>							Número observaciones	55	
Supuesto de la prueba: Existe una tendencia lineal deterministica en los datos. Constante y tendencia no restringidas en el vector de cointegración Variables endógenas: LNKPEA Análisis I (1) Valores Propios (Eigenvalues) L-máx. 0.2828 18,28 27,57 0.1554 9,29 1 0.1554 9,29 1 10.56 10,56 El estadístico L-máx, indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. Traza90 El estadístico t -3,7888 0.0111 -0,5190 0.0547 -0,1283 -0,128 -0,1288 -0,158 -0,156 El estadístico L-máx, indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. Corrección de Errores: D(LNKPEA(-11)) 0,3475 0,105 Error estándar -0,1283 -0,005 Error estándar -0,1283 -0,0269 Corrección de Errores: D(LNKPEA(-11)) 0,4281 D(LNKPEA(-11)) 0,4281 0,555 Error estándar -0,1289 -0,114									
Existe una tendencia lineal deterministica en los datos. Constante y tendencia no restringidas en el vector de cointegración Variables endógenas: LNKPEA LNYPEA Análisis I (1) Valores Propios (Elgenvalues) L-máx. Traza Ho: r L-máx.90 Traza90 0,2828 18,28 27,57 0 12,39 22,95 0,1554 9,29 9,29 1 10,56 10,56 El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. Corrección de Errores: D(LNYPEA) D(LNKP EC. de COINT1 -0,5190 0,051 Error estándar -0,1370 -0,055 EL de COINT1 -0,5190 0,051 Error estándar -0,1370 -0,055 Estadístico-1 -1,4922 -4,641 D(LNYPEA(-1)) 0,4281 0,555 Error estándar -0,1283 -0,065 Error estándar -0,1283 -0,055 Error estándar -1,4922 -4,641 C 0,0080 -0,003 Error estándar -0,2869 -0,115 Estadístico-1 -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,005	Rezagos en el mode	elo VAR:	2	(Un rezago	en el modelo V	/EC)	Ecuación de cointegración	EC. de COINT1	
Constante y tendencia no restringidas en el vector de cointegración -0.4202 Variables endógenas: LNKPEA Análisis I (1) -0.4202 Valores Propios (Eigenvalues) L-máx. 0.2828 18,28 27,57 0.1554 9,29 9,29 1 10,56 10,56 El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. -0.47642 Corrección de Errores: D(LNYPEA) C -4,7642 Corrección de Errores: D(LNYPEA) D(LNYPEA) 0.3475 0,1370 -0.0518 Corrección de Errores: D(LNYPEA) D(LNYPEA) 0.0421 Error estándar -0.1283 0.031 -0.788 Error estándar -0.27076 0.0421 Error estándar 0.0322 -2,7076 Error estándar -0.2869 0.04281 0.555 Error estándar -0.2869 0.0080 -0.0025 C 0.0080							LNYPEA(-1)	1,0000	
Variables endógenas: LNKPEA LNYPEA Error estándar -0.0790 Variables endógenas: LNKPEA LNYPEA -5.3196 -5.3196 Valores Propios L-máx. Traza Ho: r L-máx.90 Traza90 0.2828 18,28 27,57 0 12,39 22,95 -0.0712 0.1554 9,29 9,29 1 10,56 10,56 El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. -4,7642 C EC. de COINT1 -0,5190 0,051 -0,1370 -0,0057 D(LNKPEA(-11)) 0,3475 0,105 Estadístico-t -3,7888 -0,901 Error estándar -0,1283 -0,005 Estadístico-t -2,7076 -1,975 D(LNYPEA(-11)) 0,3475 0,105 Error estándar -0,2869 -0,115 Error estándar -0,2869 -0,115 -2,7076 -1,4922 -4,641 C 0,0080 0,0032 Error estándar -0,0054 -0,0054									
Variables endógenas: LNKPEA LNYPEA Análisis I (1)	Constante y tenden	cia no restring	gidas en el vecto	r de cointegi	ración		LNKPEA(-1)		
Análisis I (1) Tendax. Traza Ho: r L-máx.90 Traza90 0.2828 18,28 27,57 0 12,39 22,95 0.1554 9,29 9,29 1 10,56 10,56 El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. -4,7642 C Cc -4,7642 C -4,7642 C Corrección de Errores: D(LNKPEA) D(LNKPEA) D(LNKPEA) 0,0317 Cluber de significancia del 10%. 0.3475 0,105 -3,7888 -0,015 Error estándar -0,1237 -0,057 -3,7888 -0,016 Error estándar -0,1283 -0,051 -0,057 -13,5764 C -4,7642 -4,7642 -14,7642 -14,7642 Corrección de Errores: D(LNKPEA) D(LNKPEA) 0,051 Error estándar -0,21370 -0,057 -1,975 D(LNYPEA) 0,1283 -0,0158 -2,7076 -1,975 Error estándar -0,2869							Error estándar		
Valores Propios L-máx. Traza Ho: r L-máx.90 Traza90 0.2828 18,28 27,57 0 12,39 22,95 -0,0012 0.1554 9,29 9,29 1 10,56 10,56 -13,5764 El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. C -4,7642 Corrección de Errores: D(LNYPEA) D(LNKP El estadístico-t -3,7888 -0,001 El estadístico-t -3,7888 -0,901 D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,055 Error estándar -0,2869 -0,111 Error estándar -0,2869 -0,111 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,111	Variables endógena	IS:	LNKPEA	LNYPEA			Estadístico-t	-5,3196	
(Eigenvalues) L-max. 1maza HO: r L-max.so 1mazaso 1mazaso -0,0012 0,2828 18,28 27,57 0 12,39 22,95 -13,5764 -13,5764 0,1554 9,29 9,29 1 10,56 10,56 -4,7642 El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. C -4,7642 Corrección de Errores: D(LNYPEA) D(LNKP EC. de COINT1 -0,5190 0,051 Error estándar -0,1370 -0,057 Estadístico-t -3,7888 -0,901 D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,055 Error estándar -0,2869 -0,111 Error estándar -0,2869 -0,111 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,111 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,02			Análisis I (1)			TENDENCIA	-0,0158	
0,2828 18,28 27,57 0 12,39 22,95 0,1554 9,29 9,29 1 10,56 10,56 El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. Estadístico-t -13,5764 C -4,7642 Corrección de Errores: D(LNKPEA) D(LNKP EC. de COINT1 -0,5190 0,051 Error estándar -0,1370 -0,057 Estadístico-t -3,7888 -0,015 D(LNYPEA) D(LNKP D(LNYPEA) 0,021 D(LNYPEA) 0,021 Estadístico-t -3,7888 -0,015 Error estándar -0,1283 -0,053 Estadístico-t -2,7076 -1,976 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,119 C 0,0080 0,003 Error estándar -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,0054		<u>L-máx.</u>	Traza	<u>Ho:</u> r	<u>L-máx.90</u>	Traza90		0.0040	
0,1554 9,29 9,29 1 10,56 10,56 El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. C -4,7642 Corrección de Errores: D(LNYPEA) D(LNKP EC. de COINT1 -0,5190 0,051 Error estándar -0,1370 -0,057 Estadístico-t -3,7888 -0,901 D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,057 Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,119 Estadístico-t -1,4922 -4,641 C 0,0080 0,003		40.00	07.57		10.00	00.05			
El estadístico L-máx. indica que existe por lo menos un vector de cointegración a un nivel de significancia del 10%. C -4,7642 Corrección de Errores: D(LNYPEA) D(LNKP EC. de COINT1 -0,5190 0,051 Error estándar -0,1370 -0,057 Estadístico-t -3,7888 -0,901 D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,053 Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,111 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,2869 -0,111 Estadístico-t -1,4922 -4,641							Estadístico-t	-13,5764	
a un nivel de significancia del 10%. Corrección de Errores: D(LNYPEA) D(LNKP EC. de COINT1 -0,5190 0,051 Error estándar -0,1370 -0,057 Estadístico-t -3,7888 -0,901 D(LNYPEA) D(LNKP D(LNYPEA) 0,0475 0,057 Estadístico-t -3,7888 -0,901 D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,053 Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,115 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002							С	-4,7642	
Error estándar -0,1370 -0,057 Estadístico-t -3,7888 -0,901 D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,053 Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,119 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002				nenos un v	ector de coint	egración	Corrección de Errores:	D(LNYPEA)	D(LNKPEA)
Error estándar -0,1370 -0,057 Estadístico-t -3,7888 -0,901 D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,053 Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,119 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002								0.5400	0.0545
Estadístico-t -3,7888 -0,901 D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,053 Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,119 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002									
D(LNYPEA(-1)) 0,3475 0,105 Error estándar -0,1283 -0,053 Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,118 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002									
Error estándar -0,1283 -0,053 Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,119 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002							Estadístico-t	-3,7888	-0,9015
Estadístico-t -2,7076 -1,975 D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,119 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002							D(LNYPEA(-1))	0,3475	0,1057
D(LNKPEA(-1)) 0,4281 0,555 Error estándar -0,2869 -0,119 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002							Error estándar	-0,1283	-0,0535
Error estándar -0,2869 -0,119 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002							Estadístico-t	-2,7076	-1,9754
Error estándar -0,2869 -0,119 Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002							D(LNKPEA(-1))	0.4281	0,5554
Estadístico-t -1,4922 -4,641 C 0,0080 0,003 Error estándar -0,0054 -0,002									-0,1197
Error estándar -0,0054 -0,002									-4,6413
Error estándar -0,0054 -0,002							C	0.0080	0.0034
							-	,	,
									-1,5365
Criterio Akaike							Criterio Akaike		-11,46
									-11,40

Anexo Tabla 9A

Anexo Tabla 10A

PRUEBA DE COINTEGRACIÓN DE JOHANSEN para otros tamaños de muestra


Series: LNKPEA	Series: LNKPEA LNYPEA - Incluyendo un rezago.							
Periodo Muestral (No. observaciones)	Valores Propios <i>(Eigenvalues)</i>	Razón de verosimilitud	Valor crítico al 5%	Valor crítico al 1%	Ho: r			
1925 - 1959	0,4057	25,05	25,32	30,45	0			
(33)	0,2122	7,87	12,25	16,26	1			
* El estadístico de p	orueba rechaza cualqui	er cointegración a l	un nivel de significa	ncia del 5%.				
1925 - 1960	0,4068	26,2	25,32	30,45	0			
(34)	0,2200	8,45	12,25	16,26	1			
* El estadístico de p	orueba acepta a existen	cia de por lo meno	s una relación de co	integración				
a un nivel de signi	a un nivel de significancia del 5%.							
1925 - 1982	0,1743	20,16	25,32	30,45	0			
(56)	0,1549	9,43	12,25	16,26	1			
* El estadístico de p	prueba rechaza cualqui	er cointegración a l	un nivel de significa	ncia del 5%.				

Anexo Tabla 11A

Periodo α gorro Error estándar Máximo Mínimo β₁ gorro Error estándar Máximo Mínimo gr** 1927 - 1950 -0.0510 -0.2863 -0.3373 0.2363 -0.0177 -0.0013 -0.0190 -0.0164 1.88% 1927 - 1952 -0.2307 -0.2531 -0.4567 0.0494 -0.0167 -0.0012 -0.0179 -0.0155 2.47% 1927 - 1953 -0.3481 -0.1657 -0.6036 -0.2702 -0.0161 -0.0012 -0.0178 -0.0155 2.63% 1927 - 1954 -0.44699 -0.1667 -0.6036 -0.2702 -0.0161 -0.0011 -0.0173 -0.0150 2.66% 1927 - 1956 -0.4097 -0.1360 -0.5458 -0.2737 -0.0162 -0.0011 -0.0172 -0.0152 2.66% 1927 - 1950 -0.4210 -0.0918 -0.5129 -0.3222 -0.0160 -0.0172 -0.0151 2.72% 1927 - 1961 -0.4120 -0.0382 -0.4120 -0.3383 -0.0160		ESTABILIDAD DE LOS COEFICIENTES DEL VECTOR DE COINTEGRACIÓN								
1927 1950 -0.0610 -0.2863 -0.3373 0.2353 -0.0177 -0.0013 -0.0190 -0.0164 1.88% 1927 1951 -0.2037 -0.2531 -0.4667 0.0167 -0.013 -0.0182 -0.0157 2.15% 1927 1953 -0.3891 -0.1853 -0.5444 -0.1737 -0.0166 -0.0178 -0.0155 2.63% 1927 1955 -0.4653 -0.1518 -0.5571 -0.2535 -0.0161 -0.0011 -0.0173 -0.0151 2.76% 1927 1956 -0.4063 -0.1770 -0.5285 -0.0162 -0.0011 -0.0172 -0.0151 2.76% 1927 1956 -0.4097 -0.1380 -0.5488 -0.2737 -0.0162 -0.0010 -0.0172 -0.0151 2.76% 1927 1956 -0.3822 -0.2615 -0.0162 -0.0010 -0.0172 -0.0152 2.68% 1927 1960 -0.4034 -0.0385 -0.4869 -0.3282 -0.01										
1927 1951 -0.2037 -0.2531 -0.4567 0.0494 -0.0169 -0.0013 -0.0122 -0.0157 2.47% 1927 1952 -0.3141 -0.2165 -0.6306 -0.0976 -0.0167 -0.0012 -0.0178 -0.0155 2.63% 1927 1954 -0.4369 -0.1667 -0.6036 -0.2702 -0.0161 -0.0012 -0.0173 -0.0151 2.76% 1927 1955 -0.4097 -0.1360 -0.5458 -0.2737 -0.0162 -0.0011 -0.0172 -0.0151 2.76% 1927 1956 -0.4097 -0.1360 -0.5458 -0.2737 -0.0162 -0.0011 -0.0172 -0.0152 2.66% 1927 1956 -0.4207 -0.0382 -0.1207 -0.5229 -0.2556 -0.0162 -0.0010 -0.0172 -0.0151 2.78% 1927 1960 -0.4204 -0.0835 -0.4269 -0.3282 -0.0160 -0.0010 -0.0170 -0.0151 2.71% 1927 1960 -0.4112 -0.0730 -0.4869 -0.3382 -0.0160										
1927 - 1952 -0,3141 -0,2165 -0,5306 -0,0976 -0,0167 -0,0012 -0,0179 -0,0155 2,47% 1927 - 1954 -0,3591 -0,1853 -0,5444 -0,1737 -0,01616 -0,0012 -0,0178 -0,0150 2,91% 1927 - 1954 -0,4369 -0,1667 -0,6036 -0,2702 -0,0161 -0,0011 -0,0173 -0,0151 2,76% 1927 - 1955 -0,4097 -0,1360 -0,5458 -0,2737 -0,0162 -0,0011 -0,0172 -0,0152 2,66% 1927 - 1957 -0,3822 -0,1070 -0,4696 -0,2556 -0,0162 -0,0010 -0,0172 -0,0152 2,58% 1927 - 1959 -0,4210 -0,0918 -0,3292 -0,0160 -0,0010 -0,0170 -0,0151 2,77% 1927 - 1961 -0,4044 -0,0383 -0,3282 -0,0160 -0,0010 -0,0170 -0,0151 2,77% 1927 - 1963 -0,4044 -0,0383 -0,0160 -0,0009 -0,0170 -0,0152 2,77% 1927 - 1964 -0,4112 -0,0730 -0,4757 -0		,				,	,	<u> </u>	,	
1927 - 1953 -0,1853 -0,5444 -0,1737 -0,0166 -0,0012 -0,0178 -0,0155 2,63% 1927 - 1954 -0,4667 -0,6036 -0,2732 -0,0161 -0,0012 -0,0173 -0,0150 2,91% 1927 - 1955 -0,4053 -0,1518 -0,5571 -0,2535 -0,0162 -0,0011 -0,0172 -0,0151 2,76% 1927 - 1956 -0,4097 -0,1360 -0,5629 -0,2165 -0,0162 -0,0010 -0,0172 -0,0152 2,68% 1927 - 1958 -0,3284 -0,1070 -0,4696 -0,2556 -0,0162 -0,0010 -0,0171 -0,0152 2,68% 1927 - 1950 -0,4210 -0,0918 -0,1529 -0,3228 -0,0160 -0,0010 -0,0171 -0,0151 2,77% 1927 - 1961 -0,4010 -0,0730 -0,4842 -0,3382 -0,0160 -0,0010 -0,0170 -0,0151 2,77% 1927 - 1964 -0,4175 -0,0663 -0,4838 -0,3131 -0,0160 -0,0009 <		,				,	· · · · · · · · · · · · · · · · · · ·	<u> </u>	,	
1927 - 1954 -0,4369 -0,1667 -0,6036 -0,2702 -0,0161 -0,0012 -0,0173 -0,0150 2,91% 1927 - 1955 -0,4037 -0,1518 -0,5571 -0,2535 -0,0162 -0,0011 -0,0173 -0,0151 2,77% 1927 - 1957 -0,3822 -0,1207 -0,5029 -0,2615 -0,0162 -0,0010 -0,0172 -0,0152 2,66% 1927 - 1958 -0,3626 -0,1070 -0,4696 -0,2556 -0,0162 -0,0010 -0,0171 -0,0152 2,66% 1927 - 1960 -0,4034 -0,0335 -0,4669 -0,3292 -0,0160 -0,0170 -0,0151 2,72% 1927 - 1961 -0,4010 -0,0782 -0,4792 -0,3282 -0,0160 -0,0170 -0,0151 2,77% 1927 - 1963 -0,4070 -0,6687 -0,4757 -0,3382 -0,0161 -0,0009 -0,0170 -0,0151 2,77% 1927 - 1966 -0,4175 -0,03513 -0,0160 -0,0009 -0,0169 -0,0151		-0,3141	-0,2165		-0,0976	-0,0167	-0,0012	-0,0179	-0,0155	
1927 - 1955 -0,4053 -0,1518 -0,5571 -0,2535 -0,0162 -0,0011 -0,0173 -0,0151 2,76% 1927 - 1956 -0,4097 -0,1360 -0,5458 -0,2737 -0,0162 -0,0011 -0,0172 -0,0152 2,66% 1927 - 1958 -0,3626 -0,1070 -0,4696 -0,2556 -0,0162 -0,0010 -0,0172 -0,0152 2,66% 1927 - 1950 -0,4210 -0,04696 -0,2556 -0,0161 -0,0010 -0,0171 -0,0151 2,72% 1927 - 1960 -0,4034 -0,0835 -0,4869 -0,3199 -0,0160 -0,0170 -0,0151 2,72% 1927 - 1960 -0,4112 -0,0730 -0,4842 -0,3382 -0,0161 -0,0009 -0,0170 -0,0152 2,77% 1927 - 1963 -0,4175 -0,0663 -0,4838 -0,3131 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1965 -0,4175 -0,0633 -0,4779 -0,3513 -0,0160 -0,0009	1927 - 1953	-0,3591	-0,1853	-0,5444	-0,1737	-0,0166	-0,0012	-0,0178	-0,0155	2,63%
1927 - 1956 -0,4097 -0,1360 -0,5458 -0,2737 -0,0162 -0,0011 -0,0172 -0,0151 2,77% 1927 - 1956 -0,3822 -0,1207 -0,5029 -0,2615 -0,0162 -0,0010 -0,0172 -0,0152 2,68% 1927 - 1956 -0,4210 -0,0918 -0,5129 -0,3292 -0,0161 -0,0010 -0,0171 -0,0151 2,82% 1927 - 1960 -0,4034 -0,0835 -0,4869 -0,3199 -0,0160 -0,0010 -0,0170 -0,0151 2,72% 1927 - 1961 -0,4010 -0,0782 -0,3228 -0,0160 -0,0010 -0,0170 -0,0152 2,77% 1927 - 1963 -0,4070 -0,0663 -0,4757 -0,3383 -0,0161 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1965 -0,4156 -0,0643 -0,4775 -0,3498 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1966 -0,4125 -0,0627 -0,4782 -0,3557 -0,0159 <	1927 - 1954	-0,4369	-0,1667	-0,6036	-0,2702	-0,0161	-0,0012	-0,0173	-0,0150	2,91%
1927 - 1957 -0,3822 -0,1207 -0,5029 -0,2615 -0,0162 -0,0100 -0,0172 -0,0152 2,66% 1927 - 1958 -0,3826 -0,1070 -0,4896 -0,2556 -0,0162 -0,0010 -0,0172 -0,0152 2,58% 1927 - 1959 -0,4210 -0,0918 -0,3292 -0,0160 -0,0010 -0,0170 -0,0151 2,72% 1927 - 1960 -0,4034 -0,0835 -0,4869 -0,3199 -0,0160 -0,0010 -0,0170 -0,0151 2,77% 1927 - 1960 -0,4112 -0,0730 -0,4842 -0,3328 -0,0161 -0,0009 -0,0170 -0,0152 2,77% 1927 - 1965 -0,4175 -0,0663 -0,4838 -0,3512 -0,0160 -0,0009 -0,0159 -0,0151 2,78% 1927 - 1965 -0,4156 -0,0643 -0,4799 -0,3513 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1966 -0,4156 -0,0612 -0,4782 -0,3557 -0,0159 <	1927 - 1955	-0,4053	-0,1518	-0,5571	-0,2535	-0,0162	-0,0011	-0,0173	-0,0151	2,76%
1927 - 1958 -0,3626 -0,1070 -0,4696 -0,2556 -0,0162 -0,0101 -0,0172 -0,0152 2,58% 1927 - 1950 -0,4210 -0,0918 -0,5129 -0,3292 -0,0161 -0,0010 -0,0171 -0,0151 2,82% 1927 - 1960 -0,4034 -0,0782 -0,4792 -0,3228 -0,0160 -0,0010 -0,0170 -0,0151 2,77% 1927 - 1963 -0,4070 -0,0782 -0,4757 -0,3383 -0,0161 -0,0009 -0,0170 -0,0152 2,77% 1927 - 1964 -0,4175 -0,0663 -0,4757 -0,3383 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1964 -0,4175 -0,0663 -0,4782 -0,3557 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1966 -0,4170 -0,0612 -0,4782 -0,3604 -0,0159 -0,0009 -0,0168 -0,0150 2,77% 1927 - 1966 -0,4705 -0,3604 -0,0159 -0,0009 <	1927 - 1956	-0,4097	-0,1360	-0,5458	-0,2737	-0,0162	-0,0011	-0,0172	-0,0151	2,77%
1927 - 1959 -0,4210 -0,0918 -0,5129 -0,3292 -0,0161 -0,0010 -0,0171 -0,0151 2,82% 1927 - 1960 -0,4034 -0,0335 -0,4869 -0,3199 -0,0160 -0,0010 -0,0170 -0,0151 2,72% 1927 - 1961 -0,4010 -0,0782 -0,4792 -0,3228 -0,0160 -0,0010 -0,0170 -0,0151 2,77% 1927 - 1963 -0,4070 -0,0687 -0,4757 -0,3383 -0,0161 -0,0009 -0,0170 -0,0152 2,77% 1927 - 1965 -0,4175 -0,0663 -0,4838 -0,3512 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1965 -0,4125 -0,0627 -0,3498 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1966 -0,4125 -0,0627 -0,3498 -0,0159 -0,0009 -0,0168 -0,0150 2,78% 1927 - 1967 -0,4205 -0,0617 -0,4782 -0,3557 -0,0159 -0,0009 <	1927 - 1957	-0,3822	-0,1207	-0,5029	-0,2615	-0,0162	-0,0010	-0,0172	-0,0152	2,66%
1927 - 1960 -0,4034 -0,0835 -0,4869 -0,3199 -0,0160 -0,0010 -0,0170 -0,0151 2,72% 1927 - 1961 -0,4010 -0,0782 -0,4792 -0,3228 -0,0160 -0,0010 -0,0170 -0,0151 2,77% 1927 - 1963 -0,4112 -0,0730 -0,4842 -0,3382 -0,0161 -0,0009 -0,0170 -0,0152 2,77% 1927 - 1963 -0,4070 -0,0687 -0,4757 -0,3383 -0,0160 -0,0009 -0,0159 -0,0151 2,78% 1927 - 1964 -0,4175 -0,0663 -0,4838 -0,3513 -0,0160 -0,0009 -0,0159 -0,0151 2,78% 1927 - 1966 -0,4125 -0,0627 -0,4752 -0,3498 -0,0160 -0,0009 -0,0168 -0,0150 2,78% 1927 - 1966 -0,4170 -0,0627 -0,4782 -0,3627 -0,0159 -0,0009 -0,0168 -0,0150 2,78% 1927 - 1966 -0,4244 -0,0587 -0,4806 -0,3667 <	1927 - 1958	-0,3626	-0,1070	-0,4696	-0,2556	-0,0162	-0,0010	-0,0172	-0,0152	2,58%
1927 - 1961 -0,4010 -0,0782 -0,4792 -0,3228 -0,0160 -0,010 -0,0170 -0,0151 2,71% 1927 - 1962 -0,4112 -0,0730 -0,4842 -0,3383 -0,0161 -0,0009 -0,0170 -0,0152 2,77% 1927 - 1963 -0,4070 -0,0687 -0,4757 -0,3383 -0,0161 -0,0009 -0,0170 -0,0152 2,75% 1927 - 1965 -0,4156 -0,0643 -0,4799 -0,3513 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1966 -0,4125 -0,0627 -0,4752 -0,3498 +0,0160 -0,0009 -0,0168 -0,0151 2,78% 1927 - 1966 -0,4125 -0,0627 -0,3567 -0,0159 -0,0009 -0,0168 -0,0150 2,78% 1927 - 1968 -0,4205 -0,0601 -0,0860 -0,3667 +0,0159 -0,0009 -0,0168 -0,0150 2,78% 1927 - 1970 -0,4246 -0,0580 -0,4826 -0,3663 -0,0160 <t< td=""><td>1927 - 1959</td><td>-0,4210</td><td>-0,0918</td><td>-0,5129</td><td>-0,3292</td><td>-0,0161</td><td>-0,0010</td><td>-0,0171</td><td>-0,0151</td><td>2,82%</td></t<>	1927 - 1959	-0,4210	-0,0918	-0,5129	-0,3292	-0,0161	-0,0010	-0,0171	-0,0151	2,82%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1927 - 1960	-0,4034	-0,0835	-0,4869	-0,3199	-0,0160	-0,0010	-0,0170	-0,0151	2,72%
1927 - 1963 -0,4070 -0,0687 -0,4757 -0,3383 -0,0161 -0,0009 -0,0170 -0,0152 2,75% 1927 - 1964 -0,4175 -0,0663 -0,4838 -0,3512 -0,0160 -0,0009 -0,0169 -0,0151 2,79% 1927 - 1965 -0,4156 -0,0643 -0,4799 -0,3513 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1966 -0,4125 -0,0627 -0,4752 -0,3498 -0,0160 -0,0009 -0,0169 -0,0151 2,76% 1927 - 1966 -0,4205 -0,0601 -0,4806 -0,3557 -0,0159 -0,0009 -0,0168 -0,0150 2,78% 1927 - 1968 -0,4205 -0,0601 -0,4806 -0,3667 -0,0159 -0,0009 -0,0168 -0,0150 2,79% 1927 - 1970 -0,4246 -0,0587 -0,4805 -0,3663 -0,0169 -0,0009 -0,0168 -0,0150 2,80% 1927 - 1971 -0,4246 -0,0580 -0,4805 -0,3663 <	1927 - 1961	-0,4010	-0,0782	-0,4792	-0,3228	-0,0160	-0,0010	-0,0170	-0,0151	2,71%
1927 - 1964 -0,4175 -0,0663 -0,4838 -0,3512 -0,0160 -0,0009 -0,0169 -0,0151 2,79% 1927 - 1965 -0,4156 -0,0627 -0,4752 -0,3498 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1966 -0,4125 -0,0627 -0,4752 -0,3498 -0,0159 -0,0009 -0,0168 -0,0150 2,77% 1927 - 1966 -0,4205 -0,0612 -0,4782 -0,3557 -0,0159 -0,0009 -0,0167 -0,0150 2,78% 1927 - 1968 -0,4205 -0,0687 -0,4806 -0,3627 -0,0159 -0,0009 -0,0167 -0,0150 2,78% 1927 - 1970 -0,4244 -0,0587 -0,4806 -0,3667 -0,0159 -0,0009 -0,0167 -0,0150 2,80% 1927 - 1971 -0,4224 -0,0571 -0,4795 -0,3663 -0,0160 -0,0008 -0,0168 -0,0152 2,81% 1927 - 1973 -0,4175 -0,0628 -0,4805 -0,3633 -0,0162 -0,0009 -0,0171 -0,0153 2,85% 1927 -	1927 - 1962	-0,4112	-0,0730	-0,4842	-0,3382	-0,0161	-0,0009	-0,0170	-0,0152	2,77%
1927 - 1965 -0,4156 -0,0643 -0,4799 -0,3513 -0,0160 -0,0009 -0,0169 -0,0151 2,78% 1927 - 1966 -0,4125 -0,0627 -0,4752 -0,3498 -0,0160 -0,0009 -0,0169 -0,0151 2,76% 1927 - 1967 -0,4170 -0,0612 -0,4782 -0,3557 -0,0159 -0,0009 -0,0168 -0,0150 2,77% 1927 - 1968 -0,4205 -0,0601 -0,4806 -0,3627 -0,0159 -0,0009 -0,0168 -0,0150 2,78% 1927 - 1970 -0,4214 -0,0587 -0,4802 -0,3627 -0,0159 -0,0009 -0,0168 -0,0150 2,88% 1927 - 1970 -0,4224 -0,0571 -0,4826 -0,3663 -0,0160 -0,0009 -0,0171 -0,0152 2,81% 1927 - 1972 -0,4204 -0,0601 -0,4805 -0,3603 -0,0162 -0,0009 -0,0171 -0,0152 2,85% 1927 - 1973 -0,4175 -0,0628 -0,4804 -0,3547 <	1927 - 1963	-0,4070	-0,0687	-0,4757	-0,3383	-0,0161	-0,0009	-0,0170	-0,0152	2,75%
1927 - 1966-0,4125-0,0627-0,4752-0,3498-0,0160-0,0009-0,0169-0,01512,76%1927 - 1967-0,4170-0,0612-0,4782-0,3557-0,0159-0,0009-0,0168-0,01502,77%1927 - 1968-0,4205-0,0601-0,4806-0,3604-0,0159-0,0009-0,0167-0,01502,78%1927 - 1969-0,4214-0,0587-0,4802-0,3627-0,0159-0,0009-0,0167-0,01502,88%1927 - 1970-0,4246-0,0580-0,4826-0,3663-0,0159-0,0009-0,0167-0,01502,88%1927 - 1971-0,4224-0,0571-0,4795-0,3653-0,0160-0,0008-0,0168-0,01522,81%1927 - 1972-0,4204-0,0601-0,4805-0,3603-0,0162-0,0009-0,0171-0,01532,84%1927 - 1973-0,4175-0,0628-0,4804-0,3547-0,0164-0,0009-0,0171-0,01522,85%1927 - 1974-0,4344-0,0630-0,4973-0,3714-0,0161-0,0009-0,0171-0,01522,87%1927 - 1975-0,4299-0,0618-0,4917-0,3681-0,0162-0,0009-0,0171-0,01522,87%1927 - 1975-0,4236-0,0640-0,3672-0,0160-0,0009-0,0170-0,01522,87%1927 - 1976-0,4311-0,0640-0,3681-0,0161-0,0009-0,0171-0,01522,85%1927 - 197	1927 - 1964	-0,4175	-0,0663	-0,4838	-0,3512	-0,0160	-0,0009	-0,0169	-0,0151	2,79%
1927 - 1967-0,4170-0,0612-0,4782-0,3557-0,0159-0,0009-0,0168-0,01502,77%1927 - 1968-0,4205-0,0601-0,4806-0,3604-0,0159-0,0009-0,0167-0,01502,78%1927 - 1969-0,4214-0,0587-0,4802-0,3627-0,0159-0,0009-0,0168-0,01502,78%1927 - 1970-0,4246-0,0580-0,4826-0,3667-0,0159-0,0009-0,0168-0,01502,80%1927 - 1971-0,4224-0,0571-0,4795-0,3653-0,0160-0,0008-0,0168-0,01522,81%1927 - 1972-0,4204-0,0601-0,4805-0,3603-0,0162-0,0009-0,0171-0,01532,84%1927 - 1973-0,4175-0,0628-0,4804-0,3547-0,0164-0,0009-0,0173-0,01522,85%1927 - 1974-0,4344-0,0630-0,4973-0,3714-0,0161-0,0009-0,0170-0,01522,85%1927 - 1975-0,4299-0,0618-0,4917-0,3672-0,0161-0,0009-0,0170-0,01522,87%1927 - 1977-0,4311-0,0640-0,4923-0,3672-0,0160-0,0009-0,0170-0,01522,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522	1927 - 1965	-0,4156	-0,0643	-0,4799	-0,3513	-0,0160	-0,0009	-0,0169	-0,0151	2,78%
1927 - 1968-0,4205-0,0601-0,4806-0,3604-0,0159-0,0009-0,0167-0,01502,78%1927 - 1969-0,4214-0,0587-0,4802-0,3627-0,0159-0,0009-0,0168-0,01512,79%1927 - 1970-0,4246-0,0580-0,4826-0,3667-0,0159-0,0009-0,0167-0,01502,80%1927 - 1971-0,4224-0,0571-0,4795-0,3653-0,0160-0,0008-0,0168-0,01522,81%1927 - 1972-0,4204-0,0601-0,4805-0,3603-0,0162-0,0009-0,0171-0,01532,84%1927 - 1973-0,4175-0,0628-0,4804-0,3547-0,0164-0,0009-0,0173-0,01522,85%1927 - 1974-0,4344-0,0630-0,4973-0,3714-0,0161-0,0009-0,0170-0,01522,85%1927 - 1975-0,4299-0,0618-0,4917-0,3681-0,0162-0,0009-0,0171-0,01522,87%1927 - 1976-0,4311-0,0611-0,4923-0,3700-0,0161-0,0009-0,0170-0,01522,87%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0160-0,0009-0,0170-0,01522,85%1927 - 1978-0,4320-0,0639-0,4958-0,3661-0,0159-0,0009-0,0171-0,01522,85%1927 - 1978-0,4320-0,0660-0,4976-0,3656-0,0159-0,0009-0,0168-0,01502	1927 - 1966	-0,4125	-0,0627	-0,4752	-0,3498	-0,0160	-0,0009	-0,0169	-0,0151	2,76%
1927 - 1969-0,4214-0,0587-0,4802-0,3627-0,0159-0,0009-0,0168-0,01512,79%1927 - 1970-0,4246-0,0580-0,4826-0,3667-0,0159-0,0009-0,0167-0,01502,80%1927 - 1971-0,4224-0,0571-0,4795-0,3653-0,0160-0,0008-0,0168-0,01522,81%1927 - 1972-0,4204-0,0601-0,4805-0,3603-0,0162-0,0009-0,0171-0,01532,84%1927 - 1973-0,4175-0,0628-0,4804-0,3547-0,0164-0,0009-0,0173-0,01552,85%1927 - 1974-0,4344-0,0630-0,4973-0,3714-0,0161-0,0009-0,0170-0,01522,89%1927 - 1975-0,4299-0,0618-0,4917-0,3681-0,0162-0,0009-0,0171-0,01522,87%1927 - 1976-0,4311-0,0611-0,4923-0,3700-0,0161-0,0009-0,0170-0,01522,87%1927 - 1977-0,4311-0,0640-0,4951-0,3672-0,0160-0,0009-0,0171-0,01522,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,85%1927 - 1979-0,4320-0,0639-0,4958-0,3681-0,0159-0,0009-0,0169-0,01502,85%1927 - 1978-0,4326-0,0660-0,4976-0,3656-0,0159-0,0010-0,0168-0,01492	1927 - 1967	-0,4170	-0,0612	-0,4782	-0,3557	-0,0159	-0,0009	-0,0168	-0,0150	2,77%
1927 - 1970-0,4246-0,0580-0,4826-0,3667-0,0159-0,0009-0,0167-0,01502,80%1927 - 1971-0,4224-0,0571-0,4795-0,3653-0,0160-0,0008-0,0168-0,01522,81%1927 - 1972-0,4204-0,0601-0,4805-0,3603-0,0162-0,0009-0,0171-0,01532,84%1927 - 1973-0,4175-0,0628-0,4804-0,3547-0,0164-0,0009-0,0173-0,01552,85%1927 - 1974-0,4344-0,0630-0,4973-0,3714-0,0161-0,0009-0,0170-0,01522,89%1927 - 1975-0,4299-0,0618-0,4917-0,3681-0,0162-0,0009-0,0171-0,01522,87%1927 - 1976-0,4311-0,0611-0,4923-0,3700-0,0161-0,0009-0,0170-0,01522,87%1927 - 1977-0,4311-0,0640-0,4951-0,3672-0,0160-0,0009-0,0170-0,01522,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,85%1927 - 1979-0,4320-0,0639-0,4958-0,3681-0,0159-0,0009-0,0171-0,01522,85%1927 - 1979-0,4320-0,0660-0,4976-0,3656-0,0159-0,0009-0,0169-0,01502,85%1927 - 1980-0,4316-0,0660-0,4976-0,3656-0,0159-0,0010-0,0168-0,01492	1927 - 1968	-0,4205	-0,0601	-0,4806	-0,3604	-0,0159	-0,0009	-0,0167	-0,0150	2,78%
1927 - 1971-0,4224-0,0571-0,4795-0,3653-0,0160-0,0008-0,0168-0,01522,81%1927 - 1972-0,4204-0,0601-0,4805-0,3603-0,0162-0,0009-0,0171-0,01532,84%1927 - 1973-0,4175-0,0628-0,4804-0,3547-0,0164-0,0009-0,0173-0,01552,85%1927 - 1974-0,4344-0,0630-0,4973-0,3714-0,0161-0,0009-0,0170-0,01522,89%1927 - 1975-0,4299-0,0618-0,4917-0,3681-0,0162-0,0009-0,0171-0,01522,87%1927 - 1976-0,4311-0,0611-0,4923-0,3700-0,0161-0,0009-0,0170-0,01522,87%1927 - 1977-0,4311-0,0640-0,4951-0,3672-0,0160-0,0009-0,0170-0,01522,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,84%1927 - 1979-0,4320-0,0639-0,4958-0,3681-0,0159-0,0009-0,0171-0,01522,85%1927 - 1980-0,4316-0,0660-0,4976-0,3656-0,0159-0,0009-0,0168-0,01492,83%1927 - 1981-0,4202-0,0790-0,4992-0,3412-0,0158-0,0012-0,0170-0,01472,77%	1927 - 1969	-0,4214	-0,0587	-0,4802	-0,3627	-0,0159	-0,0009	-0,0168	-0,0151	2,79%
1927 - 1972-0,4204-0,0601-0,4805-0,3603-0,0162-0,0009-0,0171-0,01532,84%1927 - 1973-0,4175-0,0628-0,4804-0,3547-0,0164-0,0009-0,0173-0,01552,85%1927 - 1974-0,4344-0,0630-0,4973-0,3714-0,0161-0,0009-0,0170-0,01522,89%1927 - 1975-0,4299-0,0618-0,4917-0,3681-0,0162-0,0009-0,0171-0,01522,87%1927 - 1976-0,4311-0,0611-0,4923-0,3700-0,0161-0,0009-0,0170-0,01522,87%1927 - 1977-0,4311-0,0640-0,4951-0,3672-0,0160-0,0009-0,0169-0,01512,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,84%1927 - 1979-0,4320-0,0639-0,4958-0,3681-0,0159-0,0009-0,0169-0,01502,85%1927 - 1979-0,4320-0,0660-0,4976-0,3656-0,0159-0,0009-0,0169-0,01502,85%1927 - 1981-0,4202-0,0790-0,4992-0,3412-0,0158-0,0010-0,0168-0,01472,77%	1927 - 1970	-0,4246	-0,0580	-0,4826	-0,3667	-0,0159	-0,0009	-0,0167	-0,0150	2,80%
1927 - 1973-0,4175-0,0628-0,4804-0,3547-0,0164-0,0009-0,0173-0,01552,85%1927 - 1974-0,4344-0,0630-0,4973-0,3714-0,0161-0,0009-0,0170-0,01522,89%1927 - 1975-0,4299-0,0618-0,4917-0,3681-0,0162-0,0009-0,0171-0,01522,87%1927 - 1976-0,4311-0,0611-0,4923-0,3700-0,0161-0,0009-0,0170-0,01522,87%1927 - 1977-0,4311-0,0640-0,4951-0,3672-0,0160-0,0009-0,0169-0,01512,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,84%1927 - 1979-0,4316-0,0660-0,4976-0,3656-0,0159-0,0009-0,0169-0,01502,85%1927 - 1981-0,4202-0,0790-0,4992-0,3412-0,0158-0,0012-0,0170-0,01472,77%	1927 - 1971	-0,4224	-0,0571	-0,4795	-0,3653	-0,0160	-0,0008	-0,0168	-0,0152	2,81%
1927 - 1974-0,4344-0,0630-0,4973-0,3714-0,0161-0,0009-0,0170-0,01522,89%1927 - 1975-0,4299-0,0618-0,4917-0,3681-0,0162-0,0009-0,0171-0,01522,87%1927 - 1976-0,4311-0,0611-0,4923-0,3700-0,0161-0,0009-0,0170-0,01522,87%1927 - 1977-0,4311-0,0640-0,4951-0,3672-0,0160-0,0009-0,0169-0,01512,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,84%1927 - 1979-0,4320-0,0639-0,4958-0,3681-0,0159-0,0009-0,0169-0,01502,85%1927 - 1980-0,4316-0,0660-0,4976-0,3656-0,0159-0,0010-0,0168-0,01492,83%1927 - 1981-0,4202-0,0790-0,4992-0,3412-0,0158-0,0012-0,0170-0,01472,77%	1927 - 1972	-0,4204	-0,0601	-0,4805	-0,3603	-0,0162	-0,0009	-0,0171	-0,0153	2,84%
1927 - 1975-0,4299-0,0618-0,4917-0,3681-0,0162-0,0009-0,0171-0,01522,87%1927 - 1976-0,4311-0,0611-0,4923-0,3700-0,0161-0,0009-0,0170-0,01522,87%1927 - 1977-0,4311-0,0640-0,4951-0,3672-0,0160-0,0009-0,0169-0,01512,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,84%1927 - 1979-0,4320-0,0639-0,4958-0,3681-0,0159-0,0009-0,0169-0,01502,85%1927 - 1980-0,4316-0,0660-0,4976-0,3656-0,0159-0,0010-0,0168-0,01492,83%1927 - 1981-0,4202-0,0790-0,4992-0,3412-0,0158-0,0012-0,0170-0,01472,77%	1927 - 1973	-0,4175	-0,0628	-0,4804	-0,3547	-0,0164	-0,0009	-0,0173	-0,0155	2,85%
1927 - 1976-0,4311-0,0611-0,4923-0,3700-0,0161-0,0009-0,0170-0,01522,87%1927 - 1977-0,4311-0,0640-0,4951-0,3672-0,0160-0,0009-0,0169-0,01512,85%1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,84%1927 - 1979-0,4320-0,0639-0,4958-0,3681-0,0159-0,0009-0,0169-0,01502,85%1927 - 1980-0,4316-0,0660-0,4976-0,3656-0,0159-0,0010-0,0168-0,01492,83%1927 - 1981-0,4202-0,0790-0,4992-0,3412-0,0158-0,0012-0,0170-0,01472,77%	1927 - 1974	-0,4344	-0,0630	-0,4973	-0,3714	-0,0161	-0,0009	-0,0170	-0,0152	2,89%
1927 - 1977 -0,4311 -0,0640 -0,4951 -0,3672 -0,0160 -0,0009 -0,0169 -0,0151 2,85% 1927 - 1978 -0,4236 -0,0625 -0,4860 -0,3611 -0,0161 -0,0009 -0,0171 -0,0152 2,84% 1927 - 1979 -0,4320 -0,0639 -0,4958 -0,3681 -0,0159 -0,0009 -0,0169 -0,0150 2,85% 1927 - 1980 -0,4316 -0,0660 -0,4976 -0,3656 -0,0159 -0,0010 -0,0168 -0,0149 2,83% 1927 - 1981 -0,4202 -0,0790 -0,4992 -0,3412 -0,0158 -0,0012 -0,0170 -0,0147 2,77%	1927 - 1975	-0,4299	-0,0618	-0,4917	-0,3681	-0,0162	-0,0009	-0,0171	-0,0152	2,87%
1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,84%1927 - 1979-0,4320-0,0639-0,4958-0,3681-0,0159-0,0009-0,0169-0,01502,85%1927 - 1980-0,4316-0,0660-0,4976-0,3656-0,0159-0,0010-0,0168-0,01492,83%1927 - 1981-0,4202-0,0790-0,4992-0,3412-0,0158-0,0012-0,0170-0,01472,77%	1927 - 1976	-0,4311	-0,0611	-0,4923	-0,3700	-0,0161	-0,0009	-0,0170	-0,0152	2,87%
1927 - 1978-0,4236-0,0625-0,4860-0,3611-0,0161-0,0009-0,0171-0,01522,84%1927 - 1979-0,4320-0,0639-0,4958-0,3681-0,0159-0,0009-0,0169-0,01502,85%1927 - 1980-0,4316-0,0660-0,4976-0,3656-0,0159-0,0010-0,0168-0,01492,83%1927 - 1981-0,4202-0,0790-0,4992-0,3412-0,0158-0,0012-0,0170-0,01472,77%	1927 - 1977	-0,4311	-0,0640	-0,4951	-0,3672	-0,0160	-0,0009	-0,0169	-0,0151	2,85%
1927 - 1980 -0,4316 -0,0660 -0,4976 -0,3656 -0,0159 -0,0010 -0,0168 -0,0149 2,83% 1927 - 1981 -0,4202 -0,0790 -0,4992 -0,3412 -0,0158 -0,0012 -0,0170 -0,0147 2,77%	1927 - 1978	-0,4236	-0,0625	-0,4860	-0,3611	-0,0161	-0,0009	-0,0171	-0,0152	2,84%
1927 - 1980 -0,4316 -0,0660 -0,4976 -0,3656 -0,0159 -0,0010 -0,0168 -0,0149 2,83% 1927 - 1981 -0,4202 -0,0790 -0,4992 -0,3412 -0,0158 -0,0012 -0,0170 -0,0147 2,77%	1927 - 1979					-0,0159				
<u>1927 - 1981 -0,4202 -0,0790 -0,4992 -0,3412 -0,0158</u> -0,0012 -0,0170 -0,0147 2,77%	1927 - 1980	-0,4316				-0,0159	· ·			
	1927 - 1982	-0,5829	-0,1842	-0,7671	-0,3987	-0,0125	-0,0030	-0,0155	-0,0095	3,03%

* α gorro: Coeficiente estimado de la tendencia en el modelo. ** g: Tasa de crecimiento de la eficiencia laboral \rightarrow g = e $(b^{1 \text{ gorro}/1} - a^{\text{ gorro})} - 1$ En los periodos recursivos 1927-1983 hacia delante los coeficientes α son mayores que 1 y altamente inestables.

Anexo Gráfico 2A

ESTABILIDAD DEL COEFICIENTE " α " EN EL VEC RECURSIVO:

-0,013 -0,015 -0,017 -0,017 -0,019 -0,019 -0 Coeficiente de la TENDENCIA --- Máximo

1927 - 1956

1927 - 1957

1927 - 1955

1927 - 1954

1927 - 1953

1927 - 1952

1927 - 1951

- 1958 - 1959 - 1960 - 1961

1927 1927 1927

ESTABILIDAD DEL COEFICIENTE DE LA TENDENCIA EN EL VEC RECURSIVO: 1927-1950...1927-1982

- 1965

- 1966 - 1967 - 1968 - 1969 - 1971 - 1972

1927 1927

1927 - 1970

- 1975

1927

1927 - 1976

1927 - 1980

1927 - 1981

1927 - 1982

1

.

Mínimo

- - -

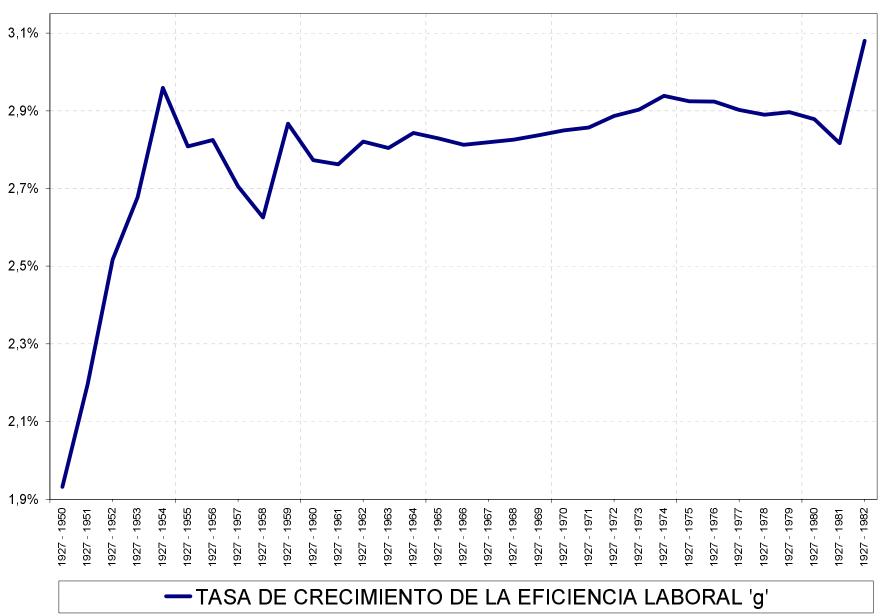
1927 - 1977

- 1963 - 1964

1927 1927 1927 1927 1927 1927

1927 - 1962

1927


Archivo: No.134BMiguelUrrutia Hoja: G3

-0,009

-0,011

1927 - 1950

Anexo Gráfico 4A

COMPORTAMIENTO DE LA EFICIENCIA LABORAL EN EL VEC RECURSIVO: 1927-1950...1927 - 1982

Archivo: No.134BMiguelUrrutia Hoja: G4

Anexo Tabla 12A
HIPÓTESIS ESPECIALES
Prueba de cointegración de Johansen
NÁLISIS DE COINTEGRACIÓN
ariables endógenas: LNKPEA LNYPEA Constante y tendencia no restringidas en el espacio de cointegración Se incluyeron en todas las pruebas 2 rezagos en el modelo VAR.
<u>Pruebas</u> . <u>Exclusión</u> : Revisa la validez de una variable en la relación estacionaria de largo plazo. Ho: La variable está excluida y no es necesaria para obtener relaciones estacionarias de largo plazo. Ha: La variable no está excluida.
Prueba de máxima verosimilitud es asintóticamente distribuida como una $\chi^2_{0,05;r}$ donde r es el número de vectores de cointegración.
. <u>Estacionaridad:</u> Revisa si las variables individuales son estacionarias dentro de una prueba multivariada. Ho: La variable es estacionaria dado el espacio de cointegración. Ha: La variable no es estacionaria dado el espacio de cointegración
Prueba de máxima verosimilitud es asintóticamente distribuida como una χ ² _{0,05; (p - r)} donde (p -r) es el número de grados de libertad. p: número de rezagos en el modelo VAR. r: número de vectores de cointegración.
. <u>Exogeneidad débil</u> : Es una prueba para investigar si las variaciones de corto plazo de alguna de las variables no afectan la relación de largo plazo entre variables. Ho: La variable es exógena débil. Ha: La variable no es exógena débil.
Prueba de máxima verosimilitud es asintóticamente distribuida como una $\chi^2_{0,05;r}$ donde r es número de vectores de cointegración.

	Continuación de la Tabla 12A								
	HIPÓTESIS ESPECIALES								
Muestra	No de	Observaciones	Т	est de exclus	sión	Test de est	acionaridad	Test de exo	geneidad débil
efectiva	observaciones	menos No. de variables	LNKPEA	LNYPEA	TENDENCIA	LNKPEA	LNYPEA	LNKPEA	LNYPEA
	Valores críticos	→	χ	$(2_{0,05;1}^{2} = 3)$.84.	χ ² 0,05; 2	= 5,99.	χ ² 0,05;	1 = 3.84 .
1927 - 1960	34	28	8,47	9,10	8,14	15,04	10,37	0,27	7,35
1927 - 1961	35	29	8,80	9,13	8,17	15,29	10,57	0,29	7,36
1927 - 1962	36	30	9,01	10,70	9,67	17,49	13,77	0,24	8,78
1927 - 1963	37	31	9,29	11,70	10,49	18,64	15,44	0,23	9,66
1927 - 1964	38	32	9,83	11,34	10,16	18,40	15,00	0,27	9,18
1927 - 1965	39	33	10,14	12,04	10,71	19,24	16,21	0,31	9,66
1927 - 1966	40	34	10,51	11,83	10,50	19,00	15,63	0,36	9,43
1927 - 1967	41	35	11,38	14,03	12,32	20,94	18,69	0,57	10,46
1927 - 1968	42	36	12,00	13,67	11,94	20,76	18,04	0,69	9,89
1927 - 1969	43	37	12,34	14,52	12,80	21,75	19,43	0,68	10,57
1927 - 1970	44	38	12,53	14,33	12,65	21,76	19,31	0,71	10,30
1927 - 1971	45	39	12,61	15,38	13,72	22,70	20,85	0,55	11,41
1927 - 1972	46	40	10,65	13,95	12,74	21,20	19,92	0,24	11,18
1927 - 1973	47	41	9,60	13,22	12,18	20,45	19,37	0,12	11,04
1927 - 1974	48	42	10,85	13,39	11,86	20,96	19,27	0,56	10,11
1927 - 1975	49	43	11,60	15,13	13,37	22,24	20,93	0,40	11,53
1927 - 1976	50	44	12,03	15,34	13,46	22,63	21,13	0,49	11,58
1927 - 1977	51	45	11,11	13,67	11,74	21,09	19,30	0,55	10,41
1927 - 1978	52	46	11,33	14,66	12,94	22,48	20,70	0,31	11,60
1927 - 1979	53	47	11,79	15,13	13,07	22,73	21,18	0,55	11,34
1927 - 1980	54	48	11,18	13,93	11,81	21,59	19,82	0,63	10,47
1927 - 1981	55	49	7,09	8,53	6,99	15,88	13,88	0,46	6,85

Anexo Tabla 13A

PRUEBA DE CAUSALIDAD TIPO GRANGER								
Variables: Muestra: Rezagos:	LNKPEA 1925 -1994 2							
Hipótesis nula:	Número Observaciones	Estadístico F*	Probabilidad					
LNKPEA no causa LNYPEA en el sentido de Granger	68	0,0987	0,9061					
LNYPEA no causa LNKPEA en el sentido de Granger	68	5,0374	0,0093					
Variables: Muestra: Rezagos:	LNKPEA 1925 -1981 2	LNYPEA						
Hipótesis nula:	Número Observaciones	Estadístico F*	Probabilidad					
LNKPEA no causa LNYPEA en el sentido de Granger	55	0,0495	0,9518					
LNYPEA no causa LNKPEA en el sentido de Granger	55	7,5278	0,0014					
Notas: * estadístico F reportado es el o En los dos periodos muestrale en el sentido de Granger pero s LNKPEA en el sentido de Gran de LNYPEA a LNKPEA y no er	s no se puede rechazar l si se puede rechazar la h ger. Así la causalidad de	a hipótesis que LNk ipótesis de que LNN	/PEA no causa					

Anexo Tabla 14A

FORMUL	_AS (1905-1924):	$K_t = [K_{t+1} - (\alpha g/r)^* Y]$	′ _t]/[1-(αg/r)	*(depreciación)]					
		$Y_t/K_t = [1 - (\alpha g/r)^*dep$	reciación]/	[K _{t+1} /Y _t - αg/r]					
		$I_t = (\alpha g/r)^* Y_t$							
	Producto Interno Bruto Real	Población Económicamente Activa	PIB per capita	Capital real observado	Capital Real estimado	PIB/CAPITAL	Inversión neta estimada y observada		
	GRECO-CEPAL-DANE	GRECO-FLOREZ	GRECO	CEPAL-DANE	GRECO	GRECO-CEPAL-DANE	GRECO-CEPAL-DANE		
	Millones de pesos de 1975			Millones de pesos de 1975	Millones de pesos de 1975		Millones de pesos de 1975		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
1905	14.148	1.694.072	8.352		144.334	9,80%	1.608		
1906	14.547	1.726.740	8.425		145.450	10,00%	1.654		
1907	15.509	1.760.038	8.812		146.608	10,58%	1.763		
1908	16.376	1.793.979	9.128		147.871	11,07%	1.861		
1909	17.241	1.828.574	9.428		149.228	11,55%	1.960		
1910	18.217	1.863.836	9.774		150.679	12,09%	2.071		
1911	19.120	1.899.778	10.064		152.235	12,56%	2.173		
1912	20.059	1.936.413	10.359		153.890	13,03%	2.280		
1913	20.935	1.974.170	10.605		155.645	13,45%	2.380		
1914	21.731	2.012.664	10.797		157.494	13,80%	2.470		
1915	22.735	2.051.909	11.080		159.427	14,26%	2.584		
1916	23.906	2.091.918	11.428		161.467	14,81%	2.717		
1917	24.886	2.132.708	11.669		163.634	15,21%	2.829		
1918	26.268	2.174.293	12.081		165.905	15,83%	2.986		
1919	28.451	2.218.238	12.826		168.325	16,90%	3.234		
1920	30.396	2.263.071	13.431		170.985	17,78%	3.455		
1921	32.146	2.308.811	13.923		173.857	18,49%	3.654		
1922	34.323	2.355.475	14.571		176.918	19,40%	3.901		
1923	36.513	2.403.082	15.194		180.216	20,26%	4.150		
1924	38.587	2.451.651	15.739	107	183.752	21,00%	4.386		
1925	40.669	2.501.202	16.260	187.511		21,69%	4.623		
'	l (base=1975) 1905-1997.Ver nota								
'	25-1997 Florez 1998. Ver nota Ta	abla anterior							
'	a Tabla anterior								
<i>,</i> ,	real . Ver Anexo Tabla 3A								
<i>·</i> ·	real estimado según :			A: $K_t = (K_{t+1} - \alpha g/r)$					
6) Relació	n producto capital. 1905-1924 est	imada según:	FORMULA: $Y_t/K_t = (1 - depreciación)/(K_{t+1}/Y_t - \alpha g/r)$						
7) Inversió	n. 1905-1924 estimada según:		FORMULA: $I_t = (\alpha g/r)Y_t$						
	1925-1997 tomado del cuadro	Anexo Tabla 3A							

Comparación entre datos del PIB de Greco y de Maddison											
	PIB REAL	T.CREC.	PIB REAL	T.CREC.	T.CREC. PROMEDIO						
	GRECO	GRECO	A PRECIOS	MADDISON	GRECO		ROMEDIOS				
	EN PESOS DE 1975		CONTANTES 1929=100			PERIODOS		MADDISO			
1905	14.148	0.000/				1913-1929	6,01%	3,87			
1906 1907	14.547 15.509	2,82% 6,61%				1929-1939 1939-1950	3,78% 4,02%	3,84 3,76			
1908	16.376	5,59%				1950-1965	4,46%	4,52			
1909	17.241	5,28%				1965-1973	5,88%	6,10			
1910	18.217	5,67%				1973-1980	5,20%	5,46			
1911	19.120	4,95%				1980-1985	2,56%	2,61			
1912	20.059	4,91%									
1913	20.935	4,37%	54,50		6,01%						
1914	21.731	3,80%	56,61	3,87%	6,01%						
1915 1916	22.735 23.906	4,62% 5,15%	58,80 61,07	3,87% 3,87%	6,01% 6,01%						
1917	24.886	4,10%	63,43	3,87%	6,01%						
1918	26.268	5,56%	65,88	3,87%	6,01%						
1919	28.451	8,31%	68,43	3,87%	6,01%						
1920	30.396	6,84%	71,08	3,87%	6,01%						
1921	32.146	5,76%	73,82	3,87%	6,01%						
1922	34.323	6,77%	76,68	3,87%	6,01%						
1923	36.513	6,38%	79,64	3,87%	6,01%						
1924	38.587	5,68%	82,72	3,87%	6,01%						
1925 1926	40.669 44.552	5,39% 9,55%	85,92 89,24	3,87% 3,87%	6,01% 6,01%						
1920	48.565	9,01%	89,24 92,69	3,87%	6,01%						
1928	52.132	5,01% 7,35%	96,28	3,87%	6,01%						
1929	54.008	3,60%	100	3,87%	6,01%						
1930	53.544	-0,86%	99,1	-0,90%	-0,86%						
1931	52.689	-1,60%	97,6	-1,51%	-1,60%						
1932	56.182	6,63%	104	6,56%	6,63%						
1933	59.340	5,62%	109,9	5,67%	5,62%						
1934 1935	63.075 64.617	6,29% 2,44%	107,6 119,6	-2,09% 11,15%	6,29% 2,44%						
1936	68.035	2,44 <i>%</i> 5,29%	126	5,35%	5,29%						
1937	69.094	1,56%	127,9	1,51%	1,56%						
1938	73.590	6,51%	136,3	6,57%	6,51%						
1939	78.105	6,13%	144,6	6,09%	6,13%						
1940	79.795	2,16%	149,72	3,54%	4,02%						
1941	81.133	1,68%	155,03	3,54%	4,02%						
1942	81.300	0,21%	160,52	3,54%	4,02%						
1943 1944	81.635 87.152	0,41% 6,76%	166,21 172,10	3,54% 3,54%	4,02% 4,02%						
1945	91.240	4,69%	178,20	3,54%	4,02%						
1946	100.009	9,61%	184,52	3,54%	4,02%						
1947	103.892	3,88%	191,06	3,54%	4,02%						
1948	106.846	2,84%	197,83	3,54%	4,02%						
1949	116.172	8,73%	204,84	3,54%	4,02%						
1950	117.454	1,10%	212,1	3,54%	4,02%						
1951 1952	120.742 128.408	2,80% 6,35%	221,82 231,99	4,58% 4,58%	4,46% 4,46%						
1953	134.953	5,10%	242,63	4,58%	4,46%						
1954	144.625	7,17%	253,76	4,58%	4,46%						
1955	150.362	3,97%	265,39	4,58%	4,46%						
1956	157.507	4,75%	277,56	4,58%	4,46%						
1957	162.823	3,38%	290,28	4,58%	4,46%						
1958	165.916	1,90%	303,59	4,58%	4,46%						
1959	177.806	7,17%	317,51	4,58%	4,46%						
1960 1961	184.932 194.432	4,01% 5,14%	332,07 347,29	4,58% 4,58%	4,46% 4,46%						
1962	204.613	5,24%	363,22	4,58%	4,46%						
1963	211.178	3,21%	379,87	4,58%	4,46%						
1964	223.915	6,03%	397,29	4,58%	4,46%						
1965	232.906	4,02%	415,5	4,58%	4,46%						
1966	245.865	5,56%	441,64	6,29%	5,88%						
1967	254.985	3,71%	469,42	6,29%	5,88%						
1968	270.928	6,25%	498,95	6,29%	5,88%						
1969 1970	288.102 307.496	6,34% 6,73%	530,33 563,69	6,29% 6,29%	5,88% 5,88%						
1970 1971	325.825	6,73% 5,96%	563,69 599,15	6,29%	5,88%						
1972	350.813	7,67%	636,84	6,29%	5,88%						
1973	374.398	6,72%	676,9	6,29%	5,88%						
1974	395.910	5,75%	713,08	5,35%	5,20%						
1975	405.108	2,32%	751,20	5,35%	5,20%						
1976	424.263	4,73%	791,35	5,35%	5,20%						
1977	441.906	4,16%	833,65	5,35%	5,20%						
1978	479.335	8,47%	878,21	5,35%	5,20%						
1979 1980	505.119 525 765	5,38% 4.09%	925,15 974 6	5,35% 5,35%	5,20% 5,20%						
1980 1981	525.765 537.736	4,09% 2,28%	974,6 994,73	5,35% 2,07%	5,20% 2,56%						
1982	542.836	2,28% 0,95%	1015,28	2,07%	2,56%						
1983	551.380	1,57%	1015,28	2,07%	2,56%						
1984	569.855	3,35%	1057,65	2,07%	2,56%						
1985	587.561	3,11%	1079,5	2,07%	2,56%						